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Abstract

Association studies have been successful at identifying genomic regions associated with important traits, but routinely
employ models that only consider the additive contribution of an individual marker. Because quantitative trait variability
typically arises from multiple additive and non-additive sources, utilization of statistical approaches that include main and
two-way interaction marker effects of several loci in one model could lead to unprecedented characterization of these
sources. Here we examine the ability of one such approach, called the Stepwise Procedure for constructing an Additive and
Epistatic Multi-Locus model (SPAEML), to detect additive and epistatic signals simulated using maize and human marker
data. Our results revealed that SPAEML was capable of detecting quantitative trait nucleotides (QTNs) at sample sizes as
low as n =300 and consistently specifying signals as additive and epistatic for larger sizes. Sample size and minor allele
frequency had a major influence on SPAEML’s ability to distinguish between additive and epistatic signals, while the
number of markers tested did not. We conclude that SPAEML is a useful approach for providing further elucidation of the
additive and epistatic sources contributing to trait variability when applied to a small subset of genome-wide markers located
within specific genomic regions identified using a priori analyses.

Introduction

The ability to identify genomic regions containing gene(s)
associated with quantitative phenotypes has great potential
for elucidating the genetic architecture of traits (e.g., num-
ber of genes, their effect sizes, additive vs. non-additive
sources), as well as identifying targets for marker-assisted
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wide association study (GWAS), in which statistical ana-
lyses are conducted on a set of markers spanning a species’
entire genome to determine which marker subsets exhibit
the strongest associations with a trait of interest (reviewed
in Lipka et al. 2015). In general, statistically significant
marker-trait associations suggest that functional variants for
the trait under study are located in the surrounding genomic
region. To date, GWAS has been able to identify genes
associated with many important traits, e.g., predisposition to
breast cancer and diabetes in humans (Billings and Florez
2010; Hunter et al. 2007) and provitamin A levels in maize
(Owens et al. 2014). At present, GWAS is one of the most
actively researched and applied methods for investigating
the genomic underpinnings of Alzheimer’s disease (Wang
et al. 2016a), coronary heart disease (Dehghan et al. 2016),
Parkinson’s disease (Siitonen et al. 2017), carotenoid bio-
synthesis in maize (Azmach et al. 2018), and disease
resistance in cattle (Coussé et al. 2016), among others.
Thus, the ability of GWAS to identify specific genomic
regions associated with traits critical for human health and
agronomic performance has been demonstrated, and con-
tinued refinement of the statistical approaches in GWAS
could make this analysis even more relevant for quantitative
genetics research and its applications.

The simplest and most widely used analytical approach for
GWAS is to perform a separate statistical test for association
between each marker and the evaluated trait. For example, a
GWAS conducted to identify loci associated with the pre-
sence/absence of a disease in humans might perform either a
Pearson’s chi-square test or conduct logistic regression sepa-
rately for every marker in a genome-wide marker set
(Nakamura et al. 2012; Wang et al. 2016b). Similarly, a
GWAS conducted for a quantitative agronomic trait in a given
crop (e.g., Belcher et al. 2018) might use the unified mixed
linear model (MLM; Yu et al. 2006) that includes both fixed
effect covariates to account for false positives arising from
population structure and random effect covariates to account
for those arising from familial relatedness.

Although testing each marker individually has been
effective in identifying statistically significant marker-trait
associations in a wide variety of species and traits, it suffers
from two major biological drawbacks. First, the con-
sideration of only one marker at a time makes it impossible
to quantify the simultaneous contributions of multiple
functional variants located throughout the genome in one
statistical model. Second, these single-marker statistical
tests typically do not consider the contributions of certain
types of non-additive sources of variation, such as epistasis.
Improvements to the typical statistical models used for
GWAS could lead to more effective models.

Both theoretical (Fisher 1930; Orr 1998) and empirical
(Brown et al. 2011; Flint and Mackay 2009; Valdar et al.
2006) quantitative genetics research suggest that

quantitative trait variation is under the control of multiple
functional variants. Thus, statistical approaches need to
complement this by including multiple markers in one
model. Stepwise model selection is one of the simplest
approaches for simultaneously estimating the additive
effects of multiple loci. Here the additive effect of every
marker throughout the genome is considered for inclusion
as an explanatory variable in an optimal model. An extre-
mely useful application of this approach is the multi-locus
mixed-model (MLMM; Segura et al. 2012). In the MLMM,
stepwise model selection is conducted on a given set of
markers and false positives are controlled for by including
the same fixed and random effects covariates as those used
in the unified MLM (Yu et al. 2006). An important
advantage of the MLMM and similar approaches over
single-marker analyses is their capability to substantially
lower false positive detection rates of marker/trait associa-
tions (Segura et al. 2012). The MLMM has been shown to
be useful for GWAS in crop diversity panels, especially as
an extra step to further elucidate the signals already iden-
tified by an initial genome-wide scan using the unified
MLM (Jaiswal et al. 2016; Owens et al. 2014; Rincker et al.
2016).

Another application of stepwise model selection in
GWAS is found in the US maize nested association map-
ping (NAM) panel (Buckler et al. 2009; McMullen et al.
2009; Yu et al. 2008), where it is called joint linkage (JL)
analysis. The maize NAM panel consists of 25 recombinant
inbred line (RIL) families that share a common parent. To
account for the family structure of the NAM panel, JL
analysis starts with a baseline model containing the trait of
interest as the response variable and the families as a fixed
effect. Stepwise model selection is then conducted, where
the nested additive effect of each marker within each family
is considered for inclusion into an optimal JL analysis
model. The use of JL analysis on the US maize NAM
population data has proven fruitful for dissecting the
genomic sources of many quantitative traits, including
flowering time (Buckler et al. 2009), inflorescence (Brown
et al. 2011) and leaf blight (Poland et al. 2011). Although
the number of markers considered in these studies is orders
of magnitude smaller than those found in high-throughput
genotypic and/or phenotypic data and the incorporation
genomic relatedness on a finer scale could refine the
quantification of the identified associations, it is encoura-
ging that JL analysis provided insight into the genetic
architecture of those traits. To facilitate its broader adoption
in GWAS, JL analysis has been made available in the
graphical user interface (GUI) of TASSELS (Bradbury et al.
2007), a publicly available Java package.

Non-additive sources of genetic variation are hypothesized
to contribute to the discrepancies reported between the
observed signals identified in GWAS and what is theoretically
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expected given the heritability of the trait under study (Zuk
et al. 2012). Epistasis, generally defined as the interaction
effect between alleles at two or more genomic loci (Phillips
1998), is one such non-additive source. The direct quantifi-
cation of epistatic effects by inclusion into multi-locus sta-
tistical models could improve our understanding of the
genomic architecture of traits. A number of statistical
approaches have been described for this purpose (e.g., Cordell
2002; Haley and Knott 1992; Jannink and Jansen 2001;
Karkkainen et al. 2015) and computationally efficient soft-
ware has been developed. In particular, FastEpistasis
(Schupbach et al. 2010), Glide (Kam-Thong et al. 2012),
EpiGPU (Hemani et al. 2011), Boost (Wan et al. 2010),
multiEpistSearch (Gonzdlez-Dominguez et al. 2015), and
EPIQ (Arkin et al. 2014) explicitly search for pairwise epis-
tasis among a set of markers provided by the user. However,
none of the statistical models used in these packages can
incorporate contributions from multiple pairs of interacting
loci. This is a significant drawback, as a substantial proportion
of non-additive variation could be attributable to multiple sets
of epistatically interacting loci. In this manuscript we evaluate
the Stepwise Procedure for constructing an Additive and
Epistatic Multi-Locus model (SPAEML), which could
potentially remedy that drawback.

We extended the TASSELS code for JL analysis to
implement SPAEML and tested its ability to detect additive
and epistatic quantitative trait nucleotides (QTNs) as a func-
tion of sample size and number of markers. To achieve this,
we used genomic data from 2648 individuals from the North
Central Regional Plant Introduction Station (NCRPIS) maize
diversity panel (Romay et al. 2013) and from an Alzheimer’s
disease (AD) case—control cohort consisting of 2099 human
subjects (Zou et al. 2012) to simulate traits with different
heritabilities and QTN effect sizes. Since these were not
nested association mapping populations, the effect of nesting
was not enabled in any of our analyses. We compared
SPAEML to two other methods. The first, JL analysis, con-
structs a multi-locus model for additive marker effects and
therefore will always misspecify any epistatic markers inclu-
ded in the model as additive. In contrast, FastEpistasis focuses
on the interaction effect of one marker pair at a time; thus any
additive signals identified by this approach will be mis-
specified as epistatic. Our hypothesis was that SPAEML can
detect and correctly specify both additive and epistatic QTNs.

Materials and methods

Stepwise procedure for constructing an additive and
epistatic multi-locus model

The statistical approach implemented for SPAEML is
similar to those previously described (e.g., Bogdan et al.
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2004; Yu et al. 2008). Briefly, this procedure involves
identifying the optimal version of the multi-locus linear
model that combines additive and epistatic effects:

Yi=u+ Zﬂjx,;,- + Z YuXiuXiv + Ei (1)

JeI (uy)eu

for a data set consisting of n individuals and m markers
denoted by xi,...,x,,. In this model, Y; is the observed trait
value of the i individual (e.g., human subject or plant
accession); u is the grand mean; f; is the additive effect of
the /" marker; x;; is the observed genotype of the 7™ marker
of the i™ individual, numerically coded as, e.g., 0 for aa, 1
for Aa/aA, and 2 for AA; y,, is the two-way epistatic term
between the " and the v" marker;x;, and x; are the
observed genotypes for the u™ and the v markers, both of
which are numerically coded in the same manner as x;; /is a
subset of the m markers with additive effects included in the
model; U is another subset of markers with two-way
epistatic effects included in the model; and ¢; represents a
normally distributed random error term. A stepwise model
selection procedure is used to determine the optimal sets of
markers belonging to / and U.

Simulation study
Genotypic and phenotypic data

To evaluate the statistical performance of SPAEML we
conducted two independent simulation studies: one using
genotypic data from a maize diversity panel, and one using
genotypic data from a human case—control study. The maize
data were from the NCRPIS maize diversity panel (Romay
et al. 2013), consisting of a collection of 2815 diverse maize
inbred lines from throughout the world. We focused on a
subset of 2648 individuals genotyped for 681,257 single
nucleotide polymorphisms (SNPs) using genotyping-by-
sequencing (GBS, Elshire et al. 2011). These data are pub-
licly available at: http://cbsusrv04.tc.corell.edu/users/panzea/
filegateway.aspx ?category = Genotypes. The second data set
is from the Mayo Clinic late-onset Alzheimer’s disease
GWAS, which consists of 844 Alzheimer’s disease (AD)
cases and 1255 controls (Zou et al. 2012). All 2099 of these
individuals were genotyped using 213,528 SNPs located
within £100 kb of 24,526 genes whose transcript levels were
measured in Zou et al. (2012). These data are available at:
https://www.synapse.org/#!Synapse:syn2910256.

Within each species, we constructed multiple test data
sets varying in sample size and number of markers. All test
data sets consisted of either the full set of individuals (n =
Max; i.e., 2648 maize or 2099 human individuals), or the
same random subset of n = 300 individuals in each species.
Similarly, the test data sets included either a random subset
of m = 15,000 SNPs or a random subset of m = 5000 SNPs.


http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Genotypes
http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Genotypes
https://www.synapse.org/#!Synapse:syn2910256
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For both species, all SNPs in the 5000-marker set were also
included in the 15,000-marker set.

Traits were simulated as previously described in scheme
2 of Zhang et al. (2010) for each of the above data subsets.
First, additive and/or epistatic quantitative trait nucleotides
(QTN) were randomly selected from a subset of markers
that were present in both the 5000- and 15,000-marker
subsets from each species. For consistency across all
simulation settings, the range of possible QTN effect sizes
was bounded by 0 and 1. A total of five simulation settings
were used (Table 1), each with differing numbers of addi-
tive and epistatic QTN, their effect sizes, and the broad-
sense heritability values (H?). To empirically evaluate the
false positive detection rate of SPAEML in the absence of
genomic signals, the traits simulated in the first setting had
zero QTN and H*>=0. The genomic sources of variation
underlying the traits in the next setting consisted of four
markers that were randomly selected to be additive QTN
and four additional marker pairs that were randomly
selected to be epistatic QTN. The additive and epistatic
QTN both followed a geometric series; that is, the QTN
with the /™ largest effect size was 0.95'. Since the purpose of
this setting was to evaluate the ability of SPAEML to
identify signals for a trait with an ideal genetic architecture,
the heritability was set at H>=0.99. To assess whether
SPAEML can distinguish between additive and epistatic
signals, the next setting consisted of two simulated QTN
containing both non-zero additive and non-zero epistatic
effects. Thus, the additive effects of these two QTN were
0.90 and 0.81, and the epistatic effect of these two QTN was
0.9. All traits simulated at this setting had a broad-sense
heritability of H> = 0.95.

The next simulation setting strove to emulate the genetic
architecture of a trait one might expect to find in a crop
species. Thus, traits simulated in this setting were loosely
based on the contrasting genetic architecture of inflores-
cence traits between maize and teosinte (Brown et al. 2011;
Doebley et al. 1995). The genetic underpinnings of these
simulated traits consisted of one two-way epistatic QTN of
effect size 0.90, 26 additive QTN with the effect size of the
7™ QTN set to 0.45, and a broad-sense heritability of H> =
0.92. In a similar vein, the next setting was based on the
genetic architecture of Alzheimer’s disease in humans
(Combarros et al. 2009; Medway and Morgan 2014; Wilson
et al. 2011). For this setting, a large-effect additive QTN
with effect size of 0.90 and a geometric series of 19 additive
QTN with the effect size of the /™ QTN set to 0.40/ were
simulated. In addition, a two-way epistatic QTN with effect
size 0.70 was simulated. To imitate the contributions of the
APOE gene to Alzheimer’s disease (Combarros et al. 2009),
one of the two loci contributing to this epistatic QTN was
the same as the large-effect additive QTN with effect size of

No. of epistatic QTN (range of effect sizes)

4 (0.81-0.95)
1 (0.90)
1 (0.90)
1 (0.70)

No. of additive QTN (range of effect sizes)

26 (9.63 x 1071°-0.45)
20 (2.75 % 107°-0.9)

4 (0.81-0.95)
2 (0.81-0.90)

Heritability
9
95
4

0
0
0.
0
0

No. of markers

5000 and 15,000
5000 and 15,000
5000 and 15,000
5000 and 15,000
5000 and 15,000

No. of individuals

300; max®
300; max
300; max
300; max
300; max

“Inflorescence-like”

“AD-like”

“Ideal”

Table 1 Description of the number of individuals, markers, and genetic architecture considered in the five tested simulation settings

#Max, denotes maximum sample size, that is 2648 maize individuals and 2099 human individuals

QTN quantitative trait nucleotide, AD Alzheimer’s disease

3 =“Additive vs epistatic”

Simulation setting
4
5

1 =“Null”

2
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0.90. Consistent with the literature (Wilson et al. 2011), all
traits simulated in this setting had a broad-sense heritability
of H* =0.34.

A total of 100 traits were simulated for each setting,
species, and sample size. For a given simulated trait and
sample size, the cumulative additive and epistatic QTN
effects were calculated across all individuals. The variance
of these cumulative effects comprised the genetic variance
component of the trait. Finally, for a given H*, we simulated
a normal random variable with mean O and variance af,
where 67 is determined from H2. That is, if we let 0§ denote
the genetic variance component of the trait, then the var-
iance of this normal random variable is calculated by sol-
ving the following equation for ¢2:

0.2

H =% (2)
o2 +o?

Thus, any simulated trait value from a particular indivi-
dual equals the sum of the cumulative QTN effects and the
observed value of the aforementioned normal random
variable. For the first setting, with zero QTN and H> = 0,
this normal random variable was simulated with a variance

fo? =1
of oy = 1.

Statistical models fitted to each trait at each setting

For each trait that was generated in the simulation study,
SPAEML, JL analysis, and FastEpistasis were conducted to
identify markers exhibiting peak associations with additive
and epistatic QTN. For each of the five simulation settings,
sample sizes, species, and number of markers, two separate
permutation procedures (described in Churchill and Doerge
1994) were conducted 100 times to empirically determine
the inclusion and exclusion P-value thresholds that control
the Type I error rate at 0.05: once for SPAEML and once
for JL analysis. We conducted SPAEML using a Java
package derived from the original TASSELS suite, but with
the added ability to include epistasis (https://bitbucket.org/w
dmetcalf/tassel-5-threaded-model-fitter); a flowchart of this
implementation of SPAEML is provided in Supplementary
Figure 1. Additionally, the built-in stepwise model selection
procedure from TASSEL was used to conduct the stepwise
model selection procedure that only considered additive
marker effects, i.e., the procedure which we refer to as JL
analysis. The FastEpistasis package was obtained from
http://www.vital-it.ch/software/FastEpistasis, and Bonfer-
roni correction was applied to control for multiple testing.
FastEpistasis only tests one pair of markers at a time and
constructs a model that includes additive effects for each
marker and a two-way interaction term that models their
epistatic effect.

SPRINGER NATURE

Criteria used to quantify the detection of QTNs

For a trait simulated under a given sample size, marker
number, species, and setting, a QTN was said to have been
detected by one of the three statistical approaches if either a
marker contributing to the QTN itself or at least one marker
located within a surrounding +250kb window was (i)
included as a main (additive) effect in SPAEML or JL
analysis, (ii) included as part of a two-way interaction
(epistatic) effect by SPAEML, or (iii) included as part of a
two-way interaction effect with a P-value less than or equal
to the Bonferroni-adjusted @ =0.05 threshold when ana-
lyzed in FastEpistasis. Thus, an approach’s (i.e., SPAEML,
JL analysis, or FastEpistasis) detection rate of a QTN was
defined to be the proportion of the corresponding
100 simulated traits in which a QTN was detected. A similar
metric specific to SPAEML, the specification rate of a QTN,
was defined as the proportion of 100 traits where an additive
QTN was correctly identified by SPAEML as additive, and
both loci contributing to an epistatic QTN were correctly
identified by SPAEML as epistatic. A window size of
+250 kb has been previously used in maize diversity panels
to designate local regions of genomic proximity in maize
(Chen and Lipka 2016; Lipka et al. 2013). To enable a side-
by-side comparison of results between the two species, the
same +250 kb window size was used in the human data.

A false positive (FP) detection was said to occur for (i)
each main effect detected by SPAEML or JL analysis cor-
responding to a marker located outside of the +250 kb
windows surrounding all QTN, (ii) each two-way interac-
tion effect detected in SPAEML where both corresponding
markers were located outside of the +250kb windows
surrounding all QTN, or when (iii) a statistically significant
association outside of these windows was identified by
FastEpistasis. Hence the FP rate of a given approach was
defined to be the proportion of 100 traits simulated at a
given sample size, marker number, species, and setting with
at least one FP.

Results

We conducted a simulation study to explore the impact of
sample size and number of markers on the ability of
SPAEML to identify additive and epistatic QTN. To enable
a thorough investigation, traits with different genetic
architectures ranging in complexity were simulated using
genotypic data from a maize diversity panel and then again
with genotypic data from a human case—control cohort
(Table 1). Figure 1 shows that the distributions of minor
allele frequencies (MAFs) of the 15,000 markers considered
in both species are vastly different. While the majority of


https://bitbucket.org/wdmetcalf/tassel-5-threaded-model-fitter
https://bitbucket.org/wdmetcalf/tassel-5-threaded-model-fitter
http://www.vital-it.ch/software/FastEpistasis
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0.5
1

0.4

0.3
Il

Minor Allele Frequency

0.1

0.0

Human Maize
Species

Fig. 1 Distribution of the minor allele frequencies (MAFs) of the
evaluated single nucleotide polymorphisms (SNPs). Box plots
depicting the MAFs (Y-axis) of the 15,000 SNPs that were tested in the
human data set and the 15,000 SNPs that were tested in the maize data
set (X-axis). The MAFs of all SNPs that were randomly selected to be
quantitative trait nucleotides (QTNs) for the simulation studies are
denoted by purple dots. These box plots illustrate that the MAFs of the
SNPs in the maize data set tend to be lower than those in the human
data set

the 15,000 SNPs in the maize diversity panel have MAFs
below 0.1, the majority of the 15,000 SNPs in the human
case—control study have MAFs that are greater than 0.1.
Within both data sets, the MAFs of the markers randomly
selected to be QTNs span the entire range of observed
MAFs. These patterns enabled us to observe the way the
collective distribution of allele frequencies in a marker set
influenced the performance of SPAEML.

Observed false positive rates across the five genetic
architectures

The purpose of simulating traits under the “Null” setting
was to evaluate the effectiveness of the premutation pro-
cedure (used for SPAEML and JL analysis) and the Bon-
ferroni procedure (used for FastEpistasis results) to control
the type I error rate at o = 0.05. The observed empirical FP
rates across species, number of markers, and sample sizes
suggest that these procedures are controlling for type I
errors reasonably well, with SPAEML having empirical FP
rates that are most consistently close to a =0.05 (Fig. 2).
The FP rates are generally higher for simulation settings
other than “Null,” especially for the traits simulated under
the “Ideal” genetic architecture (H2 =0.99, all QTNs have
large effect; Table 1) in maize (Supplementary Figure 1).
These results are not surprising because it is theoretically
possible for all three approaches to identify markers that are

in linkage disequilibrium (LD) with the simulated QTN.
FastEpistasis, which tests the epistatic effect of one pair of
loci at a time, tended to yield higher FP rates than the other
two stepwise approaches, while SPAEML tended to have
low FP rates at the maximum sample sizes in both data sets
(Supplementary Figure 2).

Accuracy of SPAEML at a limited sample size of n =
300 individuals

The results from these simulation studies show that sample
size has a substantially greater impact on QTN detection
than the number of markers, underscoring the well-
established importance of having sufficient sample sizes
when conducting quantitative genetics analysis (Doerge
2002). Nevertheless, to ascertain the limits of the ability of
SPAEML to identify genomic signals, all five simulation
settings were run with n = 300 individuals. One of the most
detrimental impacts of small sample size on the accuracy of
SPAEML appeared to be on the FP rate; substantially high
FP rates from SPAEML were observed only at n =300
(Supplementary Figure 2). In contrast, the FP rates for JL
analysis and FastEpistasis were more consistent across
sample sizes. At n =300, SPAEML detected QTN at rates
vastly superior to those of FastEpistasis, but not as high as
those of JL analysis (Fig. 3a; Supplementary Figures 3-10).
Finally, we observed that at n =300, SPAEML is more
likely to misspecify additive QTN as epistatic and identify
only one locus contributing to an epistatic QTN (Fig. 3b;
Supplementary Figures 11-18). In contrast at n = max,
SPAEML yielded (i) minimal FP rates, (ii)) QTN detection
rates that were comparable to JL analysis, (iii) greater
capability to identify both loci underlying epistatic QTN,
and (iv) the capacity to distinguish between additive and
epistatic signals in traits simulated in the human data set. In
light of this contrast and the negligible impact of the
number of tested markers on the simulation results, the
remaining sections present findings based on n =max
individuals and m = 15,000 markers.

Distinguishing between additive and epistatic
signals at the same locus

Among the three approaches that were evaluated, only the
output of SPAEML provide results for both additive and
epistatic terms fitted to one model. To characterize the
ability of SPAEML to distinguish between additive and
epistatic signals, both of the QTNs considered in the
“Additive vs. Epistatic” setting harbored non-zero additive
and epistatic effects. At this setting, we observed contrast-
ing results between the two species. In maize, SPAEML
classified the signals at these QTNs as epistatic 100% of the
time, suggesting that SPAEML was unable to distinguish

SPRINGER NATURE
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5k 15k 5k 15k

0.20 0.20 0.20- 0.20

0.15 0.15 0.15- 0.15

0.10 0.10 0.10- 0.10

0.05 0.05 0.05- I . 0.05 -

0.00 : : 0.00 : : 0.00- : : 0.00 : -—

300 max 300 max 300 max 300 max
Human Maize
o [ SPAEML [ FastEpistasis

Fig. 2 Comparison of false positive rates for the three approaches
evaluated in “Null” setting where no quantitative trait nucleotides
(QTNs) were simulated. The rate of false positive detection, defined as
a SNP located outside of +250 kb of any of the QTNs, for joint linkage
(JL) analysis, the stepwise procedure for constructing an additive and
epistatic multi-locus model (SPAEML), and FastEpistasis are plotted
on the Y-axis of each graph. Starting from the left, the first two graphs
show the results for the traits simulated in the human data, while the

between these additive and epistatic effects (Supplementary
Figures 13, 14). Contrastingly, SPAEML identified the
additive and epistatic signals underlying both QTN simu-
lated in the human data set for all simulated traits. Similar
results were obtained for the Alzheimer’s disease-like
(“AD-like”) setting, where the large-effect additive QTN
also include a substantially large epistatic signal (Supple-
mentary Figures 17, 18).

Accuracy in more complex genetic architectures

We compared the accuracy of the three approaches in
simulation settings 4 and 5, which approximate the poly-
genic underpinnings of maize inflorescence (“Inflorescence-
like” in Table 1) and Alzheimer’s disease (“AD-like”). Two
important characteristics distinguish these two settings.
First, “Inflorescence-like” was highly heritable (H* = 0.92)
while “AD-like” was not (H> = 0.34). Secondly, the effect
size of the epistatic QTN was substantially higher relative to
those of the additive QTN in the “Inflorescence-like” set-
ting, whereas the strength of the epistatic QTN in the “AD-
like” setting was not.

The detection rate for additive QTN improved as a func-
tion of the effect size for both JL and SPAEML, with roughly
comparable accuracy between the two approaches (Fig. 4a).
In the human data set, SPAEML provided the added advan-
tage of always correctly identifying both loci contributing to
the epistatic QTN, and correctly specifying additive QTNs as
a function of their effect size (Fig. 4a and Supplementary
Figures 17, 18). This latter result intuitively makes sense: the
stronger the QTN effect, the more likely it is to be dis-
tinguished from a non-additive signal. Among the corre-
sponding traits simulated with maize data, SPAEML was at
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last two columns show the results for the maize simulated data. The
graphs with the title “5k” show the results when 5,000 markers were
tested, and the graphs with the title “15k” show the results when
15,000 markers were tested. The X-axis of each graph show the sample
sizes that were tested, with max indicating the maximum sample size
of each data set (2648 in the maize data set and 2099 in the human data
set)

most capable of detecting one out of two loci contributing to
an epistatic QTN, and all additive QTNs were misspecified as
epistatic (Fig. 4b). We hypothesize that the generally lower
MAF observed in the markers from the maize data set pro-
vided weaker statistical support for each of the simulated
QTN, resulting in the observed misspecification.

Discussion

Statistical approaches that consider the additive and epi-
static contributions of multiple genomic loci could enable
unprecedented quantification of the genetic architecture of
agronomically important and human health-related quanti-
tative traits. Using genotypic data from a maize diversity
panel and a case—control study of Alzheimer’s disease in
humans, we conducted a simulation study to determine the
accuracy and limits of applicability of SPAEML. Specifi-
cally, we assessed the impact of sample size, number of
markers, MAF, and the genetic architecture underlying a
given trait on the ability of SPAEML to detect and correctly
specify additive and epistatic QTN. Our results suggest that
sample size has greater influence on the performance of
SPAEML than the number of markers, in all considered
cases. Additionally, the capability of SPAEML to distin-
guish between additive and epistatic QTN was much greater
when traits were simulated in the human data set, possibly
due to the generally higher values of marker MAFs. At the
maximum evaluated sample sizes, the detection rate of
SPAEML was comparable to JL analysis, and unequi-
vocally superior to that of FastEpistasis.

Our study builds upon previous work (Haley and Knott
1992; Jannink and Jansen 2001; Karkkainen et al. 2015;
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Fig. 3 Detection (a) and specification (b) rates of simulated quantita-
tive trait nucleotides (QTNs) for the three approaches evaluated in the
“Ideal” genetic architecture with setting with four large-effect additive
QTN and four large-effect epistatic QTN and heritability equal to 0.99
(a). The detection rates of the additive QTNs, defined as the proportion
of SNPs located within +250 kb of any of the simulated QTN detected
using joint linkage (JL) analysis (red bar), the stepwise procedure for
constructing an additive and epistatic multi-locus model (SPAEML;
green bar), and FastEpistasis (blue bar) are plotted on the Y-axis of
each graph. The first two rows (shaded pale yellow) show results for
the simulated additive QTN, while the bottom two rows (shaded pale
purple) show results for the simulated epistatic QTN. The first and
third rows show results for the simulations conducted in the human
data set, while the second and fourth rows show results for the
simulations conducted in the maize data set. The X-axis on each graph
depict the effect sizes of the QTN. The left column shows results for n

Sehgal et al 2017) that explicitly assesses the ability of
stepwise-based or similar approaches to identify and dis-
tinguish between additive and epistatic genomic signals.
Novel state-of-the-art computational approaches (Gittens
et al. 2016) and inexpensive genotyping protocols (Elshire
et al. 2011; Hohenlohe et al. 2010) are resulting in extre-
mely large amounts of genotypic and phenotypic data.
Larger sample sizes facilitate improved accuracy of ana-
lyses. However, exhaustive searches for multiple sets of
epistatically interacting loci on a genome-wide scale in
large data sets faces a difficult multiple-testing problem
(Karkkainen et al. 2015). Stepwise model selection and
related approaches have been successful in circumventing
this problem in the past (Brown et al. 2011; Mathew et al.
2018; Tian et al. 2011) by considering a relatively small
number of total markers in their analyses; this past success
drove us to investigate SPAEML.

Based on our results, we expect SPAEML will be par-
ticularly useful for quantifying additive and epistatic
marker-trait associations in specific genomic regions that
have been identified in a priori biological or statistical
analyses. This will result in the analysis of a smaller set of

081 086 050 095 081 086 050 085

=300 individuals and m = 15,000 markers, while the right column
shows results for 7 = max individuals (i.e., n = 2099 in humans and n
=2648 in maize) and m = 5000 markers. Both JL. and SPAEML are
able to detect the additive and epistatic effects, while FastEpistasis
failed to detect all the additive effects and most of the epistatic effects.
b Specification rates of SPAEML, defined as the proportion of times
that a detected additive QTN was correctly specified in the SPAEML
model as additive, misspecified as epistatic (first two rows); or the
proportion of times for a detected epistatic QTN that it was mis-
specified as additive, only one locus contributing to the QTN was
detected, or both loci contributing to the QTN (bottom two rows).
These proportions are depicted on the Y-axis of each graph. The X-axes
of each graph, and how they are subdivided into rows and columns, are
the same as in a. Optimal specification is obtained at n = max; m =
5000-marker setting and in the human data

markers, thus yielding a smaller search space for optimal
models and enabling researchers to capitalize on the accu-
racy of SPAEML that we demonstrate here. Our exploration
of the factors that influence the accuracy of SPAEML is not
exhaustive, but is sufficient to complement so-called
“search space reduction” efforts (Ritchie 2011; Wei et al.
2014) by providing a rough assessment of the number of
markers to target within the genomic regions identified in a
priori analyses.

Effect of sample size

Our study confirmed the common expectation that sample
size positively affects the accuracy of SPAEML. We also
demonstrated that SPAEML is capable of true positive
detection and even correct specification of additive and
epistatic QTN at the smaller sample size that we explored
(n=300). However, the accuracy improves dramatically at
larger sample sizes. Although this result is unsurprising,
direct quantification of SPAEML’s ability to identify
additive and epistatic QTN at different sample sizes is
informative, as it is useful to know how a model will behave

SPRINGER NATURE
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Fig. 4 Detection (a) and specification (b) rates of simulated additive
quantitative trait nucleotides (QTNs) for the three approaches eval-
uated in the two complex genetic architectures at a maximum number
of individuals (n =2099 human subjects and n = 2648 maize lines)
and 15,000 markers (a) The detection rates of the additive QTNs,
defined as the proportion of SNPs located within +250 kb of any of the
simulated QTNs detected using joint linkage (JL) analysis, the step-
wise procedure for constructing an additive and epistatic multi-locus
model (SPAEML), and FastEpistasis are plotted on the Y-axis of each
graph. The first row shows results for the simulations conducted in the
human data set, while the second row shows results for the simulations
conducted in the maize data set. The X-axis on each graph depict the
effect sizes of the additive QTN. The left column shows results for the

on a smaller data set when desired sample sizes are una-
vailable. Our results show that even in those cases
SPAEML will find many significant SNPs and epistatic
pairs, although they may be misspecified in the final model.

Effect of the marker set size

In contrast to the substantial impact of sample size on the
accuracy of SPAEML, we observed similar true and false
positive rates at the two marker sizes that were tested. From
a statistical perspective, these results suggest that for these
simulated data, the conservativeness of the multiple testing
problem is similar for both 5000 and 15,000 markers. Thus,
the larger marker set does not decrease the accuracy of
SPAEML. This is important, as our marker sets are orders
of magnitude smaller than those currently available on a
genome-wide scale in heavily researched species. We hope
the usefulness of SPAEML holds for larger sets, although
direct extrapolation is not recommended. We believe this
method is best used on a set of markers that has been
whittled down by using prior biological information, such
as linkage disequilibrium analysis, hypothetical relations
between markers and cellular pathways, or other pre-
liminary analyses that remove markers that do not con-
tribute to the final model. This will bring the problem into
the setting of optimal performance for SPAEML, and also
reduce the computational burden from testing both additive
and epistatic effects, which grows binomially with the
marker set size.
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inflorescence-like genetic architecture, while the right column shows
results for the AD-like genetic architecture. Similar detection rates
were observed across JL analysis and SPAEML, while FastEpistasis
failed to detect all the additive effects. b Specification rates of
SPAEML, defined as the proportion of times that a detected additive
QTN was correctly specified in the SPAEML model as additive or
misspecified as epistatic, are depicted on the Y-axis of each graph. The
X-axes of each graph, and how they are subdivided into rows and
columns, are the same as in a. Correct specification of additive QTN
occurs in the traits simulated using human data. “Inflorescence-like” =
setting with 26 additive QTN, one epistatic QTN and heritability equal
to 0.92; “AD-like” = setting with 20 additive QTN, one epistatic QTN
and heritability = 0.34

Effect of the minor allele frequency

We found SPAEML to be much more capable of distin-
guishing between additive and epistatic signals for traits
simulated in the human data set, despite that the same
number of markers, similar number of individuals, and the
same simulated genetic architectures were evaluated in the
maize and human data sets. We propose two distinct but not
mutually exclusive hypotheses to explain these results.
First, differences between the underlying characteristics of
the maize and human genomes could result in LD-related
properties being more favorable for SPAEML to work
optimally in the human data set. The second hypothesis is
that the differences in accuracy are a downstream ramifi-
cation of the difference in MAF distribution across the two
data sets (Fig. 1), potentially explained by the procedures
for data collection. The maize data set is a diversity panel,
meaning that it consists of a wide variety of genetically
diverse species (Romay et al. 2013). Thus rare variants are
prominent, and consequently SNPs with low MAFs are
observed. Although rare variants are undoubtedly also
present in the human genome, recent research suggests that
the humans tend to be far less genetically diverse than
plants, having gone through multiple rounds of purifying
selection during inter-continental migrations in human
evolution (Reich 2018; Schlebusch and Jakobsson 2018).
Combined with the fact that the human data we analyzed
were from a case—control study, low MAFs are less pro-
minent. In any case, the differences in SPAEML accuracy
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suggest that both the genomic characteristics of a species
and the distribution of MAFs among the tested markers
could exhibit a critical impact on the results.

Conclusions and next steps

To ensure that the most appropriate biological conclusions
are made by breeding, medical, and quantitative genetics
research communities, it is imperative that statistical models
which approximate the genetic architecture of traits are
accurate. By design, both JL analysis and FastEpistasis
oversimplify the intricate patterns of main effects and
multifaceted interactions between loci contributing to phe-
notypic variability. While JL is designed to only consider
additive effects in a multi-locus model, FastEpistasis is
designed to only test for epistasis, one pair of markers at a
time. In contrast, we demonstrate that SPAEML is a sen-
sitive and accurate approach capable of identifying and
distinguishing between additive and epistatic genomic sig-
nals, at least for data sets of several thousand samples and
markers. We suggest that SPAEML, which conducts model
selection for all possible main effects and two-way inter-
action effects of a set of markers, is best used for con-
structing an accurate model on a limited set of markers
identified through an a priori analysis, once markers in
genomic regions with no contributions to phenotypic var-
iation have already been eliminated. We hypothesize that
utilizing as much a priori information as possible on both
the target trait and data set, particularly transcriptomic,
metabolomic and genomic relatedness between individuals,
could theoretically expedite the identification of such
genomic regions.

Data archiving

The Java code used to perform SPAEML is available for
download at https://bitbucket.org/wdmetcalf/tassel-5-threa
ded-model-fitter. The genotypic data, simulated trait data,
and code to simulate the traits are available at: https:/
github.com/ncsa/EpiQuant_ GWAS_Simulations.
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