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Purpose: The lack of finely annotated pathologic data has limited the

application of deep learning systems (DLS) to the automated interpretation

of pathologic slides. Therefore, this study develops a robust self-supervised

learning (SSL) pathology diagnostic system to automatically detect malignant

melanoma (MM) in the eyelid with limited annotation.

Design: Development of a self-supervised diagnosis pipeline based on a public

dataset, then refined and tested on a private, real-world clinical dataset.

Subjects: A. Patchcamelyon (PCam)-a publicly accessible dataset for the

classification task of patch-level histopathologic images. B. The Second

Affiliated Hospital, Zhejiang University School of Medicine (ZJU-2) dataset –

524,307 patches (small sections cut from pathologic slide images) from

192 H&E-stained whole-slide-images (WSIs); only 72 WSIs were labeled

by pathologists.

Methods: Patchcamelyon was used to select a convolutional neural network

(CNN) as the backbone for our SSL-based model. This model was further

developed in the ZJU-2 dataset for patch-level classification with both

labeled and unlabeled images to test its diagnosis ability. Then the algorithm

retrieved information based on patch-level prediction to generate WSI-level

classification results using random forest. A heatmap was computed for

visualizing the decision-making process.

Main outcome measure(s): The area under the receiver operating

characteristic curve (AUC), accuracy, sensitivity, and specificity were used to

evaluate the performance of the algorithm in identifying MM.
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Results: ResNet50 was selected as the backbone of the SSL-based model

using the PCam dataset. This algorithm then achieved an AUC of 0.981 with an

accuracy, sensitivity, and specificity of 90.9, 85.2, and 96.3% for the patch-level

classification of the ZJU-2 dataset. For WSI-level diagnosis, the AUC, accuracy,

sensitivity, and specificity were 0.974, 93.8%, 75.0%, and 100%, separately. For

every WSI, a heatmap was generated based on the malignancy probability.

Conclusion: Our diagnostic system, which is based on SSL and trained with

a dataset of limited annotation, can automatically identify MM in pathologic

slides and highlight MM areas in WSIs by a probabilistic heatmap. In addition,

this labor-saving and cost-efficient model has the potential to be refined to

help diagnose other ophthalmic and non-ophthalmic malignancies.

KEYWORDS

artificial intelligence - assisted bioinformatic analysis, self-supervised deep learning,
pathology, tumor diagnosis, melanoma

Introduction

Malignant melanoma (MM) is an intractable cutaneous
cancer originating from melanocytes with an extremely high
mortality rate (65% of all skin cancer deaths) (1). Although
eyelid melanoma accounts for only ∼1% of all cutaneous
melanomas, it can camouflage melanocytic nevus (the most
common benign eyelid tumor) both in the naked eye and under
a microscope. Its primary diagnosis and management fall within
the realm of ophthalmology. Despite the similar appearance,
these two tumor types have markedly different biological
behaviors, corresponding to distinct prognoses and treatments.
Therefore, it is critically important to distinguish between the
two diseases (2, 3). Like other types of tumor, the gold standard
for MM diagnosis still relies on manual histopathological
interpretation, which is subjective, laborious, tedious, and
challenging for pathologists and ophthalmologists lacking
experience encountering eyelid melanoma (3). Computer-aided
diagnosis (CAD) in eyelid melanoma cases is urgently needed to
make a comprehensive and objective pathological diagnosis (4).

The advancement of artificial intelligence (AI) technology
has cast light both on natural images and medical areas.
Compared with other fields, the automatic diagnosis based
on histopathological images confronts more challenges due to
the uniqueness of pathological data. Firstly, the digitization of
traditional glass slides needs additional scanning equipment.
Secondly, most pathological images are gigapixels, which are
tremendously large: about 470 whole slide images (WSIs)
scanned at 20×magnification (0.5 µm pixel−1) contain roughly
the same number of pixels as the entire ImageNet dataset
(5). The diagnosis of pathology highly depends on its cellular
characteristics, which means we need to annotate and analyze
at the patch (a small tile cutting from WSI) level first.

Such a procedure requires tremendous annotations by expert
pathologists. Thirdly, based on the incidence of ocular tumors,
the pathology slides are more valuable than fundus images or
optical coherence tomography (OCT) images, which could be
obtained in a routine follow-up. The lack of expertise to make
high-quality annotations further restricted the number of usable
pathology slides.

However, the availability of medical specialists to annotate
digitized images and free text diagnostic reports does not
scale with the need for large datasets required to train robust
computer-aided diagnosis methods that can target the high
variability of clinical cases and data produced. Most previous
attempts in computational pathology are fully supervised
learning studies. The automated system of pathological images
requires a sufficient quantity of images with annotations (6–9).
There are several drawbacks to this procedure. First, collecting
unlabeled digitized slides only needs technicians to scan, but
labeled images need extra experts with many years of medical
education. If unlabeled medical images could be used in deep
learning analysis, the usable datasets could be significantly
expanded. Moreover, the laborious annotation has the potential
to introduce manual label errors, as most current annotations
were carried out at lower magnification.

Moreover, some boundaries of the tumor area are
ambiguous with normal mixed cells and cancer cells, which
even perplexes the annotation process. Last but not least, the
unlabeled images by themselves may still include substantial
clinical information. From the view above, generating a
diagnostic system that can utilize labeled and unlabeled images
may greatly benefit the diagnosis and treatment of the disease.

Self-supervised learning (SSL) is a new type of unsupervised
learning algorithm to extract and analyze features of given data
automatically. SSL has been applied to input data in various
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models, including RGB image (10), videos (11), medical image
(12), mass spectrometry data (13), or multimodal data (14). The
high efficiency of SSL makes it suitable for auxiliary medical
uses. SSL requires only a limited quantity of labeled data and
a relatively abundant quantity of unlabeled data for the machine
to learn features. This perfectly meets the clinical conditions
in which annotating pathological images is laborious, time-
consuming, and probably inaccurate. We generate a diagnostic
system based on Bootstrap Your Own Latent (BYOL), a
new approach to SSL proven to achieve better performance
compared to contrastive methods of other SSL algorithms (15).
Generally, an original gigapixel-level pathological image is too
complex for a deep learning system (DLS) to analyze. Therefore,
we divided images into small patches. After pretreating these
patch-level images, we input the patches of unlabeled images
into the SSL network for extracting features as a pretraining
task. Subsequently, combined with other labeled images, these
learned features are repurposed to improve the classification
of the network and thus increase data utilization. Using a
random forest model, we extrapolated patch-level classification
to whole-slide-image-level classification. Apart from the above,
we also generate a heatmap of pathologic images to interpret the
decision-making process.

This study aims to apply an SSL network to diagnose
and classify MM and non-malignant areas from digital H&E
stained pathological slides. To our knowledge, no other SSL
networks have been used in detecting eyelid melanoma; we
demonstrate the feasibility of using limited labeled data to
establish a reliable eyelid MM detection model and describe a
strategy for highlighting specific areas of concern.

Methods

This study was approved by the Second Affiliated Hospital,
Zhejiang University School of Medicine (ZJU-2) Ethics
Committee (No. Y2019-195) and the study adhered to the
Declaration of Helsinki. In this study, we applied self-supervised
learning to make eyelid melanoma identification. Our algorithm
was first developed and tested in PatchCamelyon and then in
the ZJU-2 dataset. Digitized pathologic images of slides were
cut into small patches. The classification was based on these
patch-level images and then extrapolated to WSIs. Besides, the
algorithm also generated a heatmap to highlight the exact lesion
area in WSI and improve the interpretability of the decision-
making process of our model. The whole study workflow is
summarized in Figure 1.

Datasets

A. PatchCamelyon (PCam): a publicly accessible dataset
containing 327680 annotated color images (96 × 96 pixels)
extracted from histopathologic scans of lymph node sections

(16). The dataset uses agreed-upon metrics widely to compare
different convolutional neural networks (CNNs) as the
backbone. In this study, we used PCam as the benchmark for
our model and compared the performance of our model to
other CNNs or algorithms. The original data of PCam is shown
in Figure 2A. The images were divided into training, validation,
and testing.

B. ZJU-2 dataset: 192 whole-slide images (WSIs) from
formalin-fixed paraffin-embedded (FFPE) pathological slices
(Table 1). We retrospectively included 160 patients from
the Second Affiliated Hospital, Zhejiang University School of
Medicine, between January 2005 and December 2017, without
other types of special selection. All slides were diagnosed by
a minimum of two board-certified pathologists using H&E
staining (if necessary, additional immunohistochemical staining
was used) and traditional microscopy. There was no divergence
in the diagnosis of all samples in this study. A separate
technician working within the pathology department then
scanned the selected slides and digitized these slides into
WSIs at 400-fold magnification using a KF-PRO-005 (KFBio,
Zhejiang, China). The WSIs were divided into four sets:
pretraining, training, validation, and testing set. Besides the
WSIs in the pretraining set, images from the other three
sets were reviewed and labeled by an additional independent
pathologist (>10 years of experience). By using window sliding,
192 whole slide images (WSIs) were cut into a total of 524,307
patches (256 × 256 pixels) for analysis (Figure 2B). The
detailed image data partition is shown in Table 1. It’s worth
noting that only delineated tumor areas of MM slides were
defined as malignant, and other patches were defined as non-
malignant.

Self-supervised learning approach

We used Bootstrap Your Own Latent (BYOL) for learning
features from unlabeled WSIs in this study (15). The study
workflow was shown in Figures 1A–C. The architecture is
shown in Figure 1C. In detail, it consists of two neural
networks: online networks and target networks. It produces two
augmented views (v and v’) from a single image by applying
two different distributions of image augmentations: one with a
random horizontal flip and another with a random horizontal
flip and gaussian blur (t and t’). Two identical CNNs with a
different set of weights then output the representation (y and
y’) and projection (z and z’) through a multilayer perceptron
(MLP). On the online branch, we output the prediction p,
making the architectural asymmetry. After normalizing p and
z’, we defined the mean squared error between normalized
predictions and target projections, thereby generating the loss
(LSSL−linear

θ,ξ ). By reversely feeding t to the target network and
t’ to an online network, we computed the loss (LSSL−linear

θ,ξ ′ ) and

minimized the L2 loss =LSSL−linear
θ,ξ +LSSL−linear

θ,ξ ′ with a stochastic
optimization step, as depicted by the unidirectional gradient in
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FIGURE 1

Study workflow. (A) Pathologic slides were acquired from eyelid tumors and transformed into digitized whole-slide images (WSIs). An
experienced pathologist labeled ∼25% WSIs by delineating the tumor areas in WSIs. (B) Diagnostic system. (a) Pretraining is based on Bootstrap
Your Own Latent (BYOL), a new approach to SSL. Patches from unlabeled WSIs were input into two identical convolutional neural networks
(CNNs) with two different sets of weights for learning features and comparing the outputs with each other as pretraining. A load of learned
image representation was then generated. (b) Training for patch-level classification. Patches from labeled WSIs (training and validation sets)
were input into a CNN for training together with the load from the pretraining round, and training weights were acquired. The diagnostic ability
of patch-level images was evaluated in the testing set. A value of the malignancy probability of every patch is then generated (not shown). (c)
Extrapolation to image-level classification. Patches were embedded back into the corresponding WSIs, and by feeding back the malignancy
probability of every patch, a probabilistic heatmap for WSIs was generated. Based on the predicted patch value, the threshold transformation
was used to extract 31 features. The WSI-level classification based on random forest (RF) was then assigned. (C) BYOL architecture. In 2 CNNs
(fθ and fξ ) with a different set of weights, θ are the trained weights, and ξ is an exponential moving average of θ. At the end of the training,
parameter θ is acquired with the minimum of L2 loss, and y is used as the learned representation—Val, validation; MLP, multilayer perceptron;
MM, malignant melanoma; NMM, non-malignant melanoma.
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FIGURE 2

Data distribution. (A) Detailed data of PatchCamelyon (Pcam). (a) Examples of images in PatchCamelyon. (b) The data of original image
grouping. (B) Dataset of ZJU-2. (a) Examples of pathological digitized WSIs with or without annotations and patches from WSIs. (b) Patches are
divided into four sets: pretraining, training, validation, and testing sets.

Figure 1C. The Adam optimizer is used, and the learning rate
is set as 3e-4. The learning rate of SSL-linear is 0.01, and the
momentum is set at 0.9. Four NVIDIA TITAN Xp GPUs were
used for model training.

Self-supervised learning-linear for
patch-level classification

The self-supervised algorithm needs to use a CNN model
as its base algorithm or backbone. When choosing the
backbone candidates, we took the size of our datasets and
the depth, stability, and memory cost of different CNNs
into consideration when choosing the backbone candidates.
So, we started with five commonly used CNNs (VGG16,
ResNet18, ResNet50, DenseNet121, EfficientNetB7) for initial
fully supervised learning tests in PCam (17, 18). After choosing
the CNN with the best performance as the backbone to
generate the SSL-linear, we moved on to the next experiment
stage–comparing different self-supervised algorithms. The SSL-
linear (No Pre) and SSL-linear (Frozen) methods were used
as control groups to prove that both stages are necessary for
the SSL-linear method. SSL-linear (No Pre) did not undergo a
pretraining process, and SSL-linear (Frozen) froze the backbone
CNN model’s parameters during the training process, which
is a traditional way of self-supervised learning. By comparing

SSL-linear to the traditional classifiers, including ResNet50, SSL-
linear was proved to be valid and feasible for pathological
images. The algorithm was then applied to learn features and
make classifications from patch-level images in four sets of
the ZJU2 dataset.

Model performance was evaluated by accuracy (Acc),
sensitivity (Sen), specificity (Spe), and the κ statistic (Cohen’s
kappa coefficient). For every patch, malignancy probability was
calculated between 0 and 1 (1 refers to definitively malignant
and is presented in red on the heatmap, while 0 refers to
completely NM and is presented in blue) before feeding this
estimate back into the WSI and generating the probabilistic
heatmap for the full WSI.

Feature extraction and
whole-slide-image-level classification
using random forest

The original probabilistic heatmap was reprocessed, and 31
features were extracted, including the number of tumor areas;
the proportion of tumor areas in the whole tissue; the largest
area of the tumor; the longest axis of the largest tumor area; the
prediction value across the tumor areas; the number of positive
pixels; max, mean, variance, skewness, and kurtosis of pixel
numbers in all tumor areas; perimeter, eccentricity, and solidity
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07 in tumor areas (6). These features were then used for WSI-level

classification. The probabilistic input heatmap was a single-
channel image the same size as the original WSI. Each pixel was
refilled based on the prediction results (malignancy probability
between 0 and 1). The 31 tumor features were encompassed
with a threshold of 0.5. For all input objects, pixels greater
or equal to the threshold value were assigned a pixel value of
255, while those below the threshold were set to 0. Following
the extraction of these 31 features, WSI-level classification was
applied. The random forest classifier shared the same training
sets as SSL-linear, but SSL-linear analyzed patch-level images
while the random forest classifier analyzed WSIs. The extracted
31 features with label information were sent into the random
forest model for prediction.

Statistical analysis

In this study, we plotted receiver operating characteristic
(ROC) curves to evaluate the performance of different
classification algorithms. Classification metrics were calculated,
including Acc, Sen, Spe, κ score (Cohen’s kappa), balanced
accuracy (B_Acc), and the area under the receiver operating
characteristic curve (AUC) for each model. B_Acc is more
sensitive to imbalanced data and can be used to address the
inequality between malignant and NM data sets. All statistical
analyses were conducted using the programming language
Python (V.3.5.4).

Results

Classification ability in
PatchCamelyon – the public dataset

In the PCam dataset, ResNet 50 outperformed the other
four commonly used CNNs (VGG16, ResNet18, DenseNet121,
and EfficientNetB7) in the supervised study task (Table 2,
Group 1) and was chosen as the backbone to generate the
SSL-linear algorithm. In the supervised study, among these
5 CNNs, ResNet50 had the highest AUC, 0.950, spe 90.1%,
indicating the best performance. EfficientNetB7 had the highest
Acc 88.4%; B_Acc 88.4%; κ score 0.767; Spe 92.0%. However,
the training time of EfficientNetB7 (83.6 h) is approximately 5.5
times longer than ResNet50 (14.7 h). The volume of parameters
of EfficientNetB7 (63.8 M) is 2.7 times larger than ResNet50
(23.5 M). The long training time and high demand for the
memory capacity of graphical processing units (GPUs) make
it impractical to use EfficientNetB7 in clinical settings. The
comparison experiments of various networks also verified the
rationality of the selection. Second, in a self-supervised study,
we evaluated and compared the performance of SSL-linear and
ResNet50 with different proportions of unlabeled pretraining
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TABLE 2 Results of classification task in Patchcamelyon (PCam).

Pretrain: Train Method Acc (%) B_Acc (%) κ score Sen (%) Spe (%) AUC

Ratio

0:10 (Group 1) VGG16 87.8 87.8 0.755 88 87.5 0.949

ResNet18 85.9 85.9 0.718 82 90 0.929

ResNet50 88.2 88.2 0.765 86.3 90.1 0.950

DenseNet121 87.8 87.8 0.756 85.4 90.2 0.947

EfficientNetB7 88.4 88.4 0.767 84.7 92.0 0.941

Veeling et al. (17) 89.8

Mohamed et al. (18) 89.2

5:5 (Group 2) ResNet50 (No Pre) 84.2 84.2 0.685 84.1 84.4 0.923

SSL-linear (No Pre) 84.8 84.8 0.697 78.4 91.2 0.925

SSL-linear (Frozen) 75.7 75.7 0.514 81.7 69.7 0.828

SSL-linear 86.1 86.1 0.723 82.3 89.9 0.939

7:3 (Group 3) ResNet50 (No Pre) 83.2 83.2 0.664 75 91.3 0.921

SSL-linear (No Pre) 83.8 83.8 0.677 75.4 92.3 0.931

SSL-linear (Frozen) 74.6 74.6 0.493 82.8 66.5 0.82

SSL-linear 85.4 85.4 0.709 82.6 88.3 0.932

The bold term represents the highest score within the same group.

and labeled training sets (Table 2, Group 2 and Group 3).
Notably, the pretraining set was derived from the original
training set in PCam. The single ResNet50 could not perform
self-supervised learning from the pretraining set, so when
we compared ResNet50 with SSL algorithms, ResNet50 only
learned features from the training set, which was identical to
patches in the training sets of other SSL algorithms. The results
presented that in both the 5:5 and 7:3 proportions we used
in this task, SSL linear achieved the best overall performance.
The AUC, Acc, B_Acc, κ score were 0.939, 86.1%, 86.1%,
0.723 for the 5:5 proportion and 0.932, 85.4%, 85.4%, 0.709
for the 7:3 proportion, which were higher than other groups.
It was worth noting that AUC, Acc, B_Acc, κ score, and spe
of SSL-linear in the 7:3 proportion group were higher than
ResNet50 in the 5:5 proportion group, indicating that SSL-linear
utilized less labeled patches but achieved a better performance
than ResNet50. Although the performance of SSL-linear didn’t
exceed that of the other four state-of-the-art supervised learning
algorithms, SSL-linear utilized only half or even less labeled data
to achieve accuracy with a gap smaller than 5%. The results
proved that SSL-Linear was both valid and feasible for patch-
level classification in pathological slide images, even with a
limited amount of labeled data. Detailed information is reported
in Table 2.

Patch-level classification of ZJU-2

The dataset distribution is summarized in Table 1. The
whole set contained 422,168 patches from 120 unlabeled images
and 102139 patches from 72 labeled images. The Acc, B_Acc,
κ score, Spe, Sen, and AUC were calculated to evaluate and

compare SSL-linear and five CNNs (Figure 3). After pretraining,
SSL-linear achieved the best performance compared to five
CNNS with identical training set, indicating the positive effect of
the pretraining round. The Acc, B_Acc, κ score, Sen, and AUC
were 90.9%, 90.7%, 0.817%, 85.2%, and 0.981 for SSL-linear,
higher than other groups. Detailed information is reported in
Figure 3.

Whole-slide-image-level classification
of ZJU-2

In a real-world clinical setting, clinicians worry about the
diagnosis of a certain slide instead of the small patches. Thus,
we evaluated the WSI classification ability of our algorithm
and compared it to five CNNs (Figure 4). The ROC curve was
plotted, and AUC was calculated. The AUCs for SSL-linear,
VGG16, ResNet18, and ResNet50 were 0.964, 0.935, 0.891, and
0.938, indicating that SSL-linear achieved the best performance
in the WSI-level classification task. For 32 WSIs in the testing
set of ZJU-2, SSL-linear failed to diagnose two malignant cases.
Other metrics were calculated: Spe 100%; Sen 75%; Acc 93.8%;
and κ score 0.818.

Visualization heatmap

To address the clinical scenario and increase the
interpretability of the diagnosis results of our algorithm,
we generated a probabilistic heatmap by integrating the
corresponding patches. The melanoma area in the slides was
highlighted red and indicated whether the surgical margin
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FIGURE 3

Comparison of different metrics for SSL-linear and 5 CNNs at the patch-level testing set of ZJU-2. κ, unweighted Cohen’s kappa; Acc, accuracy;
AUC, area under the receiver operating characteristic curve; B_Acc, balanced accuracy; CNN, convolutional neural network; ZJU-2, The
Second Affiliated Hospital, Zhejiang University School of Medicine.

FIGURE 4

The receiver operating characteristic (ROC) curves of SSL-linear and 5 CNNs. Performance of SSL-linear, VGG16, ResNet18, and ResNet50 for
melanoma detection for WSIs from ZJU-2. AUC, the area under the receiver operating characteristic curve; ZJU-2, The Second Affiliated
Hospital, Zhejiang University School of Medicine.
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FIGURE 5

Visualization heatmap of pathological slides based on SSL. (A) The original pathological slide with tumor area delineated (H&E staining, ×40
scanned). (B) Probabilistic heatmap of the tumor slides generated by the algorithm. Red indicates higher malignancy. (C) Overlap of the tumor
slide image and probabilistic heatmap.

was negative. Figure 5 demonstrates how our algorithm
suggests melanoma areas by heightening the malignant zone.
Figures 5A–C represent the original tumor slide image,
the corresponding probabilistic heatmap and the overlap
image, respectively. The overlapping image indicates that the
prediction area of our algorithm corresponds to the delineation
area.

Discussion

In this study, we trained a self-supervised learning model
with a limited number of labeled images and developed a
diagnostic system to detect eyelid MM in pathological slides.
By comparing the classification ability of VGG16 ResNet18 and
Resnet50 in PCam, ResNet50 was selected as the backbone
for our pathologic diagnosis algorithm to generate SSL-linear.
SSL-linear is based on BYOL and requires two identical CNNs
(ResNet50 in this study) with a different set of weights in the
pretraining round. In the patch-level classification task, SSL-
linear displayed higher diagnostic accuracy even with fewer
labeled images than the traditional ResNet50 classifier. We also
introduced two state-of-the-art fully supervised algorithms (17,
18) to compare the performance of PCam. While the algorithms
are closed source and utilize a training set 2 or 3 times larger than
SSL-linear, the performance gap in Acc is relatively acceptable
(< 5%). It is valid and feasible for SSL-linear to make patch-level
classifications in pathological slides. When applying to the ZJU-
2 dataset, SSL-linear also demonstrated high diagnostic ability

with the approximate 4:1 proportion of pretraining (unlabeled)
and training (labeled) set in the patch-level and gigapixel WSI-
level classification tasks. The computing systems that are used
to solve problems in AI are opaque (19). This makes the
diagnosis provided by the algorithm hard to convince both
doctors and patients. To address this issue, we engineered our
system to design a probabilistic heatmap highlighting malignant
areas for pathologists. The emphasis on the area merits extra
attention, and the indication of the negative margin is especially
meaningful in highly lethal cancers like melanoma in our case.

Recently, there has been constant progress in self-
supervised learning methods, such as contrastive learning,
clustering, Simple Siamese networks, BYOL, etc., optimizing the
performance of SSL algorithms and allowing transfer learning
for different tasks (15, 20–22). In the medical field, SSL
has been used to solve different problems with the type of
input data (12, 13, 23, 24). Among these studies, pathological
images have uniqueness for the following reasons. First, the
pathology department encounters a huge quantity of slides,
most of which won’t be scanned to transfer into WSIs. Second,
WSIs are at a gigapixel level with enormous information.
Therefore, making annotations of pathologic slides is laborious,
time-consuming, and requires a strong medical background.
Although some slides were transferred into WSIs, most WSIs
were not labeled; third, histopathological interpretation remains
the gold standard for diagnosing some diseases. Currently,
most research groups focus on improving the accuracy in the
field of automatic pathological diagnosis, and different kinds
of pathological images have been utilized. For instance, Ström
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et al. used labeled biopsy for algorithms to diagnose and grade
prostate cancer (24); Kather et al. used deep learning to predict
whether patients with gastrointestinal cancer respond well to
immunotherapy (25).

Despite various motivations, most studies relied on
sufficient ground truth labels of WSIs, which is difficult to attain
in clinical scenarios. SSL does not require as many labeled WSIs
as fully supervised learning and thus demonstrates the natural
advantages of dealing with WSI’s diagnosis. Some algorithms
based on SSL have been applied to pathology. For example,
Wataru et al. used their SSL-based algorithm to predict the
pathological diagnosis of patients with interstitial lung disease.
The algorithm achieved an AUC of 0.90 in the validation set and
0.86 in the testing set in diagnosing usual interstitial pneumonia
with an approximate 1:2 proportion of pretraining and training
set (4:1 proportion of pretraining and training set in the ZJU-
2 dataset) (26, 27). However, due to the difference in task and
labeling strategies, we cannot directly compare the performance
of our algorithm to other studies.

Moreover, most studies in this field have focused on
predicting common diseases. However, compared with
common diseases, which are more unlikely for pathologists
to misdiagnose, eyelid MM, the less common and dangerous
cancer, presents a more urgent need for automated diagnosis or
auxiliary diagnosis due to the lack of experience in encountering
MM. Besides, our algorithm SSL-linear makes good use
of unlabeled WSIs in reducing the burden of annotation
and enhancing data utilization while achieving considerable
performance in diagnosis.

To the best of our knowledge, it is the first study to
apply self-supervised learning algorithms to ocular pathological
research. With the approximate 4:1 proportion of pretraining
and training set, SSL-linear achieved high accuracy at detecting
MM area both in a patch (98.1%) and at WSI level (93.8%), out-
competing the other five traditional CNNs. SSL-linear shows
considerable diagnostic ability with limited labeled input data,
not only easing the burden of annotating many gigapixel images
but also providing relatively reliable diagnostic support for
pathologists, especially those less experienced. Additionally, our
diagnostic system takes only minutes to generate the output
prediction results together with a clear probabilistic heatmap.
For patients with MM, our diagnostic system can potentially
reduce the probability of misdiagnosis and diagnostic omission,
thus promoting the early treatment of MM. For clinicians, they
could take advantage of telemedicine for rapid intraoperative
consultation feedback. For pathologists, the highly malignant
area indicated by the heatmap is also helpful in writing the
pathological report and confirming the diagnosis.

Furthermore, it could raise the doctors’ awareness of
eyelid MM, a relatively less common cancer with a high
mortality rate, and prioritize samples with higher malignant
potential for senior pathologists. Despite the advantages of
the automatic diagnostic system, human pathologists’ work

is still irreplaceable and has its own superiority. In a real
clinical setting, the challenging cases will be reviewed by
multiple pathologists with the help of immunohistochemistry,
molecular information, or even genetic information in addition
to H&E staining, while the algorithms only make classifications
from the presentation of pathological slides. The primary
purpose of developing a computer-aided diagnosis system is
to assist human pathologists. The implementation of a self-
supervised algorithm not only reduces the annotation burden
and need for pathological expertise but also, which is more
important, increases the data availability of future AI studies.
The self-supervised design makes previously useless unlabeled
data useful in the pretraining stage. It has the potential to
be used in the broadening of disease types (e.g., basal cell
carcinoma, squamous cell carcinoma, etc.) and task types (e.g.,
semantic segmentation of tumor areas in pathologic images
based on SSL). From the technical aspect, the combination
and comprehensive analysis of multimodal data (H&E staining,
immunohistochemical staining, and non-image data like omics
data) will be the future research focus.

Limitations

This study still had several limitations. First, the
performance of the algorithm needed improvement as
there is still a gap when compared to the state-of-the-art
fully supervised learning algorithms. However, to the best
of our knowledge, there has been no previous implied SSL
algorithm to PCam as a benchmark. When SSL-linear was
compared to closed-source fully supervised learning on a
public data set, the performance gap was greatly affected by
the disparity in training set size. In addition, to prove that
SSL-linear achieves better performance than the traditional
CNN, more groups with different proportions of pretraining
and training sets could be organized both in the ZJU-2 data
set and PCam. Second, this study did not include external
validation, partly due to the lack of related case slides and
difficulties in acquiring such pathological images from external.
In the future, the diagnostic ability would be tested on data sets
from independent sources (with different races, ages, etc.) to
prove the generalization ability.

Additionally, the performance difference of the algorithm
could be further investigated based on the above-mentioned
different groups, not just malignant or non-malignant groups.
Third, this study’s total sample size of eyelid MM was relatively
small compared with deep learning studies of other image types.
This is limited by the inherent low incidence of eyelid MM.
Despite this, all pathological slides are at gigapixel size with
large information density and are different from each other;
in other words, a total of 524,307 patches as input is relatively
sufficient for SSL-linear to achieve considerable performance.
Therefore, our sample size is acceptable for a pathological study.
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Finally, our algorithm can only make a binary classification in
this study. In the future, more disease types, including basal cell
carcinoma or squamous cell carcinoma, will be introduced to
validate the expendability.

In conclusion, SSL-linear was generated and demonstrated
considerable performance with higher accuracy than traditional
CNNs in distinguishing between benign and malignant eyelid
lesions. With less labeled input data and an SSL framework,
developing such a diagnostic system is relatively labor-saving
and cost-efficient. The implementation of refined algorithms
could be further applied to help diagnose various ophthalmic
and non-ophthalmic malignancies.
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