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Abstract

Advances in high-throughput sequencing technologies have reduced the cost of
genotyping dramatically and led to genomic prediction being widely used in animal
and plant breeding, and increasingly in human genetics. Inspired by the efficient
computing of linear mixed model and the accurate prediction of Bayesian methods,
we propose a machine learning-based method incorporating cross-validation,
multiple regression, grid search, and bisection algorithms named KAML that aims to
combine the advantages of prediction accuracy with computing efficiency. KAML
exhibits higher prediction accuracy than existing methods, and it is available at
https://github.com/YinLiLin/KAML.

Introduction
In the past decade, genome-wide association studies (GWAS) have provided unprecedented
insights into the genetic mechanisms of complex traits [1]. With the advances of high-
throughput sequencing technologies, the increasing availability of genetic data from existing
association studies has led to a growing interest in the selection of traits in livestock and
plants, as well as the prediction of disease susceptibility in humans. Over the past 10 years,
genomic selection has been applied to several major livestock species and has more than
doubled genetic progress in some; it has become an essential tool for livestock breeding
programs [2]. For plant breeding, genomic selection is anticipated to facilitate
commercialization of improved genotypes at shorter intervals of time than phenotypic se-
lection. For example, the selection cycle for palm oil breeding has been reduced from 19 to
6 years [3, 4]. In humans, genomic prediction for risk of diseases could be utilized to evalu-
ate the effectiveness of disease prevention strategies tailored according to the individual
level of projected risk. It is, therefore, no surprise that genomic prediction for risk of dis-
eases will be one of the key tools in the health care of humans in the near future [5, 6].

A commonly used model is known as linear mixed model (LMM), commonly imple-
mented as genomic best linear unbiased prediction (GBLUP), which involves solving mixed
model equations (MME) that incorporate the inverse of a genomic similarity matrix, in
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order to obtain predictions of the corresponding random effect. Its simplest form assumes
that all single nucleotide polymorphisms (SNPs) contribute to the heritability of traits, in
that all SNPs come from the same one normal distribution [7, 8]. However, this can limit
the prediction accuracy of LMM, especially in cases where a trait is controlled by several
major genes. To better fit those large effects, alternative Bayesian framework-based methods
have been proposed, which include BayesA, BayesB, BayesLASSO, etc. [9, 10]. These
methods allow different SNPs to have their own independent variances that follow a specific
distribution (e.g., the inverse chi-square distribution). Furthermore, these Bayesian models
may assign the SNPs into a mixture of different groups where each group comes from the
same normal distribution, which reduces the computational complexity of the model by de-
creasing the number of parameters to be estimated. For example, BSLMM assumes a mix-
ture of two normal distributions, which allows an additional variance for a subset of SNPs
compared with LMM [11]. BayesR assumes a three-component normal mixture together
with a group of zero variance [12], which accommodates SNPs with large, medium, small,
or no effect. A Bayesian non-parametric model, named Dirichlet process regression (DPR),
assigns SNPs into more groups with an assumption of a x-component normal mixture
where x refers to an unlimited number; however, it showed no significant increase in predic-
tion accuracy compared with BayesR [13]. Typically, the unknown parameters of Bayesian
models are estimated and optimized by a Markov Chain Monte Carlo (MCMC) procedure.
Although the prediction accuracy of Bayesian methods outperforms LMM in the majority
of cases [14], the substantial computational burden of the MCMC procedure means ana-
lyses take a long time, and also, it can be difficult to choose the right model for any given
trait whose genetic architecture could never be known in practice.

Computational efficiency is an important requirement for the application of genomic
selection and genomic prediction (GS/GP) in practice, which often precludes the applica-
tion of Bayesian methods, and has led to LMM becoming one of the most widely used of
the GS/GP methods. Moreover, including the most significant SNPs or the verified QTLs
as covariates in the LMM improved the prediction accuracy [15, 16], but the phenotypic
variance explained (PVE) by those SNPs or QTLs was limited and false positive associa-
tions cannot be avoided. Many researchers have attempted to weight the SNPs to con-
struct a trait-specific genomic relationship matrix (Kinship), such that the optimized
random effect enables LMM to be as accurate as Bayesian methods [17-19]. However,
any noisy SNP may dilute the effects of causal SNPs in only one random effect.

More recently, a LMM methodology that incorporated multiple random effects was
proposed. SNPs can be classified into groups using GWAS results or biological infor-
mation, such as the annotation of SNPs, which include coding, intronic, and intergenic,
leading to the simultaneous fitting of separate random effects derived from each of the
different groups of SNPs. The LMM with multiple random effects improved the predic-
tion accuracy when the effect size variances differed markedly across the groups [20,
21]. However, the SNPs within each group still contribute equally to each random ef-
fect, which potentially limits the prediction accuracy. The principle of SNP classifica-
tion was too uncontrollable to achieve stable performance among different species [13].
In addition, the efficient and accurate estimation of variance components of many ran-
dom effects typically represents a significant challenge.

Inspired by the high prediction accuracy of a SNP-weighted strategy and efficient cal-
culation of LMM, here, we present a Kinship-adjusted-multiple-loci (KAML) linear
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mixed model, which is a flexible modeling framework that generalizes the LMM to ac-
commodate traits with various types of genetic architectures by incorporating pseudo
quantitative trait nucleotides (QTNs) as covariates and a SNP-weighted trait-specific Kin-
ship as the variance-covariance assumption corresponding to the random effect term. The
selection of pseudo QTNs and SNP weights are optimized by a machine learning proced-
ure combining cross-validation, multiple regression, grid search, and bisection algorithms.
Similar to the regular LMM, KAML fits a single random effect and maintains the comput-
ing efficiency. Differently, KAML picks up the SNPs with big effects as covariates and sim-
ultaneously gives larger weights to SNPs with moderate effects and smaller weights to
SNPs with little or no effects as it constructs the Kinship matrix.

We first applied KAML to the seven human diseases that comprise the Wellcome
Trust Case Control Consortium (2007) (WTCCC1). Compared with LMM, BSLMM
[11], and BayesR [12], KAML performed similarly to the Bayesian methods and signifi-
cantly outperformed LMM for most of diseases in terms of the prediction accuracy.
Taking advantage of parallel computation, the running time of KAML was several or-
ders of magnitude faster than that of BSLMM or BayesR. Afterwards, we evaluated the
stability of all the methods mentioned above using data from real cattle, horse, and
maize experiments. The results indicated that KAML was the most stable method in
terms of the prediction accuracy. Finally, we demonstrated that KAML still performed
well when it was assigned prior to calculated model parameters, and this made KAML
as efficient as regular LMM, while generating significantly higher prediction accuracy.

Results

We evaluated KAML using both simulated and real datasets. To assess the prediction
accuracy, each dataset was repeatedly split randomly into a reference sample that con-
tained 80% of individuals and a validation sample that contained the remaining 20%.
This procedure was repeated 20 times to evaluate the performance of accuracy and sta-
bility, but we ensured that the validation sample remained the same for all methods
that were compared. The prediction accuracy was quantified with Pearson’s correlation
coefficient or AUROC (area under the receiver operator characteristic curve) for con-
tinuous traits or binary traits, respectively [22].

The methods that we compared with KAML included (1) the linear mixed model
(LMM) referred to as GBLUP, where all SNPs were assumed to contribute equally to the
Kinship matrix [23]; (2) Bayesian sparse linear mixed models (BSLMM), which assumed
the effects of SNPs followed a mixture of two normal distributions, one with a smaller
variance and one with a larger variance, which combined the advantages of both regular
LMMs and sparse regression modeling [11]; and (3) BayesR, which assumed that the SNP
effects followed a mixture of four zero mean normal distributions with a fixed variance
for each mixture component, was flexibly adapted to traits underlying various types of
genetic architectures [12]. Note that both BSLMM and BayesR have been demonstrated
recently to outperform a range of existing prediction methods; thus, we did not exhaust-
ively include other prediction methods into comparison in our study [13].

For quantifying computing efficiency, we did not personally adjust the settings of all
methods and we simply used the defaults. The number of total/burn-in MCMC iterations
was 1000,000/100,000 and 50,000/20,000 for BSLMM and BayesR, respectively. The par-
ameter optimization procedure of KAML was sped up using parallel computing, and the
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computational resources were assigned automatically according to the number of real-
time computational tasks, such as the number of SNPs to be tested, population size, and
the cross-validation number for optimizing the unknown parameters of KAML. There-
fore, the number of threads that was used for speeding up KAML was not constant but
varied from 1 to 132 on our server. The computing efficiency of KAML was tested on the
Microsoft R Open (MRO, https://mran.microsoft.com/open) platform instead of the base
R (https://www.r-project.org/), and multi-threads were assigned automatically to speed up
the mathematical calculations by Intel Math Kernel Library (Intel MKL), which included
matrix multiply/inverse and matrix decomposition. The computation time results pro-
vided a rough guide to the relative computational burden of different methods.

Simulation studies

First, we demonstrated the flexibility of KAML compared with a regular LMM. To be
as realistic as possible, we simulated phenotypes of three scenarios in heritabilities of
0.2, 0.5, and 0.8 with different groups of SNPs corresponding to various genetic archi-
tectures that used the genotypes of the WTCCCI dataset. Phenotypes were simulated
by adding the additive genetic effect values and residual effect values as described in
previous studies [24—26]. We considered three scenarios of genetic architectures for
simulating the additive genetic effects: (1) a large group of 10,000 SNPs with small ef-
fects that followed a normal distribution with a mean value of 0 and a variance of
0.005, representing the “polygenic component”; (2) in addition to the polygenic archi-
tecture in scenario 1, we added a small group of 10 SNPs with large or moderate effects
that followed a normal distribution with a mean value of 0 and a variance of 0.1, repre-
senting the “pseudo QTNs (pQ)”, where the “polygenic component” and “pQ” contrib-
uted equally to the genetic variance; and (3) only “pQ” in scenario 2 was simulated,
which represented the “major genes.” For each combination of heritability and scenario,
20% random selected phenotypes were marked as missing and treated as the validation
dataset. The Pearson correlation coefficients between the additive genetic values and
predicted values in the validation dataset were calculated, and the mean values of 100
replicates were used to quantify the prediction accuracy.

Figure 1a shows the achieved models of KAML that can be applied to various types
of qualitative or quantitative traits that underlie different genetic architectures. A total
of five types of models can be switched flexibly in KAML: (1) regular LMM (Kj), (2)
LMM with SNP-weighted Kinship (K,,), (3) LMM with pseudo QTNs as covariates and
standard Kinship (pQ+K,), (4) LMM with pseudo QTNs as covariates and SNP-
weighted Kinship (pQ+K,,), or (5) linear model with pseudo QTNs as covariates (pQ).
Figure 1b summarizes the prediction accuracy performances of LMM and KAML
(Additional file 1: Table S1). For scenario 1, the two methods performed similarly with
respect to the prediction accuracy, and as we expected, 89%, 69%, and 67% of the
KAML models switched to “K” for the heritability of 0.2, 0.5, and 0.8, respectively
(Additional file 1: Table S2), indicating that the hypothesis of LMM was suitable for
polygenic traits. Although KAML tended to select the “pQ+K” model with an increase
in heritability, it made no meaningful difference to the prediction accuracy due to the
low proportion of phenotypic variance that was explained by the selected pseudo
QTNs. Compared with scenario 1, a small number of SNPs were simulated with large
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Fig. 1 a Summary of the achieved models in KAML. Five types of models could be flexibly switched to fit
the hypotheses of various types of traits underlying different genetic architectures. The pQ is the pseudo
QTNs, K; is the standard Kinship, and K, is the SNP-weighted Kinship. b The prediction accuracy
performances of LMM and KAML on simulated traits. The x-axis indexes the simulation scenarios on
different levels of heritabilities. The y-axis indexes the Pearson correlation coefficients between predicted
values and additive genetic effects values in the 20% randomly selected validation dataset for LMM
(colored in red) and KAML (colored in blue) across 100 replicates. For each box, the middle line (colored in
black) represents the average value, the bottom and top represent the standard deviation, and the top and
bottom whiskers represent the maximum and minimum values, respectively

or moderate effects in scenario 2, but the performance of LMM was not improved with
the increased number of genetic variants with large effects; accordingly and impressively,
there was a significant improvement for KAML when either fitting the optimized pseudo
QTN as covariates or a SNP-weighted Kinship as random effect term, indicating that the
strategy of KAML worked correctly. For scenario 3, KAML was far superior to LMM and
the results showed that 98%, 96%, and 89% of the models in KAML switched to “pQ” for
the heritability of 0.2, 0.5, and 0.8, respectively (Additional file 1: Table S2).

To verify its performance, we next compared KAML with GBLUP, BSLMM, and
BayesR for three complex traits in three scenarios with heritabilities of 0.2, 0.5, and 0.8,
respectively. We simulated the additive genetic effects of the traits that were controlled
by 10 SNPs with large effects that were distributed as N(0, 0.1), 1000 SNPs with moder-
ate effects that were distributed as N(0,0.01), and 10,000 SNPs with polygenic effects
that followed a normal distribution with a mean value of 0 and a variance of 0.005. We
implemented the experiments on chromosome 1 of the WTCCCI1 dataset with 20 repli-
cates for each scenario [27], and the predictive accuracies are reported in Additional file
1: Table S3 of the supplementary materials. We found that KAML significantly outper-
formed LMM for all scenarios and performed slightly better than Bayesian models. Fur-
thermore, we evaluated the methods above using a public dataset that was simulated as
part of the 16th QTL-MAS Workshop (http://qtl-mas-2012.kassiopeagroup.com/en/
dataset.php) [28], and this data has been used widely in comparisons of the perform-
ance of alternative methods [19, 29, 30]. The dataset included 1000 reference individ-
uals in each of the first three generations and 1000 validation individuals in generation
four. The genotype data had five chromosomes, and each chromosome was simulated
with 2000 SNPs. Three traits were simulated and, for each trait, 50 SNPs were ran-
domly selected as QTLs, while their effects followed a gamma distribution (shape par-
ameter = 0.42, scale parameter = 5.4) [19]. The additive genetic effect values for all 4000
individuals were used to assess the prediction accuracy. The results in Table 1 demon-
strate the performance of the four methods in terms of prediction accuracy and com-
puting time. For all traits, LMM generated the lowest prediction accuracies compared
with the other methods. KAML performed slightly better than BSLMM and BayesR,
and the final confirmed models of KAML were all of the form “pQ+Kw,” consistent
with the simulated genetic architectures. Taking advantage of the parallelized computa-
tion, KAML was hundreds of times faster than BSLMM or BayesR.

By choosing the most appropriate prediction model, pseudo QTNs, and optimizing a
SNP-weighted Kinship in a cross-validation process, KAML had the potential to change
the model hypothesis according to the data feature automatically, and it can be adapted
to a wide range of traits underlying various types of genetic architectures. Furthermore,
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Table 1 Prediction performance in simulated public dataset

Traits/COR"l"D Methods

(time in h) LMM BSLMM BayesR KAML

T1 0732 (0002) 0791 (3875) 0795 (0.782) 0.801 (0038)
2 0771 (0002) 0831 (4483) 0832 (0.714) 0.843 (0043)
T3 0758 (0.002) 0827 (4721) 0.832 (0.740) 0.832 (0.039)
Average 0.754 0816 0.820 0.825

COR?®: The Pearson correlation coefficient between predicted values and additive genetic effects values. The reference
dataset included 3000 individuals and 1000 validation individuals
(Time in h)®: The computing time is recorded in hours

KAML could significantly shorten the computational effort without sacrificing predic-
tion accuracy. In practice, we will never know the real genetic architecture in advance,
which makes the stable performance of KAML very appealing.

WTCCC1 data

In addition to the simulated data, KAML was also evaluated using the real published
data from human, cattle, horse, and maize experiments. We firstly assessed the per-
formance of KAML for seven disease traits from the Wellcome Trust Case Control
Consortium (WTCCC1, https://www.wtccc.org.uk/) [31]. When comparing the per-
formance of methods on binary disease traits (cases 1, controls 0), we treated the
phenotypic records as continuous variables following previous studies [11, 21, 32], and
the predicted values were then considered to be the probability of being the case. The
WTCCC1 dataset included about 1400 cases and 2938 shared controls, and all individ-
uals were genotyped for about 450,000 SNPs. The seven diseases were bipolar disorder
(BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT),
rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D).

The information from the GWAS results was used to select the pseudo QTNs and to
optimize the SNP weights in KAML. Various statistical models have been utilized to de-
tect the trait-associated SNPs [24, 26, 33, 34], and results varied in different datasets. The
rank and the significance of SNPs in the results obtained by different statistical models
may potentially affect the processes of selecting pseudo QTNs and optimizing Kinship in
KAML. Therefore, we compared the prediction accuracy of KAML when using a general
linear model (GLM) or a mixed linear model (MLM) for the GWAS procedure; the Man-
hattan plot from GLM can be found at Additional file 1: Fig. S1. Benefiting from the com-
bination strategies of grid search, bisection method, and cross-validation, we found that
there was no significant difference between those two association test models in any of
the WTCCCI datasets (Additional file 1: Table S4). Consequently, we recommended the
GLM because it generated similar prediction accuracy, but ran much faster than MLM. In
addition, we obtained a slight improvement in prediction accuracy when we increased the
number of cross-validation replicates, but this resulted in an increased computational bur-
den (Additional file 1: Table S4). It is often necessary to balance prediction accuracy per-
formance and computational efficiency accordingly.

We next compared the prediction accuracy performance of KAML with that of
LMM, BSLMM, and BayesR. Table 2 reports the prediction accuracy performances of
those models using WTCCC1 datasets. Here, we conducted KAML using GLM and a
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Table 2 Comparison of prediction accuracy performances of LMM, BSLMM, BayesR, and KAML by

using seven case/control diseases in the WTCCC1 dataset

Traits/ Methods

AUROC LMM BSLMM BayesR KAML

CAD 0586 (0.0043) 0599 (0.0041) 0.602 (0.0039) 0600 (0.0041)
HT 0.597 (0.0038) 0596 (0.0038) 0596 (0.0041) 0594 (0.0038)
2D 0600 (00032) 0618 (00032) 0.620 (0.0034) 0618 (00031)
BD 0641 (00033) 0641 (00034) 0.647 (0.0033) 0638 (0.0035)
e 0628 (0.0039) 0669 (00041) 0668 (0.0046) 0.669 (0.0039)
RA 0614 (00034) 0704 (00032) 0708 (0.0033) 0.717 (0.0037)
T1D 0646 (0.0045) 0858 (0.0019) 0861 (0.0018) 0.862 (0.0019)
Average 0616 0669 0672 0671

Prediction accuracy performance was measured by the area under the ROC curve (AUROC). For prediction assessment,
total samples were split to two subsets: 80% of the samples were used as the reference dataset and 20% were used as
the validation dataset; the procedure was repeated 20 times; and the mean AUROC values and standard deviations of
each trait are shown in the table

4*5 cross-validation procedure (5-fold cross-validation repeated four times) to estimate
the unknown parameters for traits. We found that KAML performed as well as
BSLMM and BayesR for all diseases, and it outperformed LMM for most diseases,
which was consistent with the simulation. In particular, KAML outperformed BSLMM
and BayesR for three diseases (CD, RA, and T1D) where a small number of relatively
strong associations were identified in the original study [31]. Moreover, KAML,
BSLMM, and BayesR performed slightly worse than LMM for HT and BD, as we ex-
pected, and no pseudo QTNs were selected as covariates in KAML for those two dis-
eases (Additional file 1: Table S7), which indicated that both traits were polygenic, and
all markers contributed very little to the traits and matched the marker effect size dis-
tribution hypothesis of LMM, which was consistent with the situation that no signifi-
cant associations were detected (Supplemental Fig. 1). However, we noted that none of
the methods could be competitive for all traits, since the genetic architecture was more
complex than implied by the models [35].

Table 3 reports the average computing time of LMM, BSLMM, BayesR, and KAML
in hours. LMM was the most efficient model due to its simple hypothesis for all traits.
Benefiting from the parallel computing design, KAML was computationally very effi-
cient, and the computing time was several orders of magnitude lower than BSLMM
and BayesR. The computing time for both BSLMM and BayesR varied with the com-
plexity of the architectures of traits, polygenic traits required much more time to reach
convergence. Because only two groups of SNP effects were assumed in BSLMM instead
of four in BayesR, as well as an improved parameter sampling strategy for fast conver-
gence, BSLMM was faster than BayesR for most of the traits.

Cattle/horse/maize

In addition to the WTCCC1 dataset, we assessed the prediction accuracy performance
of LMM, BSLMM, BayesR, and KAML using datasets of multiple species, including ani-
mal (cattle and horse) and plant (maize) populations. Details about the population size
and available SNPs were described in the Data Quality Control section. Seven traits
were used for performance tests: four of which were quantitative traits, including milk
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Table 3 The computing performance tests of LMM, BSLMM, BayesR, and KAML methods by using
the WTCCC1 dataset

Traits/ Methods

time LMM BSLMM BayesR KAML
(hours)

CAD 001 (0.00) 13.78 (2.55) 44.93 (2.45) 030 (001)
HT 001 (0.00) 27.15 (5.25) 42.83 (2.46) 032 (0.02)
T2D 001 (0.00) 3811 (6.15) 4585 (2.17) 032 (001)
BD 001 (0.00) 235 (6.26) 4021 (2.26) 035 (0.03)
cD 001 (0.00) 56.55 (5.02) 32.87 (0.80) 035 (001)
RA 001 (0.00) 385 (027) 3322 (0.78) 040 (0.00)
TID 001 (0.00) 598 (027) 3423 (1.02) 04 (0.00)
Average 001 2413 39.16 035

Computing performance tests were conducted in a Red Hat Enterprise Linux sever with 2.20 GHz Intel(R) Xeon(R) 132
CPUs E7-8880 v4, and 2 TB memory. The computing time records and the standard deviations are described in Table 2.
The computing performances of BSLMM and BayesR methods were tested using their default settings

fat percentage (mfp), milk yield (my), somatic cell score (scs), and growing degree days
(gdd), and three were qualitative traits, including coat color, yellow or white kernels
(ywk), and sweet or starchy kernels (ssk). Considering the situation that inbreeding may
increase false positive associations in GWAS due to cryptic relationships among indi-
viduals (e.g., a population includes a parent with a large number of progenies in the
population [36]), the GWAS model was switched to MLM in KAML for animal and
plant datasets, and a 1*5 cross-validation procedure was used to reduce computational
effort. Figure 2 shows the prediction accuracy performances of the four models (Add-
itional file 1: Table S5).

For the cattle data, BayesR outperformed the other methods for traits mfp and my,
while KAML performed best for trait scs. For the horse data, as the provided phenotype
from the publishers were already coded as 1, 2, 3, and 4 for corresponding colors be-
lieved to result from three known coat color loci that included MCIR (chestnut),
STX17 (gray), and ASIP (agouti, black/bay) [37], we used the original phenotype as a
continuous trait to run all software directly to make fair comparisons. From the results,
we found that both KAML and BSLMM performed better than BayesR, and most of
the selected models in KAML were “pQ” (Additional file 1: Table S7), suggesting that
the coat color was influenced by a small number of SNPs with large effects, which mis-
matched the hypotheses of the four marker effect distributions of BayesR, and this
maybe a reason that BayesR took a long time to reach MCMC convergence and per-
formed much slower than BSLMM for this trait (Fig. 3). For maize data, KAML per-
formed the best among the four methods. Strangely, BayesR performed abnormally for
traits ywk and ssk when using the default number of MCMC iterations.

Our previous study showed that when the marker density was increased, MCMC-
based methods required more iterations to reach convergence and to obtain reliable
prediction values. In order to figure out the problem, we designed a series of gradients
of total iteration numbers to track trends in predictive performance. As shown in Add-
itional file 1: Fig. S2, when the total number of iterations reached 200,000, BayesR
tended to perform as accurately as BSLMM, suggesting that BayesR required more
MCMC iterations for the traits ywk and ssk. On the contrary, BSLMM performed well
at a low number of MCMC steps. For these three traits, the performance declined
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continuously for BSLMM with an increase in total iteration number, that because
BSLMM is the combination of the LMM and BVSR [38, 39], and the MCMC procedure
of BSLMM for estimating the unknown parameters started at the values derived from
LMM, so its performance was similar to LMM when the total MCMC iteration number
was small, the dropped accuracy is caused by the mismatch of genetic architecture be-
tween the hypothesis and the analyzed traits. Therefore, it is a challenge for MCMC-
based methods to determine the appropriate number of total MCMC iterations to
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ensure an accurate and stable prediction performance for traits with unknown genetic
architectures. On the whole, KAML performed stably for all traits of multiple species,
indicating that the hypothesis of KAML had the potential to be adapted to a wide range
of genetic architectures. Additionally, KAML was roughly 100-300 times faster than
BSLMM or BayesR (Fig. 3 and Additional file 1: Table S6). Moreover, KAML could be
accelerated by more computing resources.

Predicting with pre-optimized parameters for KAML

The most time-consuming part of KMAL is for the estimation of variance components in
the cross-validation procedure. Although the procedure can be sped up by parallel com-
putation, it is still a challenge when dealing with big datasets with limited computational
resources. In fact, it is not necessary for KAML to re-optimize the weights of markers re-
peatedly for the same trait when the dataset reaches a “sufficient” size, since the contribu-
tions of common SNPs could be captured easily without a very large population [23]. To
verify this assumption, we implemented a further experiment using all the datasets men-
tioned above on KAML and compared its prediction performance with LMM. We ran-
domly selected half of the total individuals only once, and then we ran KAML to obtain
all model parameters (model type, pseudo QTNs, a, and B, for details, see the “Methods”
section) by a default setting of KAML for each trait. Then the optimized parameters were
directly used in KAML to evaluate the prediction accuracy performance using the same
replicates above. Note that an extra GWAS within reference subset for each replicate
needed to be done to calculate the Kinship matrix with the known & and 3, but the time-
consuming cross-validation procedure was excluded. Compared with optimizing the un-
known parameters adaptively every time, this saved a great deal of time.

Figure 4 reports the predictive performances of LMM and KAML (Half, Adaptive).
We found that the Half performed even better than Adaptive in some traits (coat
color, ywk) but performed similarly in most cases (Additional file 1: Table S8). It was
quite clear that both Half and Adaptive performed significantly better than LMM. This
result indicated that it was not necessary to re-optimize the unknown parameters for
KAML when the population size was increased slightly. Especially in animal breeding,
the unknown parameters of KAML could be renewed weekly or even annually, which
makes the computational complexity of KAML closer to LMM and could save much
time in practice (Additional file 1: Table S9).

Predicting by integrating KAML into SSBLUP

It is always difficult to genotype all individuals with phenotypic records for a large popula-
tion. Therefore, a single-step BLUP (SSBLUP) [40, 41] method was developed to utilize
the pedigree information, genotype information, and phenotype information simultan-
eously to estimate individual genetic values. It has become the most widely used model in
livestock breeding programs due to its high predictive performance [42]. The SNP-
weighted Kinship matrix from KAML can be directly integrated with SSBLUP to con-
struct a trait-specific mixture relationship matrix for all available individuals. Using the
simulated data in the 16th QTL-MAS Workshop, which contained pedigree information,
we compared the prediction accuracy performances of PBLUP (with the relationship
matrix derived from pedigree information only), LMM (with the relationship matrix
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Fig. 4 The comparison of prediction accuracy performances of LMM and KAML. The performance was
measured by the AUROC and Pearson correlation for the datasets of human and other species, respectively.
Half represents that KAML randomly selected only half of the total individuals to optimize the model
parameters; Adaptive represents running KAML on the entire dataset, and the parameters were optimized
for each replicate. For each boxplot, the middle line represents the average value, the bottom and top are
the standard deviation, and the upper and lower ends of each box represent the maximum and
minimum, respectively
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derived from genotype information only), SSBLUP (with the relationship matrix derived
from information of both pedigree and genotype), KAML (with SNP-weighted Kinship
matrix derived from genotype information only and incorporating the pQs as covariates),
and SSKAML (with weighted Kinship matrix derived from information of both pedigree
and genotype) methods. The comparative results are shown in Table 4 and indicated that
the SSKAML outperformed SSBLUP and LMM methods for both non-genotyped and ge-
notyped individuals. It was noted that the KAML outperformed SSKAML for the geno-
typed individuals in terms of prediction accuracy; one potential reason was that the pQs
were incorporated as covariates in the KAML model, which is unachievable for SSKAML
due to the absence of genotypes for non-genotyped individuals. The results highlighted
the potential of KAML in the application of genomic selection.

Discussion and conclusion

Because of the flexible hypotheses, Bayesian methods are well known for their high pre-
dictive accuracy. A large number of unknown parameters, including thousands or even
millions of marker effects, should be estimated. The complex posterior distributions
and computational complexity of traditional multiple integrals limited the implementa-
tion of Bayesian methods. The problem was solved after the MCMC method was intro-
duced to Bayesian statistics. However, the effects of millions of markers can need a
large number of MCMC iterations to reach convergence of the posterior means and
the iterations cannot easily be accelerated by parallel computing, which limits the prac-
tical application of Bayesian methods. In contrast, the LMM efficiently predicts

Table 4 The comparison of prediction performances on the 16th QTL-MAS Workshop dataset

Traits/ Non-genotyped (n = 100) Genotyped (n = 1000)

accuracy: pgLUp  SSBLUP  SSKAML  PBLUP LMM SSBLUP KAML SSKAML
I 07823 08648 08819 04549 07317 07322 08011 0.7969
T 07954 08726 08901 05331 07708 07707 08433 08378
iE 07401 08238 08418 04704 07581 07579 08324 08262

PBLUP pedigree information-based BLUP method, LMM genomic information-based BLUP method, SSBLUP single-step
BLUP method. For SSBLUP, the weight of pedigree-based relationship matrix for genotyped individuals was 0.05. The
diagonal and off-diagonal of both pedigree and genomic relationship matrices were adjusted to the same scale
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individual genetic values using the relationship information, and all markers are assumed in
a sense to contribute equally to the construction of Kinship matrix. The marker contribu-
tion can also be weighted under the LMM framework, but this makes the modified LMM
face the same problem as Bayesian methods—a large number of unknown parameters need
to be estimated. KAML adopted a machine learning procedure combining cross-validation,
multiple regression, grid search, and bisection algorithms for unknown parameter estima-
tion to solve the problem and reduce thousands or millions of unknown parameters to two
(a and f3), which can be combined with the marker p value from GWAS results to weight
the marker contributions. Compared with MCMC, the machine learning procedure can be
accelerated with parallel computing and is much more efficient.

Marker effects and p values were reported to be used to weight the marker contribu-
tions in modified LMM to improve the prediction accuracy [43]. In KAML, we used the p
value, which represented how significant the genetic marker was associated with the ob-
jective trait. It should be pointed out that there are two potential concerns for integrating
GWAS results to improve the predictive accuracy. The first is that LD between genetic
markers and causal mutations are usually different between the training subsets and indi-
viduals to be predicted. In our implementation, the genetic markers were tested x times,
where x is the number of significant detections in a bootstrap strategy-based GWAS from
the cross-validation procedure. The bootstrap strategy resampled the individuals a num-
ber of times to reduce the effect of population-specific LD to some extent, which filtered
the pseudo QTN that were far from the causal mutations. The problem could be avoided
to some extent by the increasing marker density and number of repeats in the cross-
validation procedure. The second problem was that the p values were different when the
genetic markers were tested by different GWAS methods. It is challenging to know how
to assign appropriate weights of genetic markers using the p values from different GWAS
methods to obtain a robust predictive accuracy. In KAML, two parameters, which in-
cluded the base value of logarithmic function of p values and the percentage of top signifi-
cant genetic markers to be weighted, were optimized in a combined method of grid
search and bisection to eliminate to some extent the effect of the p values in terms of ab-
solute value. However, this does not mean that GWAS methods do not affect the predic-
tion accuracy. A GWAS method with higher statistical power for a given false discovery
rate will certainly provide a better p value rank of genetic markers to improve the predic-
tion accuracy compared to using an under powered GWAS.

In either selection of pseudo QTNs or construction of the SNP-weighted Kinship, the un-
known parameters were optimized by the machine learning procedure combining cross-
validation, multiple regression, grid search, and bisection algorithms. The number of folds
(s) and repeats (v) in the cross-validation procedure influence the prediction accuracy. It
was difficult to determine s and v, and appropriate sets were related to the size of reference
population and the genetic architecture of the objective trait. In this study, we found that
more repeats improved prediction accuracy of KAML, but significantly increased computing
time. Therefore, we recommend setting the number of repeats according to the data size
and computing resources. With the help of the cross-validation strategy of machine learning
procedure, KAML can switch automatically to five types of models (Fig. 1a). Hence, it has
the potential to adjust the model hypothesis based on features of the data, and it can be
adapted to a wide range of genetic architectures. With the advantage of an efficient paralle-
lized parameter optimization procedure, KAML is computationally efficient and roughly
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hundreds of times faster than BSLMM and BayesR methods, as well as other MCMC-based
methods, while generating similar or better predictive performance.

The usage of pedigree information can sometimes be limited in plants and humans due
to incomplete pedigree records or small family sizes and in plants due to novel modes of
reproduction, such that the single-step strategy is currently only used widely in livestock
breeding. We compared the integrated prediction accuracy of combining SSBLUP with
KAML. In practical breeding, SSKAML with pre-estimated parameters led to a higher
prediction accuracy compared with SSBLUP and maintained the advantage of computing
speed. It highlighted the great potential of KAML in its application of genomic selection.

Functional annotations, reported QTLs, Encode, etc. can be used as prior knowledge to
weight the contributions of genetic markers in the prediction model. With the increasing
number of publications reporting research for complex diseases, prior knowledge will be
enriched by advanced statistical analyses and integrating this information would poten-
tially improve the prediction accuracy. However, it is difficult to evaluate the reliability of
prior knowledge, and directly incorporating the information in the prediction model is of
high risk. Therefore, we recommend utilizing prior knowledge in the GWAS model in-
stead of directly increasing the weights of genetic markers. The machine learning-based
parameter optimization procedure would help to assess the top significant genetic
markers of GWAS results and to evaluate the prior knowledge indirectly, and this enables
KAML to provide a robust prediction accuracy performance.

In conclusion, aiming to exploit the advantages of both prediction accuracy and comput-
ing speed, we proposed a machine learning-based method combining cross-validation, mul-
tiple regression, grid search, and bisection algorithms named KAML. The new method
incorporates pseudo QTNs as covariates and a trait-specific random effect term under the
LMM framework and provides a flexible assumption to accommodate traits of various gen-
etic architectures. We demonstrated the reliability and robustness of KAML by both rigor-
ous simulations and real data analyses. We recommend the use of KAML in practice
because of its high prediction performance and advanced computing efficiency. The KAML
method is implemented in an easy-to-use software tool that is freely available to the public.

Methods

KAML is a flexible model that extends LMM by integrating pseudo QTNs as covariates
and an optimized trait-specific random effect. All unknown parameters are optimized
by machine learning procedure combining cross-validation, multiple regression, grid
search, and bisection algorithms. The pseudo QTNs are derived from a multiple regres-
sion model-based selection procedure, and random effect relevant unknown parameters
(e.g., the weights of SNP markers) are optimized by combining grid search and bisec-
tion algorithm. Here, we firstly provide a brief overview of LMM, and then give the de-
scription of theoretical differences between LMM and KAML.

Linear mixed model

The standard LMM assumes that y, which is the phenotypic records for # individuals,
follows a normal distribution, and its variance is influenced by effects from both hered-
ity and environment. The LMM model can be described as:
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y = Xb + Zy + with yu~N (0, I(G:,) and e ~ N (0, 16%), (1)

where b is a vector of the estimated effects of the fixed covariates with the corre-
sponding coefficient matrix X; y is a vector of random effects, which represents the in-
dividual genetic values with the corresponding variance-covariance matrix K that is
also defined as genomic relationship matrix; e is the vector of residual effects; I is an

identity matrix; and aé and ag are the estimated genetic variance and residual variance,

respectively. The genetic relationship between individuals i and j is calculated as: [23]

k=1 2P1< —Pk) ’

where m is the number of markers, M is the numerical genotype matrix (AA, AB,
and BB genotypes are coded as 0, 1, and 2, respectively), and p is the frequency of the
coded allele. The genetic values of all individuals including observed and non-observed
phenotypic records can be derived by the following equation:

u=KZ"V(y-Xb) (3)

where b= X"V X)) (X"Vly) and V = ZKZT 0} + Io?.

Machine learning determined parameter optimizations (KAML)

The LMM assumes that all available SNPs contribute equally to the Kinship matrix.
This limits its prediction accuracy, especially in cases that the objective traits are con-
trolled by several major genes. Therefore, KAML extends Eq. 1 to include n covariates
Qs Qy ..., Q,, which are derived from a multiple regression model-based selection
procedure, and a SNP-weighted Kinship (K;,), which is optimized by the combination
of grid search and bisection algorithm:

y=Xb+Qq+Zu" +ewith y*~N (o,KWag) and e ~ N (0,102, (4)

KAML firstly integrates some major SNPs into the model as covariates to capture
some of the genetic variance, then optimizes a SNP-weighted Kinship for the random
effect to make a better explanation for the remaining genetic variance. The derivation
of weighting SNPs in constructing Kinship matrix is described in the paper published
by Su et al. [43] and can be formulated as follows:

(Mi=2p,)§ (Mix=2py)

K= o )

where ¢ is the weight of kth SNP. In contrast to previous studies, we propose a more
flexible and robust weighting strategy with fewer unknown parameters to be estimated;
the weight & is derived from the following equation:

1 i 1-B
fk | ((X,/))) ~ { 1+ logapmﬁ_ logapk; ﬁ (6)

where P is the ordered p values of all SNPs from GWAS result, a is the base value of
logarithmic function, and f3 is the percentage of top significant SNPs to be weighted. If
S equals 0, Eq. 5 will switch to Eq. 2. It can be simplified as:
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Mu-2p;) ( log,Ppp— log,Pi) (Mj—2py)
2p,(1-py.)

1 —mp (

Ky =K+ Zk:l (7)

As shown above, this could be computed on-the-fly with a subset instead of all SNPs.

Unlike LMM, the estimated genetic values of KAML include two parts: the first part is
the fixed effect and the second part is the random effect:

W =Qq+K,Z"V'(y-Xb-Qq) (8)

As described above, the key steps of KAML are identifying the SNPs with large effects
and estimating the unknown parameters a and f3 efficiently. KAML achieves those two
goals by a machine learning procedure, which includes multiple regression for pseudo
QTN selection and grid search, bisection algorithms for trait-specific weighted Kinship
matrix, and cross-validation, which is considered to be one of the most powerful and
accurate methods in parameter estimation [44]. Compared with MCMC procedures
which are commonly used to estimate parameter in Bayesian methods, the machine
learning procedure can be readily accelerated by parallel computation. Hence, the en-
tire procedure of KAML includes two stages: (1) a training stage, which is used to ob-
tain the optimal parameters from the reference population including all individuals
with phenotypic records, the reference population set is partitioned for cross-fold in-
ternal validation to tune the parameters in KAML, and (2) a prediction stage, which
predicts the genetic value of each individual without phenotype by the optimal parame-
ters obtained from the training stage.

Genome-wide association study

A genome-wide association study is the prevailing method for detecting candidate genes
underlying traits and has successfully detected substantial numbers of variants that are as-
sociated with human diseases and agricultural economic traits. For the trait to be pre-
dicted, GWAS is a powerful tool to capture its genetic architecture, as the p values
provide information for the downstream model optimization of KAML. Define s as the re-
peat number and v as the fold number of cross-validation procedure. For each replicate,
the individuals with non-missing phenotype are equally divided into v groups, GWAS is
conducted v times by using the data of randomly combined v - 1 groups, and the data of
the left-out group is used as validation subset for the parameter optimization.

The pseudo QTNs derived by multiple regression

It is very sensitive to integrate the pseudo QTNs (pQ) as covariates, because a false posi-
tive can significantly decrease the prediction accuracy; therefore, we cautiously constitute
a rigorous strategy to reduce the risk of selecting false positives. First, we order the p
values from small to large. Second, filter the ordered SNPs by linkage disequilibrium (LD)
at a threshold of 0.3. Third, simultaneously pick up the top #n pseudo QTNs to ensure
valuable signals of multiple peaks can be captured. Finally, we repeat the first three steps
in a s » v cross-validation procedure. The bootstrap strategy is used to measure the robust-
ness of SNP association [45]. GWAS is conducted s = v times in total, and the SNPs that
are counted more than s = v = 90% times are considered as pQ for downstream multiple re-
gression analysis. It should be noted that the number of pQ (n) is never known; a smaller
number may lead to losing pQ and a greater number would result in more calculation



Yin et al. Genome Biology (2020) 21:146 Page 17 of 22

burden. Fortunately, the setting of # slightly affects the prediction accuracy as the weights
of lost pQ could be enhanced in the SNP-weighted procedure, and the default setting of n
is set to 15.

The LD between genetic markers and causal mutations may be different in the refer-
ence and validation populations, and this will increase the risk of false positive associa-
tions due to limited marker density. In order to reduce this type of false positive
associations, pQs are added as covariates in LMM one by one without replacement and
validated to determine whether they can help the model to improve the prediction ac-
curacy in a cross-validation procedure. The pQs are simultaneously validated in three
types of models: “K” (LMM), “pQ+K” (pQ are incorporated as covariates in LMM), and
“pQ” (pQ is incorporated as covariates in GLM), and a series of models are generated.
The reliability of each pQ is validated by its average prediction accuracy in a s = v cross-
validation procedure, and the equation can be written as:

S*V

o ZAqik
Ag =1 9)
SxV

where A, is the accuracy of ith pQ for kth cross-validation; it should be pointed out
that two methods, including Pearson correlation and area under the receiver operator
characteristic curve (AUROC), are implemented in KAML to compute the prediction
accuracy; KAML will automatically switch to use AUROC when the phenotype is coded
in two levels by 0 and 1, and to use Pearson correlation for other cases. The AUROC is
calculated under the guidance of the paper published by Wray et al. in 2010 [22]. It is
defined as follows:

1 Ny 1
AUROC = (rd——d——) (10)

where N, and N, are the numbers of diseased and not diseased individuals, respect-
ively, and 7, is the mean rank of the diseased individuals. 4, is the average accuracy of
ith pQ. Let A, refer to the average prediction accuracy of LMM. The maximum predic-
tion accuracy values of three types of models are compared to decide the final predic-
tion model type for the application stage. The pQ under the condition of
Zq,q < Zqi&Zo < qu_ will be selected as the effective pQ in the application stage.

The SNP-weighted Kinship optimized by grid search and bisection algorithms

If the confirmed model of multiple regression is not “pQ,” a combination strategy of grid
search and bisection methods, which are used to derive a SNP-weighted Kinship, will be
conducted. To start the grid search procedure, start values should be provided for un-
known parameters a and f3, respectively. By default, KAML provides the start values of a;,
g, ..y Ay and Sy, fo, ..., P2 as (1.01, 1.11, e, 10) and (0.0001, 0.001, 0.01, 0.1), respectively,
where e is the base of natural logarithm. The SNP-weighted Kinship can be constructed
following Eq. 6 by using the corresponding GWAS results from cross-validation, and then
the prediction accuracy performances of combinations Agp ,Aa g, - Awp,>Aapy s

Ag,.p,, Will be recorded for s+ v times in the cross-validation procedure, and the average

prediction accuracy of different combinations of « and 5 can be calculated as:
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_ ZA“ikﬁfk
Aup, = 1 (1)
S¥V

where Ag,p, is the accuracy of the combination of ith a and jth B at the kth cross-
validation. Agp, is the average accuracy of the combination of a and . The combina-
tions of a and f5 are the intersection points of black solid lines shown in Fig. 5.

The point with the maximum prediction accuracy value Aus in the grid search pro-
cedure (the hollow ring in Fig. 5) is assigned to be the start of bisection procedure. In
order to avoid multiple peaks around A.g, we reset two levels at the midpoint on both
sides of @ and 8. Let ¢, , ¢, and ¢Z>1 , ¢[§2 be the reset values for a and f3, respectively

(the intersection of dotted line in Fig. 5):

U<%, ¢ +2¢i+1 =1
((l);, ¢/§)€¢* ~fx) =4 u ¢i-12+ ¢i7¢i +2¢i+1 d<i<n (12)
u<¢i12+ b , 3¢i_2¢i1> =7

where U is the uniform distribution and i is the iteration number of bisection proced-
ure. Similarly, we predict the individuals in validation dataset to get the average accur-
acy A¢;1/31 ’Ad);lﬁz 714(1):;‘2& ’Ad);z/”z
Subsequently, stepping to the next iteration with the newly updated ¢, , ¢, and d);;l,

by Eq. 8 and we select the maximum value K(p;ﬁ.

¢;§2, which are defined by Eq. 12. The iteration procedure will continue until the max-
imum number of iterations is reached or the difference of prediction accuracy values
between the last two iterations is less than a pre-set threshold, e.g., 10e™>.

Once the iteration procedure stops, we compare the Z% and A, to determine

whether the SNP-weighted Kinship could help to increase the prediction accuracy. If
Z% < Ay, the optimizations will be given up, and KAML uses the standard Kinship

without weighting any SNPs. On the contrary, if the optimizations are validated to be
effective, then KAML will construct the SNP-weighted Kinship using the optimum
combination of a and S.

Prediction for application stage

If the final prediction model is selected to be “pQ,” the individual genetic values will be
directly predicted by LM with the selected pQ. If not, an extra GWAS needs to be con-
ducted for the entire reference population, or we merge the bootstrap GWAS results of
cross-validation by mean, then a SNP-weighted Kinship matrix can be computed using
the optimum combination of «a, 3, and the GWAS results, which finally will be applied
to predict the individual genetic values.

Dataset

The WTCCC1 data includes approximately 14,000 cases from seven common diseases
and 2938 shared controls, and all individuals were genotyped at about 450,000 SNPs.
Following previous analyses of the datasets [12, 21], we removed SNPs using PLINK
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Fig. 5 lllustration of grid search and bisection algorithm in SNP-weighted Kinship optimization. The ovals
are contour line, and the smallest circle at the center is the optimum combination of a and 8 in theory. A
combination strategy of grid search and bisection methods are used to search the optimum combination
of a and B. In order to avoid multiple peaks around the maximum value in each iteration, four points are
set on both sides (x- and y-axes) instead of one. The iteration procedure will be stopped until the
maximum number of iterations is reached or the difference of prediction accuracy values between the last
two iterations is less than a pre-set threshold, e.g,, 10e™

[46], with either minor allele frequency (MAF) < 0.01, or genotype call rate (CR) < 0.95,
or p value < 0.05 from Hardy-Weinberg equilibrium (HWE) test. After being filtered, 1868
cases and 373,369 SNPs of bipolar disorder (BD), 1926 cases and 372,541 SNPs of coron-
ary artery disease (CAD), 1748 cases and 374,113 SNPs of Crohn’s disease (CD), 1952
cases and 373,338 SNPs of hypertension (HT), 1860 cases and 373,056 SNPs of rheuma-
toid arthritis (RA), 1963 cases and 372,964 SNPs of type 1 diabetes (T1D), and 1924 cases
and 373,149 SNPs of type 2 diabetes (T2D) remained for prediction performance tests.

The cattle dataset was a German Holstein genomic prediction population comprising
5024 bulls [19]. All bulls were genotyped with the Illumina Bovine SNP50 Beadchip [47].
After removing the SNPs with either HWE p value < 10™* or CR <0.95 or MAF <0.01, a
total of 42,551 SNPs remained for the downstream analysis. The estimated breeding
values of three traits were available and used in this study: milk fat percentage (mfp), milk
yield (my), and somatic cell score (scs). The three traits may represent three types of gen-
etic architectures composed of (1) one or several major genes and a large number of loci
with small effects (mfp), (2) a few moderate effect loci and many small effect loci (my),
and (3) many loci with small effects (scs).

The maize data consisted of 2279 inbred accessions and three traits, including two
case/control traits: yellow or white kernels (ywk) and sweet or starchy kernels (ssk),
and one quantitative trait: growing degree days (gdd). A total of 681,257 SNPs across
all maize lines were obtained with genotyping by sequencing (GBS) [48]. After remov-
ing SNPs with either MAF <0.01 or CR <0.95, 314 controls, 1281 cases, and 631,413
SNPs for ywk; 2490 controls, 141 cases, and 633,754 SNPs for ssk; 2279 individuals and
631,674 SNPs for GDD remained in this study [49].

The horse data included 14 domestic horse breeds and 18 evolutionarily related spe-
cies. In total, 480 horses were genotyped with a designed ~ 54,000 SNP assay. A total of
50,621 SNPs was available after removing the SNPs with MAF < 0.01, CR <0.90, and p
value < 0.001 from the HWE test. The trait was coat color, which contained 4 levels of
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classified variables, and it was previously reported to be regulated by a major gene on
chromosome 3 [37].
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