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Abstract

MiRNAs are a class of small non‐coding RNAs that are involved in the development

and progression of various complex diseases. Great efforts have been made to dis-

cover potential associations between miRNAs and diseases recently. As experimental

methods are in general expensive and time‐consuming, a large number of computa-

tional models have been developed to effectively predict reliable disease‐related
miRNAs. However, the inherent noise and incompleteness in the existing biological

datasets have inevitably limited the prediction accuracy of current computational

models. To solve this issue, in this paper, we propose a novel method for miRNA‐dis-
ease association prediction based on matrix completion and label propagation.

Specifically, our method first reconstructs a new miRNA/disease similarity matrix by

matrix completion algorithm based on known experimentally verified miRNA‐disease
associations and then utilizes the label propagation algorithm to reliably predict dis-

ease‐related miRNAs. As a result, MCLPMDA achieved comparable performance

under different evaluation metrics and was capable of discovering greater number of

true miRNA‐disease associations. Moreover, case study conducted on Breast Neo-

plasms further confirmed the prediction reliability of the proposed method. Taken

together, the experimental results clearly demonstrated that MCLPMDA can serve as

an effective and reliable tool for miRNA‐disease association prediction.
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1 | INTRODUCTION

MiRNAs are a class of small endogenous single‐stranded non‐coding
RNAs (~22 nt RNAs).1–4 Since the discovery of the first two miRNAs

lin‐4 and let‐7, increasing evidences have indicated that miRNAs play

vital roles in a variety of complex biological process, such as cell dif-

ferentiation, proliferation, apoptosis and signal transduction. For

instance, by performing the pathway enrichment analysis for targets

of differentially expressed miRNAs recorded from databases, Calin

and Croce demonstrated that the down‐regulation of the suppressor

miR‐15a/miR‐16‐1 induces overexpression of BCL2 and possibly

other genes that may be important for tumourigenesis, whereas the

overexpression of oncogenic miR‐17‐92 cooperates with c‐Myc in

stimulating proliferation.5 In addition, Ma et al. indicated that miR‐
10b is highly expressed in metastatic breast cancer cells and posi-

tively regulates cell migration and invasion.6 Recently, Zhang et al.

identified miRNA‐26a as a key regulon that inhibits progression and

metastasis of c‐Myc/EZH2 double high advanced hepatocellular
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carcinoma.7 Besides, plenty of studies have indicated that miRNA

mutations or misexpression are closely related with various human

cancers and thus miRNAs could act as tumour suppressors and

oncogenes.8–10 Therefore, prediction of potential miRNA‐disease
associations makes an important contribution to understanding the

molecular mechanism of disease pathogenesis and further promoting

the level of treatment.

Traditional experimental methods such as qRT‐PCR11 and

microarray profiling12 have been adopted to identify miRNA‐disease
association predictions. Although reliable, experiment‐based methods

are generally expensive and time‐consuming. With the rapid devel-

opment of biotechnology, a vast amount of publicly available RNA‐
related datasets have been released, which also provides great

opportunities for uncovering potential associations between diseases

and miRNAs by taking advantage of these data resources computa-

tionally. Recently, considerable efforts have been made to discover

disease‐associated miRNAs based on the assumption that miRNAs

with similar functions are tend to be associated with similar dis-

ease.13 Jiang et al. constructed a human phenome‐miRNAome func-

tional association network and proposed the first computational

model to infer the candidate disease‐related miRNAs based on the

hypergeometric distribution scoring system. By testing the proposed

model on 270 known experimentally verified miRNA‐disease associa-

tions, they achieved an accuracy of 0.758 in leave‐one‐out cross vali-
dation (LOOCV).14 They further proposed a weighted network‐based
method to improve the calculation of concordance score between a

specific miRNA and a given disease, and achieved an area under the

receiver operating characteristic curve (AUC) value of 0.80 in global

LOOCV.15 Nevertheless, the high false‐positive rate in miRNA target

predictions severely limited the efficacy of Jiang's methods. By incor-

porating miRNA‐target interactions, disease‐gene associations and

protein‐protein interactions, Shi et al. introduced a modified random

walk algorithm with restart (RWR) to identify miRNA‐disease associ-

ations. As a result, their approach achieved satisfactory performance

in identifying known cancer‐related miRNAs for nine human cancers

with an AUC value of 0.713 and 0.913 in LOOCV framework.16 Sim-

ilarly, Mørk et al. presented a miRNA‐Protein‐Disease network by

integrating known miRNA‐protein associations and disease‐protein
interactions to infer potential miRNAs associated with each investi-

gated disease.17 Later, Xu et al. utilized known disease‐related pro-

tein‐coding genes to prioritize miRNAs‐disease associations

according to context‐dependent miRNA‐target interactions and

obtained an average overall prediction accuracy of 0.887 in cross‐
validation tests.18 In contrast to previous methods, Xu's method does

not depend on known disease‐related miRNAs. However, their

method also suffers from the high false positive rates and false neg-

ative rates existed in the predicted miRNA‐target interactions. By

integrating known associations, disease semantic similarity, miRNA

functional similarity and Gaussian interaction profile kernel similarity,

Chen et al. calculated a within‐score and a between score to gain an

eventual confidence score for miRNA‐disease associations. Specifi-

cally, they obtained an AUC value of 0.8031 in LOOCV, which

clearly demonstrated their improvement.19 Considering the fact that

there are only very few known miRNA‐disease associations and

many associations are “missing” in the known training database,

Chen et al. introduced the concepts of “super‐miRNA” and “super‐
disease” to enhance the miRNA similarity and disease similarity mea-

sures to infer disease‐related miRNAs.20 Specifically, their method

could be applied to new diseases without any known associated

miRNAs as well as new miRNAs without any known associated dis-

eases. As a result, their method achieved reliable performance with

AUCs of 0.9032, 0.8323 and 0.8970 in global LOOCV, local LOOCV

and 5‐fold cross validation respectively.

In addition, machine learning‐based methods for predicting

miRNA‐disease association have attracted widespread attention.21–26

Chen et al. proposed a novel computational model based on hetero-

geneous graph inference for miRNA‐disease association prediction

by integrating miRNA functional similarity, disease semantic similar-

ity, kernel similarity of Gaussian interaction profile and experimen-

tally validated miRNA‐disease associations into a heterogeneous

network.21 Concretely, HGIMDA adopted an iterative process to find

the optimal solutions based on global network similarity information,

which led to superior performance over local network similarity‐
based methods. HGIMDA obtained AUCs of 0.8781 and 0.8077 in

terms of global and local LOOCV respectively. Xiao et al. developed

a novel graph regularized non‐negative matrix factorization frame-

work to simultaneously identify the potential associations for all dis-

eases22 and their model was relatively robust to the noises in the

datasets. As a result, Xiao's method achieved an AUC value of 0.869

based on LOOCV framework. Under the motivation to find out the

deep representation of disease semantic similarity, miRNA functional

similarity and known miRNA‐disease associations, Chen et al. pro-

posed DRMDA to predict miRNA‐disease associations. The main

advantage of the deep representation lies in that some noise within

unprocessed data can be eliminated while features related with asso-

ciation can be clearly presented23. The AUCs achieved by DRMDA

were 0.9177, 0.8339 and 0.9156 in global LOOCV, local LOOCV

and 5‐fold cross validation respectively. Peng et al. proposed a novel

computational model named NARRMDA to score and rank miRNAs

for a given disease without known associations. NARRMDA com-

bined a rating‐based recommendation algorithm and a negative‐
aware algorithm to predict disease‐related miRNAs,24 and it achieved

an AUC value of 0.8053 in LOOCV framework. Later, Chen et al.

proposed a novel method called MKRMDA which automatically opti-

mizes the multiple kernel combinations of both diseases and miR-

NAs.25 MKRMDA achieved remarkable AUCs of 0.904, 0.8446 and

0.8894 in global, local LOOCV and 5‐fold cross validation respec-

tively. They further developed the first decision tree learning‐based
model, EGBMMDA, to discover the potential miRNA‐disease associa-

tions by employing Extreme Gradient Boosting Machine.26 The

experimental results indicated that EGBMMDA obtained AUC values

of 0.9123, 0.8221 and 0.9048 in global, local LOOCV and 5‐fold
cross validation respectively. Although effective, a common limitation

of methods using machine learning schema mentioned above is that

there are no validated negative samples for miRNA‐disease
associations.
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Recently, several path‐based methods taking advantage of net-

work topological structures have been proposed to predict miRNA‐
disease associations. Sun et al. proposed a method called NTSMDA

which only utilizes the miRNA‐disease network topological similarity

to predict disease‐associated miRNAs27 and achieved an AUC of

0.894 by using the LOOCV experiment. Chen et al. devised a

method GIMDA based on graphlet interaction which was applied to

analyse the relevance between two points.28 The AUCs of GIMDA

in global, local LOOCV and 5‐fold cross validation turned out to be

0.9006 and 0.8455 and 0.8927 respectively. However, as NTSMDA

and GIMDA strongly depends on network topological structure, they

cannot be applied to diseases without any known associated miR-

NAs. You et al. first constructed a heterogeneous network and then

proposed a model called PBMDA by performing a depth‐first search
algorithm on the heterogeneous network to infer disease‐related
miRNAs.29 In particular, PBMDA achieved reliable performance in

the frameworks of both local and global LOOCV (AUCs of 0.8341

and 0.9169 respectively) and 5‐fold cross validation (average AUC of

0.9172). An obvious superiority of PBMDA compared with NTSMDA

and GIMDA was that it can be applied to new diseases and new

miRNAs, which greatly improved the practicability and reliability of

PBMDA. Recently, Chen et al. proposed NDAMDA based on net-

work distance to predict miRNA‐disease associations. NDAMDA not

only considered the direct network distance between two miRNAs

or diseases but also took their respective mean network distances to

all other miRNAs or diseases into account.30 The reliable perfor-

mance of NDAMDA was certified by the AUCs of 0.8920, 0.8062

and 0.8935 obtained in global LOOCV, local LOOCV and 5‐fold
cross validation respectively.

Although existing methods have made great contributions to

uncover disease‐related miRNAs, there are still some limitations that

could be improved in many aspects. Therefore, in this paper, we

develop a novel method for miRNA‐disease association prediction

based on Matrix Completion and Label Propagation (MCLPMDA). An

important innovation of MCLPMDA is that it leverages matrix comple-

tion algorithm to solve the problem of sparsity and incompletion,

which greatly improves the prediction accuracy. To demonstrate the

effectiveness of our proposed method, we apply different evaluation

metrics to comprehensively measure the prediction performance. In

addition, we compare our method with four state‐of‐the‐art methods

and the results indicate that our method could achieve comparable

performance. Moreover, the results of case study on Breast Neo-

plasms (BN) further verify the reliability and robustness of MCLPMDA.

Together, all the results demonstrate that MCLPMDA can serve as an

effective tool for discovering miRNA‐disease associations.

2 | MATERIALS AND METHODS

2.1 | Human miRNA‐disease associations

MiRNA‐disease associations were downloaded directly from the

HMDD v2.0 which contains 5340 experimentally verified links

between 495 miRNAs and 383 diseases.31 We used an adjacency

matrix DM to describe the obtained miRNA‐disease associations.

Concretely, the element DM(i,j) is 1 if disease d(i) is verified to be

associated with miRNA m(j), and 0 otherwise. Therefore, the i‐th row

of DM is a binary vector representing the associations between dis-

ease d(i) and each miRNA, while the j‐th column of DM represents

the associations between miRNA m(j) and each disease.

2.2 | MiRNA functional similarity

MiRNA functional similarity scores were computed based on the

assumption that functionally similar miRNAs are more likely to con-

nect with phenotypically similar disease.32,33 In this paper, we

downloaded the miRNA functional similarity scores directly from

http://www.cuilab.cn/files/images/cuilab/misim.zip. We used matrix

FM to denote the obtained miRNA functional similarity network, in

which FM(i,j) indicates the similarity between miRNA m(i) and

miRNA m(j).

2.3 | Disease semantic similarity

Mesh database (http://www.ncbi.nlm.nih.gov/) is a strict system for

disease classification and is a credible dataset for effectively

researching the association between different diseases. A disease

can be described as a directed acyclic graph, DAG = (D,T(D),E(D)),

where T(D) represents both node D and its ancestor nodes, and E(D)

represents all direct edges connecting the parent nodes to child

nodes. The contribution values of disease d to the semantic value of

disease D can be calculated as follows:

DDðdÞ ¼ 1 if d ¼ D
DDðdÞ ¼ max Δ � DDðd0Þjd0 ∈ childen of df g if d≠D

�
(1)

Here, Δ is the semantic contribution factor and we set Δ=0.5 in

this paper. For disease D, the contribution of itself is 1, while the

contribution of another disease dj decreases as the distance between

D and dj increases. Hence, the semantic value of disease D can be

calculated according to the contribution of ancestor diseases and

disease D itself:

DV Dð Þ ¼ ∑t∈ TðDÞDd tð Þ (2)

Then, the semantic similarity between disease di and disease dj

could be calculated as follows:

S di; dj
� � ¼ ∑T ∈ TðdiÞ∩TðdjÞ Ddi tð Þ þ Ddj tð Þ

� �
DV dið Þ þ DV dj

� � (3)

According to Equation (3), we can construct an overall disease

semantic similarity matrix SD where SDij represents the semantic

similarity between disease di and disease dj.

2.4 | Gaussian interaction profile kernel similarity
for miRNAs and diseases

Based on the assumption that functional similar miRNAs tend to be

associated with similar diseases and vice versa, we first constructed
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Gaussian interaction profile kernel similarity for miRNAs.34 Specifi-

cally, a binary vector M(i) representing the i‐th column of the adja-

cency matrix DM is considered as the interaction profiles of miRNA

m(i). The Gaussian kernel similarity between miRNA m(i) and m(j) can

then be calculated as follows:

GMðmðiÞ;mðjÞÞ ¼ expð�γm MðiÞ �MðjÞk k2Þ (4)

where γm is a parameter to control the kernel bandwidth and it can

be obtained by the following formula:

γm ¼ δm
1
nm∑

nm
i¼1 MðiÞk k2

(5)

where δm is a new bandwidth parameter and nm denotes the num-

ber of all the miRNAs. Similarly, the Gaussian interaction profile ker-

nel similarity between disease d(i) and d(j) is calculated by:

GDðdðiÞ; dðjÞÞ ¼ expð�γd DðiÞ � DðjÞk k2Þ (6)

γd ¼
δd

1
nd∑

nd
i¼1 MðiÞj j2

(7)

For simplicity, δm and δd were set to 1 according to previous

studies.32,34–36

2.5 | MCLPMDA

As mentioned above, due to the inherent noise in the current

datasets, the obtained miRNA functional similarity matrix and dis-

ease semantic similarity matrix might be sparse and incomplete,

which have greatly limited the prediction accuracy of existing

methods. In this work, we developed a novel method named

MCLPMDA to predict miRNA‐disease associations based on matrix

completion and label propagation. MCLPMDA can be simply

divided into three steps: firstly, we construct a new miRNA simi-

larity matrix CM as well as a disease similarity matrix CD based

on matrix completion algorithm. Secondly, we combine the two

constructed similarity matrices with existing similarity information

for miRNAs and diseases respectively. Thirdly, we conduct label

propagation algorithm in both miRNA space and disease space to

obtain the final prediction results. An overall workflow of

MCLPMDA is illustrated in Figure 1.

2.5.1 | Matrix completion for miRNA and disease

The present data are often far from perfect, meaning that, a part

of the dataset would be incorrect or missing.37 Therefore, an

D1 D2 D3 D4 Dm

D1 D2 D3 D4 Dm

D1 D2 D3 D4 Dm

D1 D2 D3 D4 Dm

MiRNA func�onal similarity 
network

Disease seman�c similarity 
network

Complete miRNA similarity 
network

Complete disease similarity 
network

Label 
Propaga�on

Adjacency matrix

Predic�on result

D1 D2 D3 D4 Dm

D1 D2 D3 D4 Dm

Sort by ScoreMatrix Comple�on

Gaussian interac�on profile kernel similarity for miRNAs

Gaussian interac�on profile kernel similarity for diseases

F IGURE 1 Flowchart of potential disease‐miRNA association prediction based on the computational model of MCLPMDA. Our algorithm
mainly consists of three steps: (1) we construct a new miRNA similarity matrix as well as a disease similarity matrix based on matrix
completion algorithm; (2) the two reconstructed similarity matrices are combined with Gaussian interaction profile kernel similarity for miRNAs
and diseases respectively; (3) label propagation algorithm is conducted in both miRNA space and disease space to obtain the final prediction
results
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incomplete data matrix D can be decomposed into two parts. The

first part is a linear combination of D, which is a low‐rank matrix

and is essentially a projection from the noisy data D into a more

refined or informative lower‐dimensional space. The second part is

a noise data matrix separated from the original data matrix D.

According to the above statement, D can be decomposed as fol-

lows: D ¼ DRþ N (8)

Apparently, Equation (8) has infinite solutions. However, as we

want R to be low‐rank and N to be sparse, we add nuclear norm or

trace norm on D and adopt the ℓ2,1 norm to characterize the error

term N. Specifically, we could obtain a low‐rank recovery matrix by

solving the following convex optimization problem:

min
R;N

Rk k� þ ω Nk k2;1s:t: D ¼ DRþ N (9)

where Rk k� ¼ ∑kσk (i.e., σk is the singular values of D) donates the

nuclear norm of a matrix, Nk k2;1¼∑n
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j¼1ðNijÞ2
q

is the noise regu-

larization term and ω is the positive weighting parameter to balance

the weights of low‐rank matrix R and sparse matrix N.38 After

obtaining the minimizer (R*, N*), we could use DR* (or D − N*) to

obtain a low‐rank recovery matrix CD.

The optimization problem (9) is convex and can be solved in vari-

ous ways, for example, accelerated proximal gradient method

(APG),39 Singular Value Thresholding Algorithm (SVT),40 Augmented

Lagrange multiplier method (ALM)41 and dual approach.42 In this

work, we adopt the Augmented Lagrange Multiplier (ALM) method

due to its efficiency. According to ALM, the Equation (9) can be con-

verted to the following equivalent problem:

min
R;N;J

Jk k� þ ω Nk k2;1s:t: D ¼ DRþ N;R ¼ J (10)

We further adopted Inexact ALM method to transform Equa-

tion (10) to an unconstraint problem, and then minimize this

problem by utilizing augmented Lagrange function defined as

follows:

LðJ;R;NÞ ¼ Jk k� þ ω Nk k2;1þtrðYT
1 ðD� DR� NÞÞþ

trðYT
2 ðR� JÞÞþ μ

2
ð D� DR� Nk k2Fþ R� Jk k2FÞ

(11)

where μ > 0 is the penalty parameter. Equation (11) can be mini-

mized with respect to J, R and N, respectively, by fixing the other

variables and then updating the Lagrange multipliers Y1 and Y2. Con-

cretely, we can fix the other variables to update J by the following

rule:

J ¼ argmin
1
μ

Jk k� þ
1
2

J� ðRþ Y2=μÞk k2F (12)

It is worth noting that Equation (12) has a closed‐form solution.

It can be solved by Singular Value Thresholding (SVT) operator.40

Similarly, we can update R and J by fixing the others according to

Equations (13) and (14) respectively:

R ¼ ðIþ DTDÞ�1ðDTD� DTNþ Jþ ðDTY1 � Y2Þ=μÞ (13)

N ¼ argmin
ω
μ

Nk k2;1 þ
1
2

N� ðD� DRþ Y1=μÞk k2F (14)

Equation (14) can be solved by the following lemma43: Let Q be

a given matrix, if the optimal solution to min
W

θ Wk k2;1 þ 1
2 W �Qk k2F

is W*, then the i‐th column of W* is:

W�½ �:;t¼
Q:;ik k2

�θ

Q:;ik k2

Q:;i; if Q:;t

�� ��
2
>θ

0; otherwise

(

After the J, R, N were updated, we could update the multipliers

as follows:

Y1 ¼ Y1 þ μðD� DR� EÞ
Y2 ¼ Y2 þ μðR� JÞ

(15)

The convergence condition is D� DR� Nk k1<ɛ and R� Jk k1
<ɛ, where ɛ is a very small number (set as 1 × 10−8 in this paper).

Finally, after the convergence condition is reached, we could get the

pure data matrix R* and noise data matrix N* and then calculate a

complete data matrix by D × R*. The procedure to solve Equation (9)

is outlined in Algorithm 1. According to Algorithm 1, by replacing

the input data matrix D with disease semantic similarity matrix SD as

well as miRNA functional similarity matrix FM, we could obtain two

refined similarity matrices CD and CM respectively.

Algorithm 1. Solving Problem (9) by Inexact ALM

Input: Given an incomplete data matrix D and parameters ω ∈ (0, 1)

Output: complete matrix DR*

Initialize: D = 0, E = 0, Y1 = 0, Y2 = 0, μ = 10−4, maxμ = 1010,

ρ = 1.1, ɛ = 10−8

Repeat:

1. Fix the others and update J by:

J ¼ argmin
1
μ

Jk k� þ
1
2

J� ðRþ Y2=μÞk k2F

2. Fix the others and update R by:

R ¼ ðIþ DTDÞ�1ðDTD� DTNþ Jþ ðDTY1 � Y2Þ=μÞ

3. Fix the others and update N by:

N ¼ argmin
ω
μ

Nk k2;1 þ
1
2

N� ðD� DRþ Y1=μÞk k2F

4. Update the multiplier Y1 and Y2 by:

Y1 ¼ Y1 þ μðD� DR� EÞ
Y2 ¼ Y2 þ μðR� JÞ

5. Update parameter μ by:

μ ¼ minðρμ;max
μ

Þ

6. Check the convergence condition by:

D� DR� Nk k1<ɛ

and

R� Jk k1<ɛ

Until convergence

Return: DR*
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2.5.2 | Integration of similarity information

After CD and CM were obtained, we integrated them into existing

similarity matrices as follows:

FDSði; jÞ ¼
CDði; jÞþGDði; jÞ

2 ; if SDði; jÞ ¼ 0
GDði; jÞþCDði; jÞþSDði; jÞ

3 ; otherwise

(
(16)

FMSði; jÞ ¼
GMði; jÞþCMði; jÞ

2 ; if FMði; jÞ ¼ 0
GMði; jÞþCMði; jÞþFMði; jÞ

3 ; otherwise

(
(17)

where GD and GM represent the Gaussian interaction profile kernel

similarity for diseases and miRNAs respectively. Then, the final dis-

ease similarity matrix FDS and final miRNA similarity matrix FMS

obtained by Equations (16) and (17) will be used to infer miRNA‐dis-
ease associations by label propagation.

2.5.3 | Label Propagation

Label propagation is a semi‐supervised learning method by propagat-

ing the labelled information to the unlabelled nodes iteratively in the

whole network. For a specific disease di, miRNAs that have interac-

tions with this disease are considered as labelled samples (the corre-

sponding entries in the i‐th row of matrix DM are 1s), while the

other miRNAs are taken as unlabelled samples. Our objective is to

uncover the potential associations between the unlabelled samples

and the given disease by calculating the strength of their associa-

tions. Generally, a traditional label propagation problem can be

defined as follows:

Ytþ1 ¼ αWYt�1 þ ð1� αÞI (18)

where t is the time step and Yt+1 represents the iteration results

after t + 1 steps of label propagation. α∈[0, 1] is a hyper‐parameter

which balanced the rate between retaining the information from its

neighbours and its initial label information, Y is a binary matrix

encoding the initial label information of data points against each

class.44 Equation (18) has a closed‐form solution: Y = (1 − α)(I −

αL)−1I, where I is an identity matrix, L = D−1/2WD−1/2 is the Lapla-

cian matrix of W and D is the diagonal matrix with (i, i)‐th element

equal to the sum of the i‐th row of W.45

Due to the high computational complexity induced by the

matrix inversion operation of the closed‐form solution, we utilize

Equation (18) to update the label of each data object until conver-

gence. Therefore, we can predict miRNA‐disease associations from

both disease space and miRNA space based on label propagation

algorithm:

Ftþ1
D ¼ α� FDS� FtD þ ð1� αÞ � DM (19)

Ftþ1
M ¼ α� FMS� FtM þ ð1� αÞ � DMT (20)

where FD and FM represent the prediction result from disease space

and miRNA space respectively. The final association score is calcu-

lated by:

F ¼ β FDð Þ þ 1� βð Þ FMð ÞT (21)

where β is a hyper‐parameter balancing the prediction results from

disease space and miRNA space (β was simply set to 0.5 in this

paper). The overall procedure of MCLPMDA is summarized in Algo-

rithm 2. Besides, the source code of MCLPMDA can be freely down-

loaded at https://github.com/ShengPengYu/MCLPMDA.

Algorithm 2. The Procedure of MCLPMDA

Input: Matrices FM ∈ ℝn*n, SD ∈ ℝm*m, DM ∈ ℝm*n, parameter α and β.

Output: Predicted association matrix F.

1. Input FM to Algorithm 1 and obtain the complete miRNA similarity

matrix CM.

2. Input SD to Algorithm 1 and obtain the complete miRNA similarity

matrix CD.

3. Integrate similarity information to get DSS and MFS according to

Equations (16) and (17).

4. Predict from miRNA space and disease space:

Repeat:

Ftþ1
D ¼ α� FDS� Ftd þ ð1� αÞ � DM

Ftþ1
M ¼ α� FMS� FtM þ ð1� αÞ � DMT

Until convergence

5. Integrate the results
F ¼ βðFDÞ þ ð1� βÞ � ðFMÞT

6. Return F

3 | RESULTS

3.1 | Performance evaluation

In this section, we employed four different evaluation metrics to

comprehensively evaluate the performance of MCLPMDA. We first

implemented global LOOCV and 5‐fold cross validation to verify the

general prediction ability of our method based on the experimentally

verified miRNA‐disease associations from HMDD v2.0 databases.31

Specifically, global LOOCV selected a known miRNA‐disease associa-

tion in turn as a test sample, and the rest of the associations were

considered as training samples.46 As for 5‐fold cross validation, all

known miRNA‐disease interactions were randomly divided into five

groups, four of which were adopted as training samples and the

remaining group was picked out as test samples. To avoid the bias

caused by sample divisions, we repeated 5‐fold cross validation 100

times and used the average result of the 100 repetitions as the final

output. In addition, the receiver operation characteristic curve was

plotted by calculating the true positive rate and the false positive

rate at varying thresholds to intuitively illustrate the prediction accu-

racy.47 The AUC value was then calculated to quantitatively evaluate

the performance of MCLPMDA. Generally, the value of AUC ranges

from 0 to 1 and the larger the AUC values the better the predicted

results. As shown in Figures 2 and 3, MCLPMDA achieved reliable

AUCs of 0.941 and 0.932 in global LOOCV and 5‐fold cross
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validation, respectively, which clearly demonstrated the favourable

performance of our method. We further compared our method with

four state‐of‐the‐art methods, that is, SNMDA, HGIMDA,

EGBMMDA and MKRMDA. It is worth mentioning that SNMDA was

also proposed by our team and achieved superior results.48 More-

over, in order to clearly demonstrate the power of our method, we

removed the similarity matrices constructed by matrix completion

for both miRNAs and diseases and compared its prediction perfor-

mance with MCLPMDA in all cross‐validation frameworks. As a

result, SNMDA, HGIMDA, EGBMMDA, MKRMDA and the method

without matrix completion (without MC) obtained AUCs of 0.936,

0.875, 0.912, 0.904 and 0.919 in global LOOCV (Figure 2) respec-

tively. In the framework of 5‐fold cross validation, they obtained

AUCs of 0.934, 0.867, 0.904, 0.884 and 0.876 respectively (Fig-

ure 3). Although MCLPMDA is slightly less predictive than SNMDA

in 5‐fold cross validation, it achieved the best performance in com-

parison with all the methods in global LOOCV.

Next, we adopted another evaluation metric called leave one dis-

ease out cross validation (LODOCV) to test the ability of our method

to predict for diseases without any known associated miRNAs.

Specifically, for each disease, we removed all its associated miRNAs

and then prioritized all the candidate miRNAs using the information

of other disease‐related miRNAs. As there is no prior association

information for the disease investigated, LODOCV is considerably

more stringent compared with the cross‐validation frameworks men-

tioned above and can thus better evaluate the risk of overfitting.

Finally, AUC value was used to evaluate the performance of all

methods in LODOCV framework. As shown in Figure 4, MCLPMDA

achieved the highest AUC value of 0.838 in LODOCV framework

among all methods. We did not demonstrate the performances of

EGBMMDA and MKRMDA in the figure as the AUC values obtained

by both methods were lower than 0.5. Additionally, we calculated

the statistical significance of performance improvement gained by

MCLPMDA over the other methods to clarify the efficacy of our

method. Concretely, we computed an AUC value for each disease

and obtained a vector consisting of 383 AUC values for each

method. We then assessed the statistical significance of difference

between AUC values of different methods by Wilcoxon signed rank

test. As shown in Table 1, our method significantly improved the

prediction performance with respect to the other four methods in

LODOCV, which clearly confirms the generalization ability of

MCLPMDA in predicting new miRNA‐disease associations.

Finally, to further demonstrate the real discovery ability of our

method, we applied our model on the older version of HMDD (v1.0)
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TABLE 1 Statistical significance of differences in performance
between the proposed method and the other five methods in
LODOCV. P‐values were calculated by Wilcoxon signed rank test

SNMDA HGIMDA EGBMMDA MKRMDA
Without
MC

P‐value 3.67e‐02 4.24e‐04 4.54e‐98 2.12e‐41 1.95e‐03
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and then validated the predicted miRNA‐disease associations by the

latest version of HMDD (v2.0). Specifically, there were 1036 known

associations involving 221 miRNAs and 122 diseases recorded in

HMDD v1.0 after filtering. For each method, we selected the top‐N
predicted miRNAs with N ranging from 2000 to 10 000 with an

interval of 2000 and then counted the number of identified true

candidates recorded in HMDD v2.0. As clearly demonstrated in Fig-

ure 5, MCLPMDA could also identify more disease‐associated miR-

NAs than the other four computational alternatives. Taken together,

the various validation results verified the superior performance of

our methods in predicting potential associations between miRNAs

and diseases.

3.2 | Case study

In this section, we conducted a case study on BN to further validate

the effectiveness of MCLPMDA. BN is the most common malignancy

in women, accounting for >40 000 deaths each year.49 Data have

shown that the number of affected people is climbing, and a forecast

deemed that there will be nearly 3.2 million new patients per year by

2050.50 Researchers have found that many miRNAs are associated

with BN by clinical experiments, such as mir‐155 and mir‐21, both of

which can lead to BN tumourigenesis or metastasis.51 For the investi-

gated disease, we listed the top 50 miRNAs prioritized by our method

based on the known miRNA‐disease associations from HMDD v2.0.

The prediction results were verified by another two databases

dbDEMC52 and miR2Disease,53 both of which record experimentally

verified disease‐related miRNAs. Our prediction results showed that

10 of the top 10 and 49 of the top 50 candidate miRNAs were veri-

fied to be associated with BN by at least one of the two databases.

As shown in Table 2, only hsa‐mir‐449a was not confirmed by our

method. As a matter of fact, the study of Shi et al. has shown that

hsa‐mir‐449a was implicated functionally in breast cancer pathogene-

sis by suppressing Cysteine‐Rich Protein 2 and altering cell viability,

migration, invasion, in vivo tumour growth and angiogenesis, thereby

driving malignant phenotypes in these aggressive tumours.54

To further verify the diagnostic power of the top prioritized miR-

NAs, we downloaded miRNA expression data as well as the corre-

sponding clinical information of real patients from The Cancer

Genome Atlas (https://portal.gdc.cancer.gov/repository) for BN.

Specifically, the downloaded miRNA expression data contains 104

normal samples and 1096 tumour samples involving 1881 miRNAs.

To carry out a thorough analysis towards the top predicted miRNAs,

we first calculated the differentially expressed miRNAs by using the

R package edgeR.55 Concretely, edgeR automatically calculates the

log2 fold change and the statistical significance of differential

expression of each miRNA. It also provides the adjusted P‐values for

multiple testing correction with false discovery rate (FDR). As a

result, 29 of the 50 miRNAs were differentially expressed (adjusted

P‐value <0.05 and |logFC| >1, Table 2). We then tested whether

these top predicted miRNAs could be used as features to classify

normal samples and tumour samples. Support vector machine from R

package e1071 was adopted to perform the classification analysis.

The radial basis function was chosen as the kernel function, and the

best values of the two parameters cost (C) and gamma (γ) in the ker-

nel function were obtained by a grid‐search approach using cross‐
validation. Finally, the classification accuracy was evaluated by five‐
fold cross‐validation. We found that the top 6 miRNAs could achieve

a mean classification accuracy of 0.969 (Figure 6), which clearly

demonstrates the classification power of the top prioritized miRNAs.

Next, we focused on hsa‐mir‐125a, the top predicted miRNA for

BN. We checked whether its expression level was significantly

altered at different tumour stages by one‐way ANOVA test. Only

tumour samples were retained and there were in total 1067 tumour
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samples with clinical information after matching the patient barcode

with sample names. After filtering, there are 12 pathologic stages in

patients, i.e. Stage I, IA, IB, II, IIA, IIB, III, IIIA, IIIB, IIIC, IV and X. The

one‐way ANOVA test was performed by the R built‐in function

“aov.” As a result, we obtained a P‐value of 5.68e‐3 (Figure 7A), indi-

cating that its expression level was significantly altered among differ-

ent stages. Besides, we performed the Kaplan–Meier survival

analysis to examine its potential diagnostic power by using the R

package survival. Notably, different expression levels of hsa‐mir‐
125a have led to significantly different survival rate (Figure 7B).

Taken together, the analysis results verified that hsa‐mir‐125a could

serve as a potential biomarker for BN.

4 | DISCUSSION

Traditional experimental methods are in general time‐consuming

and cannot be scaled to large datasets. Fortunately, the

accumulating amount of data from multiple sources have posed

great opportunities to identify miRNA‐disease associations

TABLE 2 Top 50 predicted miRNAs associated with Breast
Neoplasms based on known associations in HMDD. The first column
records the top 1‐50 predicted miRNAs; the second column records
the corresponding evidence in two databases; the third column
records log2 fold change and the fourth column records the adjusted
P‐values of the significance of differential expression for each
miRNA

miRNA Evidence logFC FDR

hsa‐mir‐125a dbDEMC;miR2Disease −0.50551 6.02e‐12

hsa‐mir‐196a dbDEMC;miR2Disease 3.210542 1.04e‐37

hsa‐mir‐499a dbDEMC −1.8022 4.51e‐26

hsa‐mir‐198 dbDEMC;miR2Disease −0.60211 3.93e‐02

hsa‐let‐7a dbDEMC;miR2Disease −0.17426 9.69e‐02

hsa‐mir‐141 dbDEMC 2.216414 4.65e‐74

hsa‐mir‐143 dbDEMC;miR2Disease −1.17215 1.97e‐28

hsa‐mir‐145 dbDEMC;miR2Disease −2.37613 3.00e‐224

hsa‐mir‐150 dbDEMC −0.05109 1.00e+00

hsa‐mir‐16 dbDEMC 0.394382 4.28e‐05

hsa‐mir‐21 dbDEMC 2.143077 1.52e‐110

hsa‐mir‐1 dbDEMC −5.68257 8.66e‐254

hsa‐mir‐133a dbDEMC;miR2Disease −6.50194 0.00e+00

hsa‐mir‐133b dbDEMC;miR2Disease −6.68341 2.74e‐190

hsa‐mir‐146a dbDEMC 0.501373 1.37e‐04

hsa‐mir‐208b dbDEMC;miR2Disease −4.35801 2.98e‐62

hsa‐mir‐103a dbDEMC 0.809716 1.35e‐15

hsa‐mir‐106a dbDEMC;miR2Disease 0.999651 3.51e‐12

hsa‐mir‐10b dbDEMC;miR2Disease −1.88876 1.34e‐94

hsa‐mir‐126 dbDEMC;miR2Disease −0.98217 9.66e‐36

hsa‐mir‐135a dbDEMC;miR2Disease 1.217938 1.75e‐03

hsa‐mir‐151a dbDEMC;miR2Disease 0.417736 2.23e‐07

hsa‐mir‐152 dbDEMC −0.15395 1.38e‐01

hsa‐mir‐181b dbDEMC;miR2Disease 1.397101 8.49e‐30

hsa‐mir‐182 dbDEMC;miR2Disease 2.364107 2.39e‐63

hsa‐mir‐183 dbDEMC 2.946886 1.06e‐95

hsa‐mir‐191 dbDEMC;miR2Disease 1.217488 2.41e‐29

hsa‐mir‐192 dbDEMC 1.468736 2.60e‐37

hsa‐mir‐193b dbDEMC −0.02624 1.00e+00

hsa‐mir‐194 dbDEMC;miR2Disease 0.496013 2.49e‐07

hsa‐mir‐200a dbDEMC;miR2Disease 2.10741 1.56e‐64

hsa‐mir‐200b dbDEMC;miR2Disease 1.698791 6.59e‐41

hsa‐mir‐200c dbDEMC 1.53758 2.83e‐44

hsa‐mir‐203 dbDEMC 2.262136 6.25e‐23

hsa‐mir‐204 dbDEMC;miR2Disease −2.62831 2.42e‐62

hsa‐mir‐205 miR2Disease −1.46212 2.66e‐19

hsa‐mir‐20a dbDEMC 0.784424 1.26e‐09

hsa‐mir‐210 dbDEMC 3.06042 6.75e‐48

hsa‐mir‐215 dbDEMC −1.27642 5.39e‐28

hsa‐mir‐221 dbDEMC −0.07311 7.72e‐01

hsa‐mir‐223 dbDEMC −0.8271 7.04e‐13

(Continues)

TABLE 2 (Continued)

miRNA Evidence logFC FDR

hsa‐mir‐25 dbDEMC;miR2Disease −0.0555 7.34e‐01

hsa‐mir‐26b dbDEMC −0.22093 7.48e‐03

hsa‐mir‐31 dbDEMC;miR2Disease 0.25524 3.00e‐01

hsa‐mir‐34b dbDEMC 0.253323 2.36e‐01

hsa‐mir‐429 dbDEMC 2.689754 5.04e‐72

hsa‐mir‐449a Unconfirmed 5.627081 2.54e‐25

hsa‐mir‐449b dbDEMC 4.278504 1.73e‐17

hsa‐mir‐92a dbDEMC −0.27138 5.93e‐03

hsa‐mir‐93 dbDEMC 1.137218 1.98e‐29
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computationally at a large scale. In this study, we proposed a

novel computational model to predict the underlying miRNA‐dis-
ease associations based on matrix completion and label propaga-

tion. Considering the sparsity and incompleteness of disease

semantic similarity and miRNA functional similarity matrix, we first

used the matrix completion algorithm to obtain refined similarity

matrices and then combined them with existing similarity informa-

tion. To demonstrate the effectiveness of MCLPMDA, we applied

different evaluation metrics to measure the prediction performance

and the experimental results demonstrated the utility of our

method. We then compared MCLPMDA with four state‐of‐the art

methods and the comparison results further confirmed the supe-

rior performance of MCLPMDA. Lastly, the case study conducted

on BN also validated the prediction ability of MCLPMDA. Notably,

our method could be applied to diseases without any known

related miRNAs, which is often the case in practical use. In sum-

mary, all these results indicated that MCLPMDA can effectively

uncover new disease‐related miRNAs.

The success of our model could be mainly attributed to the fol-

lowing two reasons. First, matrix completion was adopted to refine

the miRNA functional similarity matrix and disease semantic similar-

ity matrix, which greatly alleviated the influences caused by the

inherent noise existing in the current datasets. Second, the label

propagation process ensured that the labels of candidate miRNAs

were reliably updated based on the reconstructed similarity matrices.

Nevertheless, the performance of our model can still be improved. In

particular, more data sources such as miRNA target information and

miRNA sequence similarities could be incorporated to further elevate

the prediction accuracy. Besides, adaptive weights should be

assigned instead of equal weights when combining the refined simi-

larity matrices with existing similarity information for both miRNAs

and diseases.
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