
Computational Drafting of Plot Structures for Russian Folk Tales

Pablo Gervás1

Received: 2 November 2014 / Accepted: 15 May 2015 / Published online: 27 May 2015

� Springer Science+Business Media New York 2015

Abstract The plots of stories are known to follow general

patterns in terms of their overall structure. This was the basic

tenet of structuralist approaches to narratology. Vladimir

Propp proposed a procedure for the generation of new tales

based on his semi-formal description of the structure of

Russian folk tales. This is one of the first existing instances of

a creative process described procedurally. The present paper

revisits Propp’s morphology to build a system that generates

instances of Russian folk tales. Propp’s view of the folk tale as

a rigid sequence of character functions is employed as a plot

driver, and some issues that Propp declared relevant but did

not explore in detail—such as long-range dependencies be-

tween functions or the importance of endings—are given

computational shape in the context of a broader architecture

that captures all the aspects discussed by Propp. A set of

simple evaluation metrics for the resulting outputs is defined

inspired on Propp’s formalism. The potential of the resulting

system for providing a creative story generation system is

discussed, and possible lines of future work are discussed.

Keywords Computational creativity � Computational

narratology � Storytelling � Knowledge representation

Introduction

The concept of plot of a story is a useful abstraction. It refers

to the skeleton of the story, its elementary structure, and how

the material in it all comes together into a single, coherent

whole. Everybody has intuitions on what is involved in such

a plot: a sequence of events presented in a particular order

and related to one another in such a way that if one were left

out it would be missed and if an extra one were added it

would be out of place. Of particular importance is the fact

that it should all lead to an end point which rounds off the

whole and that any issues raised during the sequence should

have been resolved before the end. With this sketch of the

concept of story plot in mind, the issues of how these plots

come about, and which computational procedures might

provide a good model of how to produce them becomes an

interesting research question. The interest arises from the

fact that such story plots are themselves artifacts of great

potential in terms of their applicability if they can be pro-

duced automatically for a given set of constraints, and be-

cause the task of story construction is a relevant instance of

the human ability to create novel artifacts of value.

The construction of stories is a cognitive task that is

fundamental to the way humans understand the world and

attempt to influence it. Yet for centuries, work on the

analysis of narrative has focused on its structural properties

and its semiotic nature, rather than the cognitive processes

that lead to its emergence. The structural school of narra-

tology focused on the analysis of literary works in terms of

their structure and the larger structures they are part of. It is

only recently [13] that attention has turned to considering

how the human storytelling ability relates to human cog-

nition. Pioneering work on automated storytelling dating

back to the beginnings of artificial intelligence as a disci-

pline had already considered dynamic modelling of the

processes involved in creating stories [5, 15, 18, 19]. These

efforts focused on making the most of available computa-

tional techniques—such as logic, planning, or case-based

reasoning—to obtain story-like outputs. The idea to exploit

structuralists account of narrative in computational systems

& Pablo Gervás

pgervas@ucm.es

1 Instituto de Tecnologı́a del Conocimiento, Universidad

Complutense de Madrid, 28040 Madrid, Spain

123

Cogn Comput (2016) 8:187–203

DOI 10.1007/s12559-015-9338-8

http://orcid.org/0000-0003-4906-9837
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-015-9338-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-015-9338-8&domain=pdf

capable of generating stories is not new. Propp’s account of

the morphology of the Russian folk tale [22] has the ad-

vantage of being simple, intuitive, and formally tractable.

Many attempts have been made to use it as underlying

theory for automated story generation [6–9, 12, 17]. The

need to explore further the combinations of artificial in-

telligence and narratology has been defended elsewhere

[11]. The present paper provides a description of the

Propper system for the generation of Russian folk tales

based on the morphology of the folk tale by Vladimir

Propp. Within the computational framework provided by

this system, the paper explores the particular question of

how the dependency relations between different elements

of a plot and the constraints imposed on the element that

occurs at the very end of a plot—the ending—have to be

taken into consideration when designing a constructive

procedure for plots. These two questions are relevant to

storytelling in a broader context, and the intuitions un-

covered during empirical testing may be applicable beyond

the Propper system and beyond the particular view of

narrative structure proposed by Propp.

Previous Work

Before the proposed system can be described, a number of

issues addressed by previous work must be presented: basic

elements of Propp’s morphology, Propp’s description of

how his morphology could be used to generate stories, a

brief review of existing automated storytellers as relevant

to this effort, and some basic points on computational

creativity.

Elements of Propp’s Formalism Relevant

for Computational Implementation

Propp [22] set out to study a subset of a corpus of Russian

folk tales collected by Afanasiev and concentrated on 100 of

those tales to carry out this study. Over these tales, he

identified a set of regularities in terms of character functions,

understood as acts of the character, defined from the point of

view of their significance for the course of the action. He

concluded that, for the given set of tales, the number of such

functions is limited, the sequence of functions was always

identical, and all these folk tales could be considered in-

stances of a single structure, an archetype of a folk tale.

The collection of tales that Propp focuses on involves

stories built on combinations of a number of narrative in-

gredients: a protagonist sets out on a journey, usually

triggered by a lack in his immediate environment or a

villainy performed upon it, faces a villain, and in the pro-

cess gets helped by a magical agent. A possible compli-

cation considered is the presence of an additional character

that competes with the protagonist for the role of hero of

the story, which involves additional ingredients such as a

gradual unveiling of the hero’s real role in the story, from

initial presentation in disguise to the obtention of a reward

towards the end, and usually involving recognition as a

result of success on a difficult task.

The two cornerstones of Propp’s analysis of Russian

folk tales are a set of roles for characters in the narrative

(which he refers to as dramatis personae) and a set of

character functions. These two concepts serve to articulate

the morphology as an account of the elementary structure

of the tales. Both of these concepts are constructed

specifically for the family of tales being considered.

Therefore, the set of roles includes fundamental elements

such as the hero (who sets out on a journey), the dispatcher

(who dispatches the hero on his journey), the villain (that

the hero faces during the story), the donor (who provides

the magical agent to the hero), and the false hero (who

competes with the protagonist for the role of hero of the

story). The set of character functions includes a number of

elements that account for the journey, a number of ele-

ments that detail the involvement of the villain—including

the villainy itself, some possible elaborations on the

struggle between hero and villain, and a resolution—a

number of elements that describe the dispatching of the

hero, a number of elements that describe the acquisition of

a magical agent by the hero, and a number of elements

concerned with the progressive unveiling of the hero’s role

in opposition to the false hero.

The sequence of character functions described by Propp

is supposed to apply to all stories of the type described, so

that any story will include character functions from this

sequence appearing in the given order. With respect to the

relative ordering, some deviation allowed in that tales may

depart from it by shifting certain character functions to

other positions in the sequence.

Character functions in a given narrative are related to

one another by long-range dependencies related to moti-

vation and coreference. Propp’s analysis of this point has

been discussed in [9]. These links are mostly concerned

with particular instantiations of certain character functions

being linked to instantiations of character functions that

went before them. This is one of the ways in which overall

coherence of the tale can be ensured: characters kidnapped

at the beginning are freed towards the end, and so on. A

computational procedure must take these links into account

when deciding which characters to assign to particular

roles in each new character function added to a story. If the

sister of the hero was bewitched at the start, it is she that

needs to be released from the spell towards the end.

Character functions are so named because, in Propp’s

understanding, they represent a certain contribution to the

development of the narrative by a given character. When

188 Cogn Comput (2016) 8:187–203

123

he talks about the set of characters of the story (or

dramatis personae), Propp constantly reoccurs to a set of

labels to describe particular roles played by characters in

tales. They are gathered together in chapter VI where he

discusses the distribution of functions among dramatis

personae. For simplicity, I will refer to these as role

names, though Propp does not. Some examples of these

roles are as follows: the villain, the donor (who provides

the hero with a magical agent), the helper (usually a

magical agent, that helps the hero carry out his tasks),

the dispatcher (who sends the hero on his mission), the

hero (the protagonist of the story), and the false hero

(who maliciously sets himself up to usurp the protagonist

as hero of the story). Propp defines these in terms of the

set of character functions that can be grouped around

each one of them, as involving the same character. In the

description of each character function in chapter III,

Propp mentions how the character fulfilling a particular

named role is involved in the various actions that can

instantiate that character function (the villain carries out

the villainy, the dispatcher sends the hero on his mission,

the hero departs from home, etc.). If a procedural solu-

tion is sought that attempts to model closely the vision of

tales that Propp had, these narrative roles must be ex-

plicitly defined, and some means of explicitly defining

their participation in each type of character function

should be provided, to ensure that these participations are

instantiated by particular characters in a coherent manner

throughout the tale.

Propp’s Description of Tale Generation

Propp provides in his book a very clear description of how

his morphology could be used for story generation:

In order to create a tale artificially, one may take

any A, then one of the possible B’s then a C ",
followed by absolutely any D, then an E, the one of

the possible F’s, then any G, and so on. In doing

this, any elements may be dropped, or repeated three

times, or repeated in various forms. If one then

distributes functions according to the dramatis per-

sonae of the tale’s supply of by following one’s own

taste, these schemes come alive and become tales.

Of course, one must also keep motivations, con-

nections, and other auxiliary elements in mind

p. 111–112

In addition to this clearly procedural description he

provides a number of constraints that a potential storyteller

should obey and an enumeration of the points where a

storyteller has freedom to decide.

The constraints on the story teller are as follows:

1. ‘‘The storyteller is constrained (...) in the overall

sequence of functions, the series of which develops

according to the above indicated scheme’’. p. 112

2. ‘‘The storyteller is not at liberty to make substitutions

for those elements whose varieties are connected by an

absolute or relative dependence’’. p. 112

3. ‘‘In other instances, the storyteller is not free to select

certain personages on the basis of their attributes in the

event that a definite function is required’’. p. 112

The points where Propp considers that a storyteller has a

certain freedom are as follows:

1. ‘‘In the choice of those functions which he omits, or,

conversely, which he uses’’ p. 112

2. ‘‘In the choice of the means (form) through which a

function is realized’’. p. 112

3. in the assignment of story characters to particular slots

in functions: ‘‘If one then distributes functions accord-

ing to the dramatis personae of the tale’s supply or by

following one’s own taste, these schemes come alive

and become tales’’ p. 111–112 and ‘‘The storyteller is

completely free in his choice of the nomenclature and

attributes of the dramatis personae. Theoretically the

freedom here is absolute’’. p. 112–113

4. ‘‘The story teller is free in his choice of linguistic

means’’. p. 113

On the third point, Propp follows on to discuss in rather

vague terms that people do not make wide use of this

freedom, preferring to let personages recur much as func-

tions do. So there is a typical villain and a typical donor.

Given the level of uncertainty involving this description, it

has been decided not to consider it in the present system.

The fourth point surely underlies Propp’s decision not to

address linguistic issues in his morphology at all. We fol-

low this decision in deciding not to address the linguistic

rendering of the tales in the initial implementation of our

system.

The remaining insights are considered in a computa-

tional implementation in ‘‘The Propper System: A Com-

putational Solution for Proppian Story Generation’’

section.

A different point to consider is whether a sequence of

functions generated in this way allows for a story with a

satisfactory ending. This important point was not consid-

ered in detail by Propp, possibly due to the fact that his

main goal was to propose an analytical framework to help

classify folk tales. The proposal of a related generative

procedure was a side product, and Propp never considered

the problem of when to end a story. From a computational

point of view, however, the need for a clear stopping

condition on the construction procedure is paramount.

The most relevant mentions of endings in Propp’s book

occur in pages 58 (‘‘A great many tales end on the note of

Cogn Comput (2016) 8:187–203 189

123

rescue from pursuit’’.) and 64 (on the subject of the reward

/ marriage character function: ‘‘At this point the tale draws

to a close’’.).

Existing Automated Storytellers

There have been several attempts to use Propp’s formalism

as a basis for story generation. However, with only one

exception [9], most of these attempts either were loosely

inspired by Propp (Lang’s Joseph system [17], Turner’s

MINSTREL system [27]) or relied on the part of Propp’s

framework designed for analysing / describing folk tales,

which they used to specify the building blocks for their

systems but then combined with additional constructive

techniques that had not been considered by Propp (such as

case-based reasoning or interactive storytelling [6–8, 12].

Gervás [9] provides more detailed argumentation of how

these various storytelling systems differ from Propp’s de-

scription of the generative procedure he proposed based on

his analytical framework.

An important concept related to the implementation of

narrative systems is that of story actions as operators that

change the world. Actions in a story are applicable if

certain conditions hold in the state of the world before

they happen, and after they happen they change the state

of the world. This idea has been represented by defining

actions with an associated set of preconditions and an-

other of postconditions or effects. This approach to

defining actions is important because it constitutes a

possible way of capturing the causal dependencies that

constitute a fundamental ingredient of narrative as it is

understood by people [26]. It has become popular in story

generation through the numerous research efforts that use

planning techniques [1, 14, 23], which are inherently

based on this concept. Even systems based on alternative

generation technologies include the possibility of associ-

ating pre- and postconditions to actions, such as the in-

formation on emotional links between characters

considered in the MEXICA system [21] or the precondi-

tions added to the representation of actions in the Joseph

system [17].

Computational Creativity

Wiggins [28] takes up Boden’s idea of creativity as search

over conceptual spaces [2] and presents a more detailed

theoretical framework intended to allow detailed compar-

ison, and hence better understanding, of systems which

exhibit behaviour which would be called creative in hu-

mans. This framework describes an exploratory creative

system in terms of a septuple of elements, which include

elements for defining a conceptual space as a distinct

subset of the universe of possible objects, the rules that

define a particular subset of that universe as a conceptual

space, the rules for traversing that conceptual space, and an

evaluation function for attributing value to particular points

of the conceptual space reached in this manner. Wiggins

goes on to provide refinements that cover issues such as the

differences between exploratory and transformational cre-

ativity expressed in terms of this framework. However, the

systems considered in this paper are far too humble to

require these refinements.

Ritchie [24] addresses another important issue in the

development of creative programmes, that of evaluating

when a programme can be considered creative. He does

this by outlining a set of empirical criteria to measure the

creativity of the programme in terms of its output. He

makes it very clear that he is restricting his analysis to the

questions of what factors are to be observed, and how these

might relate to creativity, specifically stating that he does

not intend to build a model of creativity. Ritchie’s criteria

are defined in terms of two observable properties of the

results produced by the programme: novelty (to what extent

is the produced item dissimilar to existing examples of that

genre) and quality (to what extent is the produced item a

high-quality example of that genre). To measure these

aspects, two rating schemes are introduced, which rate the

typicality of a given item (item is typical) and its quality

(item is good). Another important issue that affects the

assessment of creativity in creative programmes is the

concept of inspiring set, the set of (usually highly valued)

artifacts that the programmer is guided by when designing

a creative programme. Ritchie’s criteria are phrased in

terms of: what proportion of the results rates well accord-

ing to each rating scheme, ratios between various subsets of

the result (defined in terms of their ratings), and whether

the elements in these sets were already present or not in the

inspiring set.

For the analysis of complex creative acts in terms of

their constituents elements, some recent theoretical pro-

posal for understanding computational creativity software

will be useful. The FACE model [4, 20] presents a

framework to understand creative acts performed by soft-

ware. It defines a creative act as a non-empty tuple con-

taining exactly zero or one instances of eight types of

individual generative acts. The eight types are defined in

terms of four different target types: the expression of a

concept, a concept, an aesthetic measure, or framing in-

formation. A concept is a procedure which is capable of

taking input and producing output; the expression of a

concept is an instance of an (input, output) pair produced

when a concept is run. An aesthetic measure is a function

which takes as input a concept or an expression and outputs

a numerical score. Framing information is a comprehen-

sible explanation (in natural language) of some aspect of

the tuple. The eight types arise by distinguishing, for these

190 Cogn Comput (2016) 8:187–203

123

four target types, between artefacts (generating instances of

them) and processes (generating methods for producing

instances).

The Propper System: A Computational Solution
for Proppian Story Generation

The Propper system is composed by a set of modules, each

addressing one of the decision points where Propp con-

siders that a storyteller has a certain freedom of choice to

exercise:

• A plot driver generator is in charge of building the

sequence of character functions for a tale. It addresses

the first freedom point in Propp’s enumeration, and it

must be guided by constraints 1 and 2.

• A fabula generator is in charge of instantiating the

character functions in the resulting sequence with

particular story actions, ensuring that they work well

as a sequential discourse. It addresses freedom point 2,

and it must satisfy the requirements of appropriate

linking.

• A casting module is in charge of assigning particular

characters to the arguments of the selected story actions.

It addresses freedom point 3, and it must respect

constraint 3.

• A textual rendering module is in charge of converting

the final conceptual plan for a story into text.

The computational solution described in this paper has been

partially implemented as a working prototype written in

Java and operating over a small set of resources defined as

plain text files. The partial implementation available so far

includes full operational versions of the plot driver generator

and the fabula generator and baseline solutions for the

casting and the textual rendering module. Of these, only the

plot driver generator is reported in the present paper. This

development involved a very small effort of simple coding

of the overall algorithmic procedures, but a considerable

effort of knowledge engineering over the set of resources.

Knowledge Representation

The first step for considering Propp’s formalism as a com-

putational procedure would be to define specific represen-

tations for the concepts involved. In the description of

Propp’s formalism given in ‘‘Elements of Propp’s Formal-

ism Relevant for Computational Implementation’’ section,

we have relied on two different concepts that would need to

be assigned a conceptual representation: character func-

tions, which are the basic ingredients handled by the plot

driver generator, and story actions, which are the basic in-

gredients handled by the fabula generator.

Character Functions

The plot driver generator relies on the following specific

representations for the concepts involved:

• A character function, a label for a particular type of

acts involving certain named roles for the characters in

the story, defined from the point of view of their

significance for the course of the action

• A plot driver, a sequence of character functions chosen

as backbone for a given story

Story Actions

To convert a sequence of character functions into a story,

each of these functions must be instantiated with a par-

ticular story action. These story actions involve a number

of predicates that describe events with the use of variables

that represent the set of characters involved in the action.

To fully capture Propp’s restrictions (constraint 3), story

actions will also include non-narrative predicates which

encode constraints on the specific choice of dramatis per-

sona that can fill particular argument slots in the predicates

of the story action; for instance, the fact that the author of a

villainy must be the villain.

The set of story actions available for instantiating a

given character function, as defined by Propp, includes

several variants concerning the form of the action. For

instance, a villainy can take the form of kidnapping a

person, seizing a magical agent, ruining the crops, etc.

Each of these would be represented in our proposal by an

action with a set of preconditions and a set of postcondi-

tions. To keep track of the effects of these actions as they

are added to the story, some form of representation of the

context must be employed. As the simplest possible solu-

tion, a representation of the context is considered as a set of

states, each one representing the state of the world before a

certain story action took place. A state of the world is

represented as a set of predicates describing the facts that

hold in that state. The sequence of states for a given story

we call a fabula.

We represent a story action as a set of predicates that

describe an instance of a character function. Links with

preceding story actions are represented as dependencies of

the story action with predicates that need to have appeared

in previous story actions (preconditions). Therefore, a story

action involves a set of preconditions (predicates that must

be present in the context for continuity to exist) and a set of

postconditions (predicates that will be used to extend the

context if the action is added to it). Some additional pre-

dicates not corresponding to events in the story are added

to encode the sphere of action to which each story action

belongs. These predicates explicitly link the corresponding

Cogn Comput (2016) 8:187–203 191

123

narrative role to a particular variable in the story action.

The predicates in a story action are defined over free

variables as arguments. This ensures that relative instan-

tiation of the various arguments in the predicates of a story

action is coherent, as discussed later. Table 1 includes

examples of story actions linked by preconditions.

Each successive state in a fabula contains all the pre-

dicates arising from the preceding actions that have not

been retracted by a story action since they occurred. This is

difficult to read. Also it is difficult to define over such a

structure significant metrics on measures such as number of

predicates in which a certain character appears (which we

will need to consider when measuring the structural quality

of a story). For this purpose, we define a final structure

called a flow for a story, which is simply an ordered se-

quence of all the predicates in the fabula, such that each

one appears only once, and grouped into subsets according

to the particular state of the fabula in which they were first

introduced.

The Overall Architecture

Based on this representation, the procedure originally

sketched by Propp can be subdivided into the following

stages, each one of which will be addressed by a different

module in our proposed system:

• employ an algorithmic procedure for generating a

sequence of character functions considered valid for a

tale (plot driver generator)

• given a valid sequence of character functions, progres-

sively select instantiations of these character functions

in terms of story actions (fabula generator)

• given a fabula where all variables have been replaced

by constants, produce a flow for the story (flow

generator).

For each of these stages, a computational decision proce-

dure must be selected. We are considering a possible

computational implementation. For this purpose, we intend

to consider in the first instance the simplest representation

and the simplest procedures compatible with acceptable

results. To this end, a number of computational options for

some of these modules have been considered, together with

a knowledge engineering effort to produce the required

resources. The results have been empirically tested for

fulfilment of Propp’s constraints. The following sections

report on the development, the evaluation procedures, and

the results of the tests.

Given that the development effort has focused at a very

abstract level of representation, evaluation has to be con-

sidered at a corresponding level to provide valid feedback

for the improvement of the system. As the linguistic

modelling of the stories has not been addressed, evaluation

by human volunteers is plagued with difficulty. Introducing

some kind of rapidly constructed stage for rendering the

results as text by providing text templates for each story

action (as done in some existing story generators [21]) is

likely to introduce noise in terms of elements present in the

text and not necessarily produced by the system. Asking

human evaluators to rate the quality of an abstract repre-

sentation as produced by the system runs the risk of

judgements being clouded by the difficulty of interpreting

the representation.

Additionally, evaluations by humans necessarily have to

be restricted to a small number of instances of system

output. The choice of which particular instances to test is

left to the designer of the experiment, and there is a risk of

focusing on examples that are not representative of system

performance overall.

As an alternative, quantitative procedures have been

defined to measure the specific qualities desired for each

stage of the representation, at a corresponding abstract

level. These procedures can be applied to a large number

of system results, providing a measure of the quality of

system output at the working level of abstraction and

applicable to a broad range of system results, leaving no

doubt as to their significance over the complete set of

outputs.

The Propper Plot Driver Generator Module

The Propper systems rely on Propp’s generative procedure

for story construction as a blueprint for a computation

solution to story generation.

The plot driver generator module operates on the fol-

lowing inputs:

• A reference sequence of character functions.

Table 1 Examples of story

actions
Character function villainy liquidation

Preconditions married H Y married H W

hero H sundered H W

villain X hero H

Action makes_disappear X Y resume_marriage H W

Postconditions victim Y

sundered H Y

192 Cogn Comput (2016) 8:187–203

123

• A set of dependencies identified between character

functions in the sequence.

• A selection of character functions that have been

identified as likely options to end a story.

The constructive procedure for generating plot drivers

traverses the reference sequence of character functions

deciding at each point whether to add the character func-

tion under consideration to the draft of the plot driver.

Further details on this constructive procedure are presented

in ‘‘Computational Drafting of Plots: The Propper Plot

Driver Generator Module’’ section .

The Propper Fabula-Flow Generator Module

The construction procedure for generating fabulae takes as

input a plot driver, a set of story actions, and a mapping

between character functions and story actions. It generates

a fabula as a succession of states described by predicates,

which is then converted into a flow, which lists a sequential

discourse of predicates describing the story at a conceptual

level. Both in a fabula and in a flow, characters appearing

as arguments in predicates are referred only by a variable

name acting as identifier.

A fabula generator receives a plot driver and selects

story actions for the character functions given in it. To do

this, the fabula generator has to define a fabula, a sequence

of states that contain a chain of instances of character

functions ideally somehow linked by having their precon-

ditions fulfilled by the context. The initial state by default

incorporates all predicates of the first action, and each valid

action added to the fabula generates a new state that in-

corporates all predicates of the previous state, plus the

predicates of the new action.

A mapping is established between the set of story ac-

tions and the set of character functions, so that each of the

available story actions is considered a possible instantiation

of a given character function.

To evaluate whether the preconditions of a story action

are satisfied by the context, they are unified with the set of

predicates that hold in that state. This serves two purposes:

• if the preconditions are not satisfied, an alternative

story action will be considered

• unification allows any of the free variables in these

preconditions to unify with those in the predicates

holding in the fabula

A story action is considered a valid extension of a given

fabula if the set of its preconditions can be successfully

unified with the predicates in the latest state of the fabula.

Once the story action is added, the next state is built by

extending the preceding state with the action and the

postconditions of the story action.

When the preconditions unify with the state in the fab-

ula, any replacement of free variables in the preconditions

is carried over to the rest of the story action before it is

added to the context. This ensures that the story action

become coherent with the rest of the predicates in the

fabula, creating continuity.

The use of unification enables the system to model long-

range dependencies between character functions. If the

choice for a character function such as liquidation of

misfortune or lack depends on which particular story action

was chosen to instantiate the character function for lack,

this procedure will both block non-appropriate instan-

tiations for liquidation (as their preconditions will not be

satisfied) and will ensure the appropriate assignment of

variable names to ensure coherence (for instance, that the

person that was kidnapped at the beginning be freed to-

wards the end). The additional predicates encoding the

sphere of action to which each story action belongs enforce

a correct distribution of functions over dramatis personae.

Overall, the use of unification models Propp’s constraints 2

and 3.

Computational Drafting of Plots: The Propper Plot
Driver Generator Module

The main contribution of this paper is the study of how the

dependency relations between elements in a story and the

particular constraints on the ending of the story affect the

way in which story plots can be constructed. To shed light

on these issues, we depart from the simplest possible

computational implementation of the procedure for tale

generation described by Vladimir Propp in his book—de-

scribed in ‘‘Propp’s Description of Tale Generation’’ sec-

tion—and progressively incorporate additional heuristics

where they can be empirically shown to rule out candidate

plots that would be less successful in terms of satisfying

expected dependency relations and providing a valid

ending.

Resources for Plot Driver Generation

A reference sequence of character functions has been

constructed following the matrix employed by Propp in

Appendix III for tabulating his analyses of stories from his

corpus. This sequence includes several possible placements

of certain character functions in the sequence, to capture

the accepted possibilities for inversion. The actual set of

character functions employed as canonical sequence is

given in Table 2.

Character functions are presented in two columns by

their abbreviated name. A key point in the canonical se-

quence is the villainy/lack pair of character functions

Cogn Comput (2016) 8:187–203 193

123

written in bold. These differ from all the others in that only

one of them is ever included in any single story, and all

stories must contain either one or the other.

Dependencies can be of two types (Table 3). Some de-

pendencies are such that a sequence is only acceptable if

both character functions involved are present (for instance,

if the hero is tested he has to react, and if he reacts it is

because the has been tested, or a struggle and victory, or

the setting of a difficult task and its resolution, or a pursuit

and a rescue from pursuit). This is equivalent to each

character function being a necessary and sufficient condi-

tion for the other. But there is also a different type of

dependency where the presence of one character function

suggests that another one may follow, but that one can

occur without the previous one (for instance, if the hero is

branded at some stage during the tale, it is very likely that

he will be recognised by the brand later in the tale; how-

ever, he may also be recognised by some other means). In

this case, the first character function is a sufficient (but not

necessary) condition for the second one.

Some character functions have several possible de-

pendents. For instance, the presence of character function

unrecognised arrival (the hero arrives at a new place in

disguise) early in the sequence suggest that the character

function unfounded claims (a false hero tries to claim

merit on some of the hero’s actions) may appear later,

but also hero recognised (the hero is recognised and his

merits are recognised). This type of dependencies creates

difficulties for simple ways of measuring satisfaction of

dependencies.

Stopping conditions are crucial in any computational

procedure. Story endings are also fundamental in the per-

ception of the quality and the success of a story. In the

process of building a sequence of character functions that

will give rise to a story, it is important to consider whether

the final character function of the sequence is likely to

provide support for a satisfactory ending. Propp does not

explicitly provide much information on the subject of

endings. To obtain guidance on this issue, one must turn to

the set of examples of folk tales he considers in his book.

By studying these, we can come to some conclusions as to

what character functions constitute suitable candidates to

end a tale. The examples of tales in Propp’s book come in

two forms. One is the set of examples of analyses of tales

given in Appendix II. The other is the set of schemes for

tales tabulated in Appendix III.

Data have been collected for these two sources, and the

results are presented in Table 4. Propp considers instan-

tiations of his canonical scheme as the elementary unit for

tales, which can be combined into more complex stories.

Each instantiation of the canonical scheme is considered a

move within the larger tale. The table lists both cases

where character functions occur at the end of a tale and

where character functions occur at the end of a move

within a tale. It seems reasonable to assume that moves

within a larger tale may finish in a character function that

does not support a satisfactory ending. Yet suitability for

ending a move may also be a merit in terms of ability to

resolve a narrative thread.

Constructive Procedure for Plot Drivers

There are a number of points where the description of the

procedure and/or the required operations given by Propp is

Table 2 Set of character functions employed as canonical sequence

test by donor difficult task

hero reaction branding

acquisition magical agent victory

villainy/lack task resolved

hero dispatched trigger resolved

begin counteraction return

acquisition magical agent hero pursued

departure rescue from pursuit

test by donor unrecognised arrival

hero reaction unfounded claims

acquisition magical agent false hero exposed

transfer transfiguration

trigger resolved branding

unrecognised arrival villain punished

unfounded claims hero marries

struggle

Table 3 List of long-range dependencies between character func-

tions: necessary conditions are indicated with a - sign and necessary

and sufficient conditions with an = sign

test by donor = hero reaction

hero reaction - acquisition magical agent

villainy - trigger resolved

lack - trigger resolved

hero dispatched - begin counteraction

hero dispatched - departure

begin counteraction - departure

branding - unrecognised arrival

branding - hero recognised

unrecognised arrival - false hero exposed

unrecognised arrival - unfounded claims

unrecognised arrival - hero recognised

unfounded claims - false hero exposed

struggle = victory

difficult task = task resolved

departure - return

hero pursued = rescue from pursuit

194 Cogn Comput (2016) 8:187–203

123

vague. For this reason, the generative procedure as de-

scribed by Propp has been extended with additional stages

that account for aspects covered by Propp in his analysis

but not in his procedure. In the particular case of generating

a sequence of character functions, examples of such aspects

include: the existence and management of dependencies

between character functions and the need for a stopping

condition to determine when a satisfactory sequence of

character functions has been obtained. As explained above,

Propp mentions dependencies in various ways, but he does

not go into detail of how they may be treated during gen-

eration. On the subject of endings, he says very little. His

proposed procedure does implicitly contain a solution: as it

involves following the canonical sequence, deciding for

each character function whether to include it or not, the

procedure ends when the end of the sequence is reached.

This will be our baseline solution, but we also want to

consider whether more informed solutions might perform

better with respect to the potential of the resulting sequence

to support a satisfactory ending.

Several heuristics can be considered during the traversal

of the canonical sequence in search for character functions

to add to the draft of a plot driver to ensure that the final

result has a potential for producing good stories.

Dealing with Long-Range Dependencies

The solution we have developed for taking into account

long-range dependencies during the construction of plot

drivers is based on the identification of possible depen-

dencies between the character function being considered

for addition at that point and character functions already in

the plot driver draft. Given the set of dependencies for the

character function being considered, the options to consider

are as follows:

• redundant The character function is a follow-up to a

character function that appears earlier in the draft but

an instance of it has already been added to the draft

before this point (resulting from consideration of a

previous appearance of this character function in the

canonical sequence)

• incorrect The character function is a necessary follow-

up to a character function that appears earlier in the

canonical sequence but which was not selected to

include in the draft (if the current character function is

included, it would result in incoherent stories)

• compulsory The character function is a necessary

follow-up to an earlier character function and no

previous instance of it occurs

• optional Either the character function has no depen-

dencies or it has a weak dependency with character

functions already appearing in the draft (so it may be

added or not)

For each character function considered as possible addition

to an ongoing draft, the procedure identifies the option that

it falls under with respect to that draft, includes it if it is

compulsory, rejects it if it is redundant or incorrect, and

decides at random whether to include it if it is optional.

Dealing with Endings

To address the issue of whether a given plot driver has

potential for producing stories with acceptable endings, we

need to consider a stopping condition on the traversal of the

canonical sequence. If the random selection procedure is

applied strictly, the last character function added to the plot

driver may not have the potential for a good ending.

Several different heuristics are considered for deciding

whether to stop extending the plot driver draft, based on the

character function that has been reached and the sequence

of character functions already in the draft. The knowledge

resources for story generation may be taken into account.

The following heuristics are considered:

• a baseline greedy solution that simply stops when the

first character function valid for ending is reached

• a baseline non-greedy solution that considers the

possibility of exploring beyond the first such cutoff

point reached

• a dependency-aware greedy solution that stops when a

valid character function valid for ending is reached if

all dependencies introduced by character functions in

the draft have been closed

• a dependency-aware non-greedy solution that requires

valid ending and dependencies to be all closed but

considers the possibility of exploring beyond the first

such cutoff point reached

Table 4 Frequency data for character functions occurring in final

positions for tale examples and schemes: FE are final moves in ex-

amples, FS final moves in schemes, AE any move in example, and AS

any move in scheme

FE FS AE AS

hero marries 5 27 7 34

hero recognised 1 1 1 1

villain punished 1 1

acquisition magical agent 1 4 4

return 1 8 2 21

rescue from pursuit 6 1 12

trigger resolved 1 2

unrecognised arrival 1 1

difficult task 1

villainy/lack 1 1 5

Cogn Comput (2016) 8:187–203 195

123

Combined Strategies to consider

Specific constructive solutions have to be designed as

combinations of the following basic computational tasks:

• a baseline constructive procedure that builds a se-

quences of character functions by randomly deciding

whether or not to include character functions from the

canonical sequence in the appropriate order (save for

the trigger, which is forcefully included, either as a

villainy or as a lack)

• a dependency-aware approach that constrains the

addition of character functions as described above

• a stopping condition for the constructive procedure

based on the validity of endings and/or the closure of

dependencies

In the present paper, the following decisions have been

selected for empirical consideration:

• how to decide when to add a particular character

function from the sequence

• how to identify points in a draft where stopping might

result in a valid ending

• how to decide whether to stop at a particular valid

ending point or to continue beyond it in search of one

further on

Evaluation of Plot Drivers

Three metrics have been developed to evaluate the quality

of plot drivers obtained in this way:

• a metric for conformance to the reference sequence

• a metric for satisfaction of long-range dependencies

• a metric for the potential of a sequence to support a

satisfactory ending

Plot driver generators must obey constraint 1 imposing a

particular sequence of character functions, as described in

‘‘Propp’s Description of Tale Generation’’ section. To

establish the extent to which the various implementations

fulfil this constraint, a measure of conformance to a ref-

erence sequence has been defined. The key measure to

consider is, given a certain character function appearing in

a candidate plot driver, how many of the functions pre-

ceding/following it in the plot driver are contained in the

part of the reference sequence that goes before/after (the

best scoring of) its appearances in the reference sequence.

This value is normalised as a percentage over the length of

the plot driver. This measure is 100 if all character func-

tions before and after the one considered have the same

relative order in the reference sequence. The measure for a

complete driver is taken as the average value for all its

functions. This is 100 if the plot driver satisfies perfectly

the order in the reference sequence—as described in Table

2 of ‘‘Resources for Plot Driver Generation’’ Section—and

degrades towards 0 if some of its character functions ap-

pear out of place with respect to the given sequence.

To measure satisfaction of long-range dependencies, we

consider a metric that computes the number of dependen-

cies that are actually satisfied out of the set that might have

been satisfied. This is done by collecting the set of char-

acter functions present in the sequence that may have de-

pendencies with other functions, and for each one,

checking whether the character function that it depends

upon is present in the sequence (before or after it, de-

pending on the direction of the dependency). Bidirectional

dependencies are counted twice if they are not satisfied. To

normalise over a large set of tales, the metric currently

returns 100 if there are no dependencies or if all depen-

dencies are satisfied, and otherwise a number between 100

and 0 corresponding to the percentage of the dependencies

present that have been satisfied.

To measure the potential of a sequence to support a

satisfactory ending, we consider a metric that computes

whether the sequence ends in a character function that has

been recorded to occur at the very end of a tale (not at the

end of internal moves). The metric assigns a score of 100 if

the last character function is within the collected list, and 0

otherwise.

Evaluation of Strategies for Character Function Addition

Results for the two different strategies for the addition of

character functions during generation of character se-

quences that have been tried are reported in Table 5. Each

of the alternative implementations was run 100 times, and

values were averaged over the results.

These data show some interesting results. Given that

both the strategies employed are based on following

Propp’s canonical sequence, the fact that they achieve top

score on the corresponding metric is no surprise. The

baseline predictably gets a low score on satisfaction of

dependencies. The dependency-aware strategy for taking

long-range dependencies into account achieves very high

results on dependency satisfaction as expected. The fact

that it does not reach a 100 score is related to the fact that

some character functions have multiple dependencies, and

the current strategy for addition needs to be refined to

consider these cases in more detail. There is also a no-

ticeable increase in the average size of plot drivers. This is

because the chance of adding a character function becomes

higher than random when dependencies are considered, as

the number of cases where character functions have to be

added to satisfy dependencies is higher than the number of

character functions that have to be left out based on the

chosen heuristic.

196 Cogn Comput (2016) 8:187–203

123

Examples of sequences of character functions resulting

from these strategies are presented in Table 6.

Sequence 1 was produced by the baseline strategy fol-

lowing Propp’s procedure strictly. It obtained a score of

100 % on conformance to the canonical sequence, 0 % on

dependency satisfaction, and 100 % on potential for sat-

isfactory endings. The low score on dependency satisfac-

tion can be understood seeing that, for instance, the hero is

tested and he acquires a magical agent without his reaction

to the test being mentioned, the hero is dispatched but he

does not actually leave, a victory is mentioned but no

preceding struggle is described, a task is resolved without it

being set beforehand, the hero is rescued from pursuit

without first being pursued, and unfounded claims are

made and not resolved. The fact that the sequence ends in a

marriage explains the high score on potential for satisfac-

tory endings. But this is the result of random choice rather

than a merit of the addition strategy. The fact that the

character function in question occurs towards the end of the

canonical sequence plays an important role.

Sequence 2 was produced by the strategy imposing

satisfaction of all dependencies. It obtained a score of 100

% on conformance to the canonical sequence, unsurpris-

ingly 100 % on dependency satisfaction and 0 % on po-

tential for satisfactory endings. This sequence shows how

the imposition of the dependencies forces very coherent

sub-sequences of character functions, even though depen-

dencies are stated only in terms of pairs of functions. This

is because the pairs sometimes chain up to produce longer

subsequences. An interesting example of this is the se-

quence of begin counteraction, departure, and return—

which stretches over a significant part of the story—or the

sequence for test by donor, hero reaction (reaction of the

hero to the test), and acquisition magical agent (as a result

of a positive result to the test), which form a complex

interrelated sequence. The sequence reoccurs later in the

sequence without the reaction of the hero. This occurs

because the reaction of the hero is already present in the

preceding draft, and the current version is not capable of

taking the relative ordering into consideration. Problems

such as these will be addressed in further work. Other

examples of pairs of character functions linked by depen-

dencies appearing in this sequence are as follows: depar-

ture-return, struggle-victory, hero pursued-rescue from

pursuit, unfounded claims-false hero exposed. This se-

quence is a fair example of how plot drivers become longer

as a result of the consideration of dependencies. The issue

of repetition of character functions is not currently con-

sidered by the procedure. The fact that character functions

reappear is not necessarily a negative feature. Propp con-

siders that a very common feature of Russian folk tales is

the reoccurrence of some event types in sets of three,

known as trebbling. This might be considered as a further

feature for future extensions of the system. The low score

on potential for satisfactory endings is explained by the fact

that it ends with the character function for transfiguration.

This occurs late in the canonical sequence but is followed

by other character functions more suited to end the tale

(namely hero marries, representing marriage/reward,

which in this particular case happen to have been omitted

by the random decision procedure).

Evaluation of Strategies for Stopping Condition

of Constructive Procedure

Results for the four different strategies for the stopping

condition on the constructive procedure that have been

tried are reported in Table 7. Each of the alternative im-

plementations was run 100 times, and values were aver-

aged over the results. All solutions conform 100 % with

Table 5 Results for different strategies for addition of character

functions during the generation of plot drivers

Random Dependency-aware

Plot driver length 13.0 15.5

Conformance 100.0 100.0

Dependencies 43.7 96.3

Endings 61.0 59.0

Table 6 Examples of sequences of character functions for the two

addition strategies

Sequence 1 Sequence 2

lack test by donor

hero dispatched hero reaction

test by donor acquisition magical agent

acquisition magical agent villainy

transfer begin counteraction

branding departure

victory test by donor

task resolved acquisition magical agent

rescue from pursuit unfounded claims

unfounded claims struggle

hero marries branding

victory

return

hero pursued

rescue from pursuit

unrecognised arrival

unfounded claims

false hero exposed

transfiguration

Cogn Comput (2016) 8:187–203 197

123

Propp’s sequence, so results for the conformance metric are

not included in the table. As above, results reported for

each solution correspond to averages over 100 runs.

The analysis of these results prompts the following ob-

servations. The best performer with respect to the metric

for valid endings is the baseline greedy approach (BG).

This is because it is the most conservative strategy with

respect to endings, securing the very first one reached.

However, it pays a high price in terms of the metric on

dependencies, as many of the dependencies introduced by

early character functions get no chance to be resolved due

to premature closure of the procedure. It also leads to very

short plot drivers. Results reported here indicate a dramatic

drop in the length of resulting plot drivers with respect to

those for ending agnostic approaches given in Table 6. A

slight improvement on these metrics can be obtained by

allowing the first valid solution on endings to be skipped, in

search of later alternatives. This is what the baseline ex-

ploratory approach (BE) does. By skipping the first valid

option, the chance of dependencies being resolved in-

creases, with the value on the dependency metric rising to

75.3 %. This is coupled with an increase in results for

length of plot driver. In contrast, there is a slight decrease

in the metric for satisfactory endings. Because no look

ahead and no backtracking are contemplated, this approach

runs the risk of skipping the last possible valid ending in

search of later alternatives that do not exist. The depen-

dency-aware greedy (DG) approach provides an interesting

balance. By considering the dependency-aware strategy for

character function addition, it ensures a high value (96.8

%) for the dependency metric. This is comparable with the

values obtained when the potential for valid endings is not

considered. The price to pay in this case is that some po-

tential candidates for valid endings may be bypassed be-

cause at the corresponding point not all dependencies

already introduced in the draft have been resolved. In some

cases, this leads to situations where the end of the cano-

nical sequence is reached without having found a satis-

factory ending. In those cases, the resulting plot driver

scores poorly on the metric for valid endings, bringing the

average score down to 72.0 %. The dependency-aware

exploratory (DE) approach fares no better. By foregoing

the opportunity to close on valid solutions, the exploratory

version exacerbates the problem. Average score for the

metric for valid endings drops further to 60.0 %.

Examples of sequences of character functions resulting

from these strategies are presented in Table 8.

Sequence 1 corresponds to a plot driver generated by the

baseline greedy approach. All such plot drivers are char-

acterised by the fact that they finish either with a trigger

resolved character function or with acquisition of a magical

agent character function. This is because those are the first

two that occur in the canonical sequence. The choice be-

tween one and the other comes about depending on whe-

ther the randomness in the procedure reaches one or the

other first. But no plot driver can be generated with any

other ending beyond one of those character functions. This

accounts for the brevity of these plot drivers. The example

given scored 67 % on dependencies, because although the

character functions for the subsequence of acquiring a

magical agent are all present, the plot driver includes ear-

lier instances of departure character function—which

should be coupled with a return character function—and,

more significant, a villainy—which should be coupled with

a trigger resolved character function to achieve the happy

ending expected of the genre.

Sequence 2 is produced by the baseline exploratory

approach. It has a 92 % score on dependencies and a 0 %

score on endings—because it ends oddly with the hero

being branded. It has been chosen to illustrate the dangers

of the approach. In constructing it, the procedure has by-

passed two possible points: one when the trigger resolved

is reached, and one when the rescue from pursuit is

reached—as both of these are considered valid potential

endings for a tale. It has also skipped other possibilities and

has reached the end of the sequence with a branding as the

last character function added. The less than perfect score

on dependencies—in spite the fact that many coupled

character functions are included—arises from the fact that

the last occurrence of branding has no associated character

function of hero recognised.

Sequence 3 is an instance produced by the dependency-

aware greedy approach. Although the approach does

sometimes produce less optimal solutions, in this case a

good performer has been chosen: this plot driver achieves

top scores on all counts. The tale starts with a villainy, the

character functions involved can be interpreted as a con-

nected sequence that follows coherently from one to the

next, and it ends with the villain being punished and the

hero getting married.

Sequence 4 is a result by the dependency-aware ex-

ploratory approach. It achieves a top score for dependen-

cies and for endings, and it is longer than previously

considered plot drivers. The interesting point about this

example is that if the greedy approach had been followed

instead of the exploratory one, it might have been closed

Table 7 Results for different strategies for stopping the procedure

during the generation of plot drivers

BG BE DG DE

Plot driver length 5.7 9.5 16.4 16.2

Dependencies 58.7 75.3 96.8 96.0

Endings 100.0 95.0 72.0 60.0

BG baseline greedy, BE baseline exploratory, DG dependency-aware

greedy, DE dependency-aware exploratory

198 Cogn Comput (2016) 8:187–203

123

with top scores on reaching character function return. The

last four-character functions added to the plot driver cor-

respond to an exploratory jump beyond a valid ending al-

ready reached, which in this case has paid off.

Discussion

The issue of long-range dependencies between character

functions is addressed in the Propper system by two dif-

ferent mechanisms. The first of these is the use of unifi-

cation/accommodation, which enables the system to

partially model long-range dependencies between character

functions. If the choice for a character function such as

liquidation of misfortune or lack depends on which par-

ticular story action was chosen to instantiate the character

function for lack, this procedure will both block non-ap-

propriate instantiations for liquidation (as their precondi-

tions will not be satisfied) and will ensure the appropriate

assignment of variable names to ensure coherence (for

instance, that the person that was kidnapped at the begin-

ning be freed towards the end). An earlier attempt to model

dependencies only in this way was shown in Gervás [9].

This captured dependencies correctly when two related

character functions appear in a given plot driver (hero sets

out and returns). In these cases, the unification process

ensures that the choice of story action and the instantiation

of its variables satisfy the dependency. However, problems

arose when one of the related character functions was

missing from the given plot driver, due to the fact that the

mechanism for generating the driver did not take them into

account. As a result, it could happen that a villain maims a

certain victim, but the story neither resolves this villainy

nor punishes the villain. The introduction of additional

computational means of taking the long-range dependen-

cies into account during construction of the plot driver

improves the performance of the system on this aspect.

This solution will only translate into successful fabulae or

flows if the procedure for instantiating the plot drivers

within the fabula generator module is capable of correctly

unifying the story action for a dependent character function

with the story action already introduced for the depending

character function.

The chosen architecture shares with all knowledge-

based solutions to plot generation their dependence on the

availability of appropriate knowledge. As the paper has

strived to demonstrate, there are a number of features of

how we think about events and stories that need to be taken

into account when building plots. These include the fact

that actions have preconditions and effects, the fact that

certain types of actions have dependencies with other types

of actions that span significant segments of the story, and

the fact that certain actions work better as ways to end a

story. These facts need to be captured in the form of

knowledge that the system can use during the construction

process. A significant engineering process is involved in

acquiring and encoding these facts, but their impact on the

quality of the results has been shown to be significant.

Although the current initiative strove to build a system

as faithful as possible to Propp’s formalism, all references

to Propp’s material in the resulting implementation occur

only within the set of plain text files that constitute the

Table 8 Examples of sequences of character functions for the different stopping strategies

Sequence 1 Sequence 2 Sequence 3 Sequence 4

villainy test by donor villainy test by donor

begin counteraction hero reaction hero dispatched hero reaction

departure acquisition magical agent begin counteraction acquisition magical agent

test by donor villainy departure lack

hero reaction departure test by donor begin counteraction

acquisition magical agent trigger resolved hero reaction departure

unfounded claims acquisition magical agent trigger resolved

branding transfer unrecognised arrival

return trigger resolved unfounded claims

hero pursued branding difficult task

rescue from pursuit return branding

unrecognised arrival unrecognised arrival task resolved

unfounded claims unfounded claims return

false hero exposed false hero exposed unrecognised arrival

transfiguration villain punished unfounded claims

branding hero marries false hero exposed

villain punished

Cogn Comput (2016) 8:187–203 199

123

knowledge resources. The choice and names of the char-

acter functions, and the restrictions imposed on how they

may combine, are captured jointly in the canonical se-

quence of character functions used as reference, and the set

of long-range dependencies established between character

functions. The set of story actions and the relationships

between stated in terms of preconditions are also written in

a separate text file. The actual Java code that exploits these

resources is independent of Propp’s particular solution for

Russian folk tales. As a result, it would be possible to write

an alternative set of resources to use a completely different

reference canonical sequence, over elements of a similar

nature but which need no longer be called character func-

tions, and which combine according to different rules, or

which get instantiated with a completely different set of

story actions, and assigned to different characters.

Because of this property, the approach presented in the

paper has the potential for being ported to different domains

(for instance, to science fiction stories by changing the set of

story actions and the set of characters) or adapted to account

for different structural analyses of narrative (by changing

the reference canonical sequence into one that covers, for

instance, Campbell’s account of the hero’s journey [3] or

Lakoff’s account of the structure of fairy tales [16]). This is

a significant different with other systems based on compu-

tational combination/constraint satisfaction.

In terms of the criteria defined by Ritchie, the metrics

presented in this paper for the evaluation of sequences of

character functions are clearly instances of ratings of

typicality, rather than novelty of these sequences. Confor-

mance to a canonical sequence, satisfaction of dependen-

cies, and provision for satisfactory endings constitute

valuable features of an acceptable story. In fact, stories are

more likely to be considered novel the further away they

are from a canonical sequence, or if they allow for some

unresolved dependencies, or if they opt for an unconven-

tional ending. In this sense, the framework described in the

present paper is unlikely to be considered creative by any

standards. Nevertheless, it addresses fundamental issues

concerning computational attempts to generate stories.

The framework proposed by Wiggins can be used to

analyse the type of creative system that is being consid-

ered. The procedures described in this paper for generating

sequences of character functions can be understood as

defining a conceptual space of sequences of character

functions. For each different strategy, the resulting con-

ceptual space is different. The description of the strategy

itself constitutes an instance of the traversal function that

Wiggins defines to traverse the conceptual space. The

definition of the conceptual space is implicit in the de-

scription of each strategy, as each one rules out different

kinds of sequence of character function. For instance, all

the strategies discussed in this paper rule out sequences of

character functions that do not conform to Propp’s cano-

nical sequence (as shown by the results given in Table 5).

The metrics defined over sequences of character func-

tions constitute instances of evaluation functions as defined

by Wiggins. These metrics assign different values to ele-

ments of these conceptual spaces. The fact that the metrics

are applicable to elements of all the different conceptual

spaces is an important insight. In truth, these metrics are

defined in such a way that they pick out elements of par-

ticular conceptual spaces by assigning high scores to them.

In particular, the metric for satisfactory endings assigns top

scores to sequences from a particular conceptual space that

would only include sequences with satisfactory endings.

An additional point of interest is that the metric for satis-

factory endings is perfectly applicable to sequences that do

not conform to Propp’s canonical sequence, and which

would therefore be outside the conceptual space of solu-

tions being considered at this particular point.

The described system models the task of drafting plot

structures at a level that is more abstract than recent at-

tempts to model creativity at a cognitive level [29], which

involve a parallel view of mental computation based on

statistical simulation of aspects of memory and perception

such as sequence. It is also yet far from the levels of au-

tonomy in terms of personal motivation and social inter-

action discussed in [25]. Nevertheless, the Propper system

represents a computational model of the craft involved in

the creation of plot structures, and it extends prior models

with consideration of important issues such as long-range

dependencies across different part of a plot and the need for

appropriate closure.

As mentioned above, the procedures for generating

character functions described in this paper exhibit very low

indices of creativity. However, they constitute an elemen-

tary exploration of what the conceptual spaces are for this

particular kind of artefact, what traversal functions can be

defined, and what metrics might be useful to capture fea-

tures that humans consider typical for this domain. Once

these basic elements have been established, more elaborate

generative procedures may be explored. These can involve

systematic exploration of how these basic elements can be

progressively modified. The degree of transgression of the

modifications considered would likely determine the per-

ception of creativity arising from the results obtained.

Along these lines, Propp himself considers some simple

transgressions of his framework as possible when he talks

about the possibility of having inverted sequences (p. 107),

where character functions occur out of order but this is not

considered a transgression of the basic rule. More elaborate

transgressions are likely to lead to conceptual spaces fur-

ther away from those considered here. As this happens,

more refined evaluation functions will be required. This

type of progression can be observed between the system

200 Cogn Comput (2016) 8:187–203

123

presented by Gervás [9] and the one presented in this paper.

Where the paper by Gervás addresses the construction of

sequences of character functions, the strategies he defines

determine a conceptual space of character functions dif-

ferent from those considered here (except for the baseline

solution following Propp’s procedure strictly, which is

similar in both). To the extent that the present paper ad-

dresses issues not considered by Gervás [9], such as long-

range dependencies and endings, new extensions of the

metrics are needed. The conceptual spaces defined by the

strategies presented here constitute subsets of the more

generic conceptual space defined by the baseline.

With respect to Colton’s FACE model, Propp’s gen-

erative procedure would constitute a concept of the

process type. The particular implementation of that pro-

cedure described here would constitute an expression of

that concept, different from the expression of that same

concept described in Gervás [9]. Interestingly enough,

each sequence of character functions obtained by either

of these procedures would itself be a concept of the

artefact type, susceptible of being expressed in different

ways. The procedure for fabula/flow generation from a

sequence of character functions would be a concept of

the process type. Similar considerations can be made

about the final stage in the construction of a story, that

of rendering the set of predicates as text. This final text

would itself be an artefact with an associate process to

produce it.

Given that the development effort has focused at a

very abstract level of representation, evaluation has been

considered at a corresponding level to provide valid

feedback for the improvement of the system. The alter-

native of evaluation by human volunteers was not con-

sidered due to the difficulty of the linguistic modelling of

the stories and the fact that evaluations by humans

necessarily have to be restricted to a small number of

instances of system output. The choice of which par-

ticular instances to test is left to the designer of the

experiment, and there is a risk of focusing on examples

that are not representative of system performance overall.

As an alternative, quantitative procedures have been de-

fined to measure the specific qualities desired for each

stage of the representation, at a corresponding abstract

level. These procedures can be applied to a large number

of system results, providing a measure of the quality of

system output at the working level of abstraction and

applicable to a broad range of system results, leaving no

doubt as to their significance over the complete set of

outputs.

The development of the remaining modules of the

Propper system is ongoing work. Initial results on the

fabula generation module were reported in [9]. The in-

terfacing of the fabula representation of a story—which

instantiates the character functions in a plot with par-

ticular story actions—is likely to require a further step of

narrative composition [10], which would handle the

presentation of the created fabula as a sequential dis-

course phrased in terms that are apprehensible to the

reader in the sense that they match his intuition of how

characters perceive the space surrounding them and each

other. This may require reformulating the terms in which

the plot is described to handle issues like character

perception, focalisation of the action on particular char-

acters, perceived relative movement, and the fact that

characters may have only partial knowledge of what

occurs elsewhere in the story. This process of narrative

composition may also be applicable to model the way

certain stories, as described by Propp, are made up of

more than one move understood as a subplot produced by

a single pass over the reference sequence of character

functions.

Conclusions

The theoretical account of Russian fairy tales provided by

Vladimir Propp has been revisited as potential source for a

procedure for story generation. By considering the simplest

possible implementation of these procedures, a framework

for story generation has been developed that takes full

advantage of the intuitions behind Propp’s account but

which is built in a modular and declarative manner so that

particular details arising from Russian folk tales can later

be replaced with material from alternative knowledge

sources.

The long-range dependencies between elements in the

story have been shown empirically to have a very sig-

nificant impact on the quality of the resulting plots. In this

particular instantiation of the plot construction process, the

elements being considered are character functions of the

type proposed by Propp. However, we have every reason to

believe that the nature of these long-range dependencies is

independent of the particular abstraction being used to

define an element in the story. Similar long-range depen-

dencies could be established for story actions, or even for

predicates occurring in a fabula or a flow. In this sense, the

heuristics presented in the paper for taking dependencies

into consideration during construction could be ex-

trapolated to constructive procedures that operate on rep-

resentations of stories at a different level of granularity,

provided the dependencies themselves can be identified

between elements at that level.

The constraints on valid endings for a story take two

forms. One type of constraint arises from the nature of the

element to be placed at the end of the story—a character

function when considered at this level of granularity—and

Cogn Comput (2016) 8:187–203 201

123

distinguishes between elements that are good to end a

story with and elements that are not. This constraint may

have a genre-specific aspect, in the sense that positive

elements may be preferred in genres that prefer happy

endings. But it also includes a generic aspect, in that it

has preference for elements that do not require a contin-

uation. This type of constraint has been modelled in the

present paper by the set of character functions considered

to be valid as endings of a plot driver. A different type of

constraint arises from the expectation that all issues raised

within a story should be resolved before the end. In this

particular case, the concept of issue raised has been as-

sociated with the initial element of a dependent pair being

added to a plot driver, and the resolution of the issue is

associated with the final element of the dependent pair

being added as well. This type of constraint has been

modelled in the present paper by requiring that no unre-

solved dependencies remain at the point when a plot drive

is to be closed.

The approach suffers from the limitations inherent to

any knowledge intensive approach, in the form of a heavy

knowledge engineering effort required to kick start the

necessary set of resources. Preliminary results show strong

coupling between the quality of these resources and the

quality of the resulting stories. This can be seen as a

weakness in terms of a deep adaptation curve for any new

domain or new application, but also as a significant

strength, in terms of the possibility of extending it to other

domains and the possibility of carrying out a process of

targeted refinement until a desired level of quality is

reached for a given domain.

The overarching framework of Propp’s generative pro-

cedure and the particular solutions presented in this paper

have been analysed in terms of relevant theoretical ad-

vances in computational creativity. Although the proposed

system has no claim to being considered creative, it has

been argued that it constitutes a first step in a long road

towards understanding the procedures involved in story

generation, with a view to finding how and where these

procedures can be infused with the spark of creativity.

The Propper system is ongoing work, and further ad-

vances on the fabula generation module, the casting mod-

ule, and the text rendering module are expected in the

future. Further work will also include refinement of the

knowledge engineering for story actions and extension of

the set of resources to cover new domains.

Acknowledgments The research reported in this paper was partially

supported by the Ministerio de Educación y Ciencia (TIN2009-

14659-C03-01) and the Project WHIM 611560 funded by the Euro-

pean Commission, Framework Programme 7, the ICT theme, and the

Future and Emerging Technologies FET programme. The author

would like to thank the referees of earlier versions of this paper for

their comments which helped improve the present effort.

References

1. Bae B-C, Young RM. A use of flashback and foreshadowing for

surprise arousal in narrative using a plan-based approach. In:

Proceedings of the ICIDS 2008; 2008.

2. Boden M. Creative mind: myths and mechanisms. New York:

Routledge; 2003.

3. Campbell J. The hero with a thousand faces. 2nd ed., Bollingen

seriesPrinceton: Princeton University Press; 1968.

4. Colton S, Charnley J, Pease A. Computational creativity theory:

the face and idea descriptive models. In: 2nd international con-

ference on computational creativity; 2011.

5. Dehn N. Story generation after tale-spin. In: Proceedings of the

IJCAI 1981; 1981. p. 16–8.

6. Fairclough C, Cunningham P. A multiplayer case based story

engine. In: GAME-ON conference; 2003. p. 41

7. Chris F, Padraig C. A multiplayer o.p.i.a.t.e. Int J Intell Games

Simul. 2004;3(2):54–61.

8. Gervás P, Dı́az-Agudo B, Peinado F, Hervás R. Story plot gen-

eration based on CBR. Knowl Based Syst. 2005;18:235–42

Special Issue: AI-2004.

9. Gervás P. Propp’s morphology of the folk tale as a grammar for

generation. In: Workshop on computational models of narrative, a

satellite workshop of CogSci 2013: the 35th meeting of the

cognitive science society, Universität Hamburg, Hamburg, Ger-

many, 08/2013 2013. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,

Germany, Schloss Dagstuhl - Leibniz-Zentrum für Informatik

GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, Germany.

10. Gervás P. Composing narrative discourse for stories of many

characters: a case study over a chess game. Lit Linguist Comput.

2014;29(4):511–31.

11. Gervás P, Lönneker B, Meister JC, Peinado F. Narrative models:

narratology meets artificial intelligence. In: International con-

ference on language resources and evaluation. Satellite work-

shop: toward computational models of literary analysis, Genova,

Italy; 2006. p. 44–51.

12. Grasbon D, Braun N. A morphological approach to interactive

storytelling. In: CAST 2001. Living in mixed realities : confer-

ence on artistic, cultural and scientific aspects of experimental

media spaces, 21–22 Sept 2001, Schloss Birlinghoven, Sankt

Augustin; 2001.

13. Herman D. Storytelling and the sciences of mind. Cambridge:

MIT Press; 2013.

14. Jhala A, Young RM. Cinematic visual discourse: representation,

generation, and evaluation. IEEE Trans Comput Intell AI Games.

2010;2(2):69–82.

15. Klein S, Aeschliman JF, Balsiger D, Converse SL, Court C,

Foster M, Lao R, Oakley JD, Smith J. Automatic novel writing: a

status report. Technical report 186, Computer Science Depart-

ment, The University of Wisconsin, Madison, Wisconsin, Dec

1973.

16. Lakoff GP. Structural complexity in fairy tales. Study Man.

1972;1:128–50.

17. Lang RR. A formal model for simple narratives. PhD thesis,

Tulane University; 1997.

18. Lebowitz M. Story-telling as planning and learning. In: Pro-

ceedings of the IJCAI 1983, vol 1; 1983.

19. Meehan JR. Tale-spin, an interactive program that writes stories.

In: Proceedings of the IJCAI, 1977; 1977. p. 91–8.

20. Pease A, Colton S. Computational creativity theory: inspirations

behind the face and the idea models. In: 2nd international con-

ference on computational creativity; 2011.

21. Pérez y Pérez R. MEXICA: a computer model of creativity in

writing. PhD thesis, The University of Sussex; 1999.

202 Cogn Comput (2016) 8:187–203

123

22. Propp V. Morphology of the folktale. Austin: University of Texas

Press; 1968.

23. Riedl M, Young M. Narrative planning: balancing plot and

character. J Artif Intell Res JAIR. 2010;39:217–68.

24. Ritchie G. Some empirical criteria for attributing creativity to a

computer program. Minds Mach. 2007;17:67–99.

25. Saunders R. Towards autonomous creative systems: a computa-

tional approach. Cogn Comput. 2012;4(3):216–25.

26. Trabasso T, van den Broek P, Suh SY. Logical necessity and

transitivity of causal relations in stories. Discourse Process.

1989;12:1–25.

27. Turner SR. Minstrel: a computer model of creativity and story-

telling. PhD thesis, University of California at Los Angeles, Los

Angeles, CA, USA; 1993.

28. Wiggins G. A preliminary framework for description, analysis

and comparison of creative systems. Knowl Based Syst

2006;19(7):449–58.

29. Wiggins G. The mind’s chorus: creativity before consciousness.

Cogn Comput. 2012;4(3):306–19.

Cogn Comput (2016) 8:187–203 203

123

	Computational Drafting of Plot Structures for Russian Folk Tales
	Abstract
	Introduction
	Previous Work
	Elements of Propp’s Formalism Relevant for Computational Implementation
	Propp’s Description of Tale Generation
	Existing Automated Storytellers
	Computational Creativity

	The Propper System: A Computational Solution for Proppian Story Generation
	Knowledge Representation
	Character Functions
	Story Actions

	The Overall Architecture
	The Propper Plot Driver Generator Module
	The Propper Fabula-Flow Generator Module

	Computational Drafting of Plots: The Propper Plot Driver Generator Module
	Resources for Plot Driver Generation
	Constructive Procedure for Plot Drivers
	Dealing with Long-Range Dependencies
	Dealing with Endings
	Combined Strategies to consider

	Evaluation of Plot Drivers
	Evaluation of Strategies for Character Function Addition
	Evaluation of Strategies for Stopping Condition of Constructive Procedure

	Discussion
	Conclusions
	Acknowledgments
	References

