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Abstract
Radiotherapy (RT) datasets can suffer from variations in annotation of organ at
risk (OAR) and target structures.Annotation standards exist,but their description
for prostate targets is limited. This restricts the use of such data for supervised
machine learning purposes as it requires properly annotated data. The aim of
this work was to develop a modality independent deep learning (DL) model for
automatic classification and annotation of prostate RT DICOM structures.
Delineated prostate organs at risk (OAR), support- and target structures (gross
tumor volume [GTV]/clinical target volume [CTV]/planning target volume [PTV]),
along with or without separate vesicles and/or lymph nodes, were extracted as
binary masks from 1854 patients.An image modality independent 2D Inception-
ResNetV2 classification network was trained with varying amounts of training
data using four image input channels. Channel 1–3 consisted of orthogonal 2D
projections from each individual binary structure. The fourth channel contained
a summation of the other available binary structure masks.Structure classifica-
tion performance was assessed in independent CT (n = 200 pat) and magnetic
resonance imaging (MRI) (n = 40 pat) test datasets and an external CT (n = 99
pat) dataset from another clinic.
A weighted classification accuracy of 99.4% was achieved during training. The
unweighted classification accuracy and the weighted average F1 score among
different structures in the CT test dataset were 98.8% and 98.4% and 98.6% and
98.5% for the MRI test dataset, respectively.The external CT dataset yielded the
corresponding results 98.4% and 98.7% when analyzed for trained structures
only, and results from the full dataset yielded 79.6% and 75.2%. Most misclas-
sifications in the external CT dataset occurred due to multiple CTVs and PTVs
being fused together, which was not included in the training data.
Our proposed DL-based method for automated renaming and standardiza-
tion of prostate radiotherapy annotations shows great potential. Clinic spe-
cific contouring standards however need to be represented in the training data
for successful use. Source code is available at https://github.com/jamtheim/
DicomRTStructRenamerPublic
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1 INTRODUCTION

The use of artificial intelligence (AI) and machine learn-
ing for radiation oncology enable automation and opti-
mization of the clinical workflow. Deep learning (DL)
is a machine learning technique which has gained a
lot of attention in the last years due to leaps in image
classification performance1 and segmentation.2 Sev-
eral reviews on the use of AI and DL for radiotherapy
(RT) applications have been written.3–11 The most pop-
ular applications have focused on automatic structure
delineation,automatic treatment planning,and synthetic
computed tomography (CT) generation.3,12

Delineation of organs at risk (OAR) and targets
has traditionally been performed in a manual, time-
consuming manner which is associated with intra-
and inter-observer variability.13–15 DL-based segmen-
tation can improve consistency and efficiency,16–19

can produce segmentations with clinically acceptable
quality,20,21 and has outperformed previous atlas-based
solutions.16 Training of robust and generalizable super-
vised DL models relies on correctly annotated ground
truth training data (RT structure annotation labels) and
sufficient clinical heterogeneity.3 A standardized nomen-
clature for the RT structures is essential for all types
of automatic data extraction to facilitate model develop-
ment or data analysis.11,22–24 Collection of high quality
annotated clinical data from one or multiple clinics can
be cumbersome if an RT structure name standardiza-
tion is non-existing.24,25

To exemplify, “FemoralHead_R,” “caput dx,” “caput
dx1,” and “avoid dx,” were different names for the
right femoral head structure found in our clinical
data. Similar examples for other structures have been
presented.22,23,26–28 To mitigate and avoid such anno-
tation problems, a comprehensive naming schema has
been presented by the American Association of Physi-
cists in Medicine (AAPM) Task Group 263 (TG-263).24

Swedish University Hospitals aim to follow the naming
standard defined in Santanam et al25 and ICRU29 and
has been documented in detail.30,31

An excellent example of inferior auto segmenta-
tion performance as a function of increasing noise
in annotation labels is provided by Yu et al.32 Data
cleaning, renaming, and quality control (QC) are there-
fore required for creation of high quality datasets
aimed for machine learning.33 This can be heavily time
consuming,34 and it is estimated that a dominant part of
the research time is spent on data cleaning.35 Automa-
tion of this process would therefore be highly beneficial,
and several previous methods have been presented.
The use of text-based logic to capture and correct varia-
tions in structure names has shown good results.30,34,36

However, it can be difficult to maintain and support such
logic,especially if adaptations to data from multiple insti-
tutions or languages are needed, or if the naming con-
vention changes over time.23,25–27,34 An extensive work

using DL natural language processing on text labels
to possible mediate such problems was performed by
Syed et al23 for prostate and lung. However, the use of
text-based methods only accounts for semantic differ-
ences in the label names and blindly assumes the delin-
eation data of the RT structure to be representative and
correct.

Further, existing naming conventions for prostate
targets do not contain information whether multiple
anatomical targets are included within the same target,
i.e. is it only prostate gland or gland including seminal
vesicles or/and lymph nodes.24,25,31 To conclude, exist-
ing naming conventions do not offer data granularity to
a level needed for the above purposes, and text-based
approaches might be limited in its potential. This highly
motives the development of image-based methods for
RT structure classification.

Previous image-based attempts using machine
learning methods for lung and heart have been
presented.22,28 Studies using DL image classifica-
tion using convolutional neural networks for head and
neck26,27,37 and prostate26,27 have also been presented.
However, recent studies have focused on OAR classifi-
cation only26,37 and ignored the target structures, where
classification has been pointed out as a challenging
task.26 Further,CT images were required as model input
in most of the existing image-based methods,22,26,28,37

thereby excluding data from novel magnetic resonance
imaging (MRI) only treatment planning techniques.38–40

By extending upon previous studies, the aim of this
work was to focus on developing, evaluating, and verify-
ing an open-source image modality independent super-
vised DL model for automated renaming and standard-
ization of clinical prostate cancer RT structures. The
objectives of the model were to classify several OAR,
support structures, a gross tumor volume (GTV) target
structure, the clinical target volume (CTV) and planning
target volume (PTV) for multiple different targets, both
pre- and post-operative. QC mechanisms for the struc-
ture classification were implemented, and the effects of
varying the amount of training data and model input
were investigated.

2 METHODS

2.1 Description of datasets

CT and MRI images with DICOM structure delineation
data for retrospective prostate cancer patients were
automatically extracted from the clinical treatment plan-
ning system (Eclipse v.15.6, VARIAN, Palo Alto, CA,
USA) at the Department of Hematology, Oncology and
Radiation Physics at Skåne University Hospital, Lund,
Sweden, using Eclipse scripting application program-
ming interface. Extracted patients with conventional CT
had received external beam RT treatment between
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2016-01-01 and 2020-08-19 using volumetric modu-
lated arc therapy (VMAT). No selection of specific
prostate targets was performed and thereby included
prostatectomized patients and patients with prostate
gland, with or without involvement of the vesicles and/or
iliac lymph nodes. Structure delineations were based on
Gay et al,41 and delineation of the prostate bed was per-
formed according to Poortmans et al.42 Structure tem-
plates were used during initial creation of the structures,
and most of them had separate CTVs and PTVs.

Patients contoured on MRI images originated from
a previous prostate MRI only treatment study,39 where
MRI data were converted to synthetic CT data for the
purpose of VMAT treatment planning to the prostate
gland only. The dataset contained two CTV structures
per patient where one of the CTVs had 1 mm extra mar-
gin (excluding cranio-caudal extension). All CT and MRI
patient target delineations were performed in VARIAN
Eclipse by oncologists and organ at risk (OAR) delin-
eation was performed by oncologists and dosimetrists.

Additional inclusion criteria used for patient selection
were the number of RT fractions ≥6 with a fractional
dose of >1.8 Gy. Actions were taken to assert data
integrity for CT, MRI, and RT structures. This resulted in
a CT-based cohort of 2054 subjects with mean age of
70.4 ± 6.2 (1 SD) (41–87 years) (n = 2054). The MRI-
based cohort was based on 40 subjects with a mean
age of 71.1 ± 5.6 (1 SD) (49–81 years) (n = 40).

An additional dataset from the RT clinic at Umeå Uni-
versity Hospital, Umeå, Sweden was available through
a common collaboration.The dataset contained DICOM
CT images and RT structure delineation data from 99
prostate cancer patients (one patient had two scans)
who received external beam RT treatment between
2011 and 2017. Target volumes were represented by
prostate gland, vesicles, and lymph nodes. Unlike the
data from Skåne University Hospital, the CTV and PTV
target volumes commonly included multiple structures in
a variety of boolean combinations, for example,prostate
gland + vesicles + lymph nodes or vesicles + lymph
nodes. Another difference was the addition of prostate
gland boost volumes, multiple other OARs, and a sup-
port structure. These differences constituted in a total
of 11 additional structure types, when compared to the
datasets from Skåne University Hospital. The mean age
of all subjects was 69.3 (54–83) years (n = 99). The
treatment planning system used to create the data was
Oncentra External Beam (v.4.5.2, Elekta, Stockholm,
Sweden).Throughout this study, the authors have aimed
to fulfil the checklist for AI in medical imaging described
in Mongan et al.43 The study was funded by Skåne Uni-
versity Hospital, Lund, Sweden and the Swedish gov-
ernment innovation agency VINNOVA, supporting the
ASSIST project with Grant No. 2019–04735. Ethical
approval was defined within the ASSIST project frame-
work (Application 2020-02009, Swedish Ethical Review
Authority).

2.2 Creation of datasets

Two hundred subjects (10%) were randomly selected
from the Skåne University Hospital CT cohort of 2054
patients, further referred to as the CT test dataset, leav-
ing 1854 subjects to train the model on, further referred
to as the training dataset. The 40 patients with MRI
are referred to as the MRI test dataset. The Umeå
clinic dataset was accompanied with a verified ground
truth and was used as an external, second test dataset,
referred to as the Umeå test dataset.The three (CT,MRI,
and Umeå) test datasets were never used in model train-
ing or optimization.

The data contents of the delineated structures in the
training dataset,described in Table SA1,were verified by
a licensed medical physicist. Two hundred ninety misla-
beled structures were detected and recorded together
with corrections in a separate comma-separated value
(CSV) text file, referred to as the class label correction
file. A verified ground truth was thereby established for
the training data. The structure content of the CT and
MRI test dataset was manually analyzed by a licensed
medical physicist after model inference. The structure
content is presented in Table SA1.

The clinical structure names, description for the train-
ing and test data, and the class label definition used
in this study are shown in Table SA1. Structure names
beginning with the text “Tuning,”“Help,”“X,”“Y,”“Z,”“Dose,”
or “Match” (any letter case) were identified using text-
based label rules and are in this work referred to as
optimization structures. Such structures are used to
shape the dose distribution, optimize, and individualize
the treatment plan.

2.3 Data preprocessing

The training dataset was constructed by converting each
delineated RT structure for each subject to a 3D binary
mask NiFTI file44 (background = 0, foreground = 1)
using the Python package dcmrtstruct2nii (v.1.0.19).45

The input to dcmrtstruct2nii required both CT files and
an RT structure set.CT data were therefore extracted for
this purpose; however it was not used during any model
training.

The DL model was designed to use four different
2D images as the input data, supplied as four differ-
ent image channels. Three images were defined by a
transversal, coronal, and sagittal 2D projection of each
individual RT structure 3D binary mask volume, referred
to as projection data, that is, each RT structure in each
subject produced three projection images. The projec-
tion data pixel values were determined by summing up
the voxel’s values (0 or 1) that fell in the way of parallel
rays traced from the viewpoint to the projection plane,
and the sum was truncated to a maximum value of 1,
generating a 2D binary mask. The projection data were
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F IGURE 1 Volume rendering of binary 3D body mask data from
a male pelvis. 2D binary transversal, coronal, and sagittal slices from
the 3D binary mask are shown at the body mask center of mass
point (left column) together with calculated 2D projection data (right
column).

equivalent to a 2D shadow from a 3D object, where
the area within the shadow boundary was assigned
the value 1 and all other values 0 (Figures 1 and 2).
This allowed some of the 3D structure information to
be condensed into three 2D images. The fourth image
consisted of a weighted sum of all other available RT

structure binary masks from the subject and is further
referred to as the AddMap.Optimization structures were
ignored in the above image generation processes.

The AddMap was created to provide the neural net-
work with spatial information regarding the surrounding,
that is, location of other structures and the body con-
tour. Further, it was hypothesized that it could facilitate
differentiation between CTV and PTV structures. The
AddMap was created as a 2D image and saved as a
NiFTI file. The slice location was determined at the cen-
ter of mass for the structure of interest. The weights for
other binary masks in the summation were 0.1 for the
BODY and 0.2 for all other structures,not to be confused
with class label weights in Table SA1. Signal summa-
tion in the AddMap was truncated to the maximum pixel
value of 1 (Figure 2). Creation of AddMap is similar to
the method used by Rozario et al.27 but extended to con-
tain signal truncation. Examples of projection data and
AddMap for multiple structures can be seen in Figure 2.

To enable faster data access during model train-
ing, the NiFTI structure data were read, down sam-
pled to 256 × 256 using nearest neighbor interpolation
and stored in an HDF5 database.46 Data were stored
together with the class label according to Table SA1
using an anonymized subject ID. Any deviation in the
training data RT structure names, recorded in the class
label correction file (see “creation of datasets”), were
accounted for, and the class label was corrected. To
minimize central processing unit (CPU) strain and max-
imize graphics processing unit (GPU) training utiliza-
tion, projection and label data were saved as int8. The
AddMap was saved as float32. The structure volume
from the original data was calculated before resampling
and stored together with its class label in an additional
HDF5 database.The volume measure was only used for
QC purposes, and not as model input.

2.4 Model training, optimization, and
inference

2.4.1 Model training

An InceptionResNetV2 model47 was selected from
Keras in the Tensorflow framework (v.2.2.0, Google).48

The InceptionResNetV2 model has 164 layers and uti-
lizes inception modules,49 a rectified linear unit (ReLU)
activation function,and residual connections.50 The neu-
ral network layer weights were randomly initialized as
prescribed by Keras default, and the model was trained
using supervised classification, utilizing a softmax clas-
sifier in the last layer. A weighted categorical cross
entropy loss function was used during model training to
accommodate class label imbalances, originating from
differences in number of available structures for each
class in the training data (Table SA1). The class weights
were calculated as a balanced distribution using the
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F IGURE 2 Input images to the model as projection data for transversal, coronal, and sagittal views together with corresponding AddMap for
described organs at risks and targets. AddMap was created from a weighted sum over all other radiotherapy (RT) structures in the center of
mass transversal slice of the organ of interest. As an example, the prostate gland CTV structure is shown in row 3 where the corresponding
PTV structure can be seen in the prostate gland CTV AddMap. Due to the added margin, the planning target volume (PTV) is larger than the
clinical target volume (CTV). The reverse relationship for the AddMap holds for the prostate gland PTV structure in row 4. These relationships
were used to supply the neural network with intra- and inter-structure spatial and geometric information. Further on, an elective lymph node CTV
structure is shown in row 5 where the corresponding PTV can be seen in the AddMap with a “U” shape. The CTV structure does not show the
“U” shape seen in the AddMap PTV due to the construction of projection data, populating voxels within the “U” shape. Images originate from the
same patient and have been rotated and/or flipped for improved viewing. Individual gray scales were applied to AddMap in the figure to visualize
each organ, actual pixel values were assigned in the same way for all individual structure AddMap.
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Python package Scikit-learn,51 that is, the inverse of the
label frequency distribution was used as weights (Table
SA1). Adaptive moment estimation (Adam) was chosen
as an optimizer with a learning rate of 0.001.52 A learn-
ing rate decay factor of 0.2 was applied if no change
in validation accuracy was detected within 10 epochs.
The output of the network consisted of a probability
given for each defined class, and the largest probabil-
ity defined the determined class. The model was trained
using 10-fold cross-validation (90% training, 10% val-
idation data), where data were separated on subject
level.

Dataset generation, calculations, and model training
were performed on a system equipped with an AMD
Ryzen Threadripper2 2990 WX 64 thread CPU, 128 GB
RAM and two NVIDIA TITAN RTX GPUs running Ubuntu
18.04.3 with CUDA version 10.1 and NVIDIA driver ver-
sion 440.82. Source code and software documentation
used to preprocess data or to perform model training
and inference is available on GitHub at https://github.
com/jamtheim/DicomRTStructRenamerPublic.

2.4.2 Investigation and optimization of
model parameters and input data

Investigated parameters for model training were batch
size, number of epochs, learning rate, and number of
input image channels. Model optimization was guided
by maximizing the class weighted (by class frequency)
classification accuracy in the validation dataset. This
metric was reported through Tensorboard in Tensorflow
which also provided guidance to avoid model overfitting
for all experiments.48 A text file, containing the number
of failed structures per class was created with evalua-
tion results after 100 epochs to identify difficult classes.
The final model parameters were set to batch size 72,
100 epochs and the previously defined learning rate
schedule. To investigate the model performance with
respect to training data volume, different models were
trained with final model parameters using 10-fold cross-
validation using 10%, 25%, 50%, 75%, and 100% of
the available training data. Furthermore, the impact of
including or excluding AddMap images as a model input
was investigated by calculating the error rate in prostate
gland CTV and PTV classification (class label 11 and
12 in Table SA1) on validation data using 100% of the
training data. For the above experiments, data were ran-
domly selected on subject level,and the weighted classi-
fication accuracy on validation data was evaluated.Note
that the cross-validation splits were different between
different fractions of training data but were the same
within experiments for a specific fraction. To further val-
idate that the final model focused on relevant features
in the input data and to provide model explainability,
channel-wise guided Grad-Cam53 saliency maps were
calculated.54 The maps were Z-score normalized, and

data within ±2 standard deviations from the mean were
selected,masked with the binary structure,rescaled,and
overlaid on the input data. The saliency maps showed
the most influential pixel areas for determining the class
label.

2.4.3 Test dataset inference and QC

Data from the test datasets were loaded directly from
its DICOM format, and the same preprocessing pipeline
was used as for the training data. In summary, struc-
tures were converted to projection data, and AddMap
was created to define a four-channel input to the neu-
ral network. The volume of each structure was recorded
but not used as model input.The optimization structures
were ignored using name text logic mentioned in section
“creation of datasets,” and empty structures were also
ignored.

Inference on the test dataset using the CPU was per-
formed using the final model for each cross-validation,
that is, every structure was exposed to 10 inference
models. A majority vote among the class label output
from the 10 models was performed, and the final class
label decision was established (Figure 3, “Inference”).
The original structure name and final class label were
recorded in a results CSV text file.

QC of the final class label was performed using three
different methods, and if any method detected QC devi-
ations, a QC flag was raised and recorded in a CSV
text file, and no further QC mechanism was executed.
Firstly, the structure volume was confirmed to be within
the 1st and 99th percentile of the training data vol-
ume distribution for the same class label. Secondly, the
number of agreeing models was confirmed to be no
less than six models. This was performed to ensure
that a substantial number of models gave the same
output. A third check was performed to confirm if the
mean probability of the established class label among
the majority voting models was below 0.7. A low prob-
ability score could indicate that the model was pro-
vided with an input on which it had not been trained
(Figure 3, “QC”).

As a final step, the established final class label was
translated to a descriptive structure name defined in
this study (Table SA1), and the structure name was
changed in a copy of the original RT structure DICOM
file using the Python package Pydicom.55 Hence, after
model inference, a new RT structure DICOM file with
edited structure names was written, but no image data
were altered.Prior to the above-mentioned process,pre-
scribed dose values to target structures were extracted
from the original label name and added to new struc-
ture name.Data integrity and validity of the produced RT
structure files were confirmed for one subject by import-
ing it and the corresponding CT image volume to VAR-
IAN Eclipse.

https://github.com/jamtheim/DicomRTStructRenamerPublic
https://github.com/jamtheim/DicomRTStructRenamerPublic
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F IGURE 3 A block diagram of the method workflow. The inference compartment contains the necessary steps for extracting and
preprocessing the DICOM radiotherapy (RT) structure data. Data are then provided to the cross-validation models, and a majority vote among
the models is used to decide the final structure label and name. A new structure name is written to a copy of the RT DICOM structure header
(black box). The quality control compartment contains the quality control mechanisms, providing a quality control flag for each structure after
inference (black box)

2.5 Model performance evaluation

The performance of the final model was assessed on all
test datasets (CT, MRI, and Umeå) by a licensed med-
ical physicist manually comparing the result from the
inference on each structure with respect to the geomet-
ric content of the ground truth. For all test datasets, an
additional result analysis was performed, where certain
structures were not accounted for, as their class was not
included in the training of the final model. This will fur-
ther be referred to as using uncleaned and cleaned data,
respectively, and only impacted the result analysis.

To provide a detailed view of the model perfor-
mance, the classification metrics precision, recall, and
F1 score for each class label were assessed in each
test datasets together with global unweighted average
(macro avg) and weighted average (weighted avg) per-
formance measures using the Python package Scikit-
learn.Weighting was performed with respect to the class
label frequency given in the “number of structures” col-
umn of respective result table. The classification preci-
sion, recall, F1 score, and accuracy of the QC method
were also assessed for each dataset. Definitions of
these metrics are found in supplementary material.

3 RESULTS

3.1 Model training and data input
dependency

Training of each fold in the cross-validation for the final
model with 100% of the training data took 3 h for 100

epochs. A mean weighted classification accuracy of
99.4% was achieved on the validation data for the 10-
fold cross-validation.Results from using 10%,25%,50%,
and 75% of the training data while including or excluding
AddMap to the model input are presented in Table 1. No
model overfitting was observed for any experiment. The
prostate gland CTV and PTV classification mean error
(± 1 std) rate from the cross-validations was calculated
to 1.6% ± 1.1% and 1.7% ± 0.7%, respectively, when
AddMap was included in the model input and 6.5% ±

2.0% and 4.9% ± 1.3%, respectively,when AddMap was
excluded. An example of channel wise Guided Grad-
Cam saliency maps overlaid on input data from different
structures can be seen in Figure A1 in supplementary
material, visually demonstrating the use of AddMap.

3.2 Test dataset evaluation

Classification performance together with QC assess-
ment is presented in separate sections for the CT, MRI,
and Umeå test dataset.

3.3 CT test dataset

A total of 989 optimization structures were automati-
cally ignored using the text-based label rules defined
in section “creation of datasets,” while 2391 structures
were included in the analysis of the CT test dataset.
Twenty-eight structures were misclassified, and their
predicted class label can be seen in the confusion matrix
(Figure 4). Thirteen of the 28 failing structures were
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TABLE 1 Weighted classification accuracy (mean ± 1 population standard deviation (range)) on validation data for 10-fold cross-validations
as a function of different fractions of available training data while including or excluding the AddMap as model input

10% training
data

25% training
data

50% training
data

75% training
data

100% training
data

Weighted classification accuracy
(excluding AddMap)

0.954 ± 0.014
(0.924–0.965)

0.969 ± 0.0062
(0.960–0.979)

0.977 ± 0.0060
(0.963–0.985)

0.983 ± 0.0028
(0.979–0.988)

0.984 ± 0.0024
(0.979–0.988)

Weighted classification accuracy
(including AddMap)

0.982 ± 0.011
(0.965–1.00)

0.983 ± 0.0047
(0.976–0.991)

0.991 ± 0.0035
(0.985–0.996)

0.992 ± 0.0033
(0.987–0.997)

0.994 ± 0.0015
(0.990–0.996)

F IGURE 4 Normalized confusion matrix for the whole CT test
dataset. A perfect score generates only diagonal values with value 1.
Note that the “Other” class label is not populated for the predictions
as the class was not accounted for in the training, but added in the
analysis for clarity. Number of objects in each class is given in Table
SA2.

identified as mislabeled optimization structures (miss-
ing name prefix, see section “creation of datasets”) and
were thereby not ignored as intended. Nine structures
contained data on which the network had not been
trained on. This resulted in only six misclassified struc-
tures due to the model and the class labels used to
train it. During analysis, the ground truth class “other”
was assigned to both the mislabeled and to the network
unknown structures (Figure 4 and Table SA2).

This yielded an unweighted classification accuracy of
98.8% and a weighted average F1 score of 98.4% for
the whole dataset (uncleaned data). After removal of
data in the “other” class label, the analysis yielded an
unweighted accuracy of 99.8% and a weighted average
F1 score of 99.8% (cleaned data, six of 2369 failed).
Detailed individual class label performance metrics for
uncleaned and cleaned data are presented in Tables
SA2 and SA3, respectively. The QC method precision,
recall, F1 score, and accuracy were assessed for the
whole CT test dataset and were 14%, 32%, 20%, and

F IGURE 5 Normalized confusion matrix for the whole magnetic
resonance imaging (MRI) test dataset. Note that the “Other” class
label is not populated for the predictions as the class was not
accounted for in the training but added in the analysis for clarity.
Number of objects in each class is given in Table SA4 where the high
number of GlandCTV compared to the other class labels was due to
the existence of two clinical target volumes (CTVs) per subject in the
MRI dataset.

97%, respectively.A total of 64 QC flags were issued,59
were triggered on the structure volume and five on the
majority vote.

3.4 MRI test dataset

A total of 211 optimization structures were automati-
cally ignored using the text-based label rules defined
in section "creation of datasets,” while 482 structures
were included in the analysis of the MRI test data.
Seven structures were misclassified (Figure 5). One of
the seven failing structures was identified as a misla-
beled optimization structure, and thereby not ignored
as intended. A ground truth class “other” was assigned
to these structures in the analysis (Figure 5 and Table
SA4). This resulted in six misclassified structures due to
the model and the class labels used to train it.



JAMTHEIM GUSTAFSSON ET AL. 59

F IGURE 6 Normalized confusion matrix for the whole Umeå test
dataset. Note that the 11 additional class labels are not populated for
the predictions as the class was not accounted for in the training, but
added in the analysis for clarity. Number of objects in each class is
given in Table SA6

This yielded an unweighted classification accuracy of
98.6% and a weighted average F1 score of 98.5% for
the whole dataset (uncleaned data). After removal of
data in the “other” class label, the analysis yielded an
unweighted accuracy of 98.8% and a weighted aver-
age F1 score of 98.8% (cleaned data, six of 481 failed).
Detailed individual class label performance metrics for
uncleaned and cleaned data are presented in Table SA4
and Table SA5, respectively.

A total of 127 QC flags were issued, 126 were trig-
gered on the structure volumes for Body, CouchSur-
face and CouchInterior, due to a smaller MR scan vol-
ume compared to the CT training data. One QC flag
was issued on the majority vote. The QC method pre-
cision, recall, F1, and accuracy score were assessed
for the whole MRI dataset and were 30%, 43%, 35%
and 98%, respectively (where the volume error was only
accounted one time for Body,CouchSurface and Couch-
Interior).

3.5 Umeå test dataset

A total of 63 optimization structures were automati-
cally ignored using the text-based label rules defined in
the section “creation of datasets,” while 1186 structures
were included in the analysis of the Umeå test data.Two
hundred forty-two structures were misclassified (Fig-
ure 6), and 227 of these failed, as the model had not
been trained on the 11 new class labels, these data con-
tained (Table SA6). Examples of these new class labels

F IGURE 7 Normalized confusion matrix for the cleaned Umeå
test dataset. Number of objects in each class is given in Table SA7

are visualized in Figure A2 in supplementary material.
Fifteen structures were misclassified despite being sup-
ported by the model.

This yielded an unweighted classification accuracy of
79.6% and a weighted average F1 score of 75.2% for
the whole dataset (uncleaned data). After the removal
of data in the unsupported and “other” class labels,
the analysis yielded an unweighted accuracy of 98.4%
and a weighted average F1 score of 98.7% (Figure 7,
cleaned data, 15 of 959 failed). Detailed individual class
label performance metrics for uncleaned and cleaned
data are presented in Tables SA6 and SA7, respectively.

A total of 139 QC flags were issued, 108 were trig-
gered on the structure volume. Thirty QC flags were
issued on the majority vote and one on the classifica-
tion acceptance probability. The QC method precision,
recall, F1, and accuracy score were assessed for the
whole Umeå dataset and were 69%, 38%, 49%, and
84%, respectively.

4 DISCUSSION

In this study, an open-source DL model for automatic
prostate cancer RT OAR and target structure classifica-
tion and renaming was developed. Datasets in DICOM
format were converted and supplied as the model input,
and RT structures were automatically renamed to a
custom-defined name standard. The model was trained
and optimized on a large clinical subject cohort con-
taining a large variety of clinical diagnosis and subject
data. RT optimization structures were ignored using
text-based logic, and the model required only binary
masks as the input, making the model image modality
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independent. The impact of varying the training data
volume and model input was investigated, and the
model showed excellent results on both internal clinical
uncleaned CT and MRI test data and cleaned clinical
external CT data from another RT clinic (Umeå test
data). QC mechanisms were developed and evaluated
to notify the user when the proposed method was
uncertain regarding its output.

The trained model reached a mean weighted accu-
racy of 99.4% for the validation data when using 100%
of the training data. The investigation regarding impact
of available training data demonstrated that classifica-
tion score decreased, while cross-validation standard
deviation increased with the use of less training data
(Table 1). However, a weighted validation classification
accuracy of 98.2% was achieved with only 10% of
available training data, corresponding to 205 subjects,
proving that the model can be trained with a limited
dataset.

The input to the model was defined as three orthog-
onal 2D images, derived from a binary 3D mask as
volume projection data, and one 2D image containing
a weighted sum of all the other structures (AddMap).
A one percentage point increase in weighted classifi-
cation accuracy was achieved by adding the AddMap
to the model input when using 100% training data
(Table 1). The positive classification accuracy contri-
bution of AddMap seemed to be of larger importance
for smaller data volumes (Table 1, comparing 10% and
100% training data).This demonstrated the added value
of supplying the neural network with intra- and inter-
structure spatial and geometric information,enabling the
network to learn valuable features when the amount of
training data is limited. The value of including AddMap
was further demonstrated by the results regarding the
classification of prostate gland CTV and PTV structures,
which showed a 5 and 3 percentage point improvement,
respectively (see Figure 2 and Figure SA1 for CTV and
PTV example).

Unweighted classification accuracy of 98.8%, 98.6%,
79.6% and corresponding weighted F1 scores of 98.4%,
98.5%, 75.2% was achieved on the uncleaned CT, MRI,
and Umeå test datasets, respectively. On the cleaned
datasets, an unweighted classification accuracy and a
weighted F1 score of 99.8%, 99.8% (CT), 98.8%, 98.8%
(MRI), and 98.4%, 98.7% (Umeå) was achieved.

QC of the model output was identified as a future
implementation in Syed et al.,23 and we approached
this by developing multiple different QC mechanisms.
The precision, recall, F1 score, and accuracy of the QC
for the CT test data were 0.14, 0.32, 0.20, 0.97, for the
MRI test data 0.30, 0.43, 0.35, 0.98, and for the Umeå
test data 0.69, 0.38, 0.49, 0.84. Low values for preci-
sion and recall indicate that the suggested QC methods
need to be improved. Aside from the inferior QC perfor-
mance, the excellent classification results demonstrated
a classification model with high performance for targets,

OAR, and support structures in multimodal or multicen-
ter prostate RT datasets.

Previous work aiming to classify structures has mainly
focused on OAR and the work performed on prostate tar-
get classification has been limited.22,23,27 Syed et al.23

attempted to address target classification by defining a
common non-OAR class, but with no extended granu-
larity. Sleeman Iv et al.22 expanded further and included
the PTV for prostate gland but not the CTV or any other
prostate RT targets. We believe the absence of gen-
eral target classification to be an effect of the wide and
challenging prostate target variety and the simultaneous
existence of multiple GTVs, CTVs, and PTVs.

In our CT test data, we managed to classify 11 differ-
ent targets with a minimum class individual F1 score of
96.2% (VesicleCTV).Rozario et al.27 used cleaned data,
reported a 100% classification accuracy for their neural
network and required only binary masks as input,similar
to our model input. However, the model was only trained
for five prostate organ classes, and the authors did not
conduct any validation on independent test datasets. In
the work of Yang et al.,26 a neural network model with
seven prostate OAR classes was trained using trans-
fer learning from their head and neck model. A recall of
100% was reported for five classes and a minimum of
81% for the other two.

In the work by Sleeman Iv et al.,22 a 95% and 90% F1
score was achieved on cleaned and uncleaned prostate
data, respectively, highlighting the challenge of classi-
fying real clinical uncleaned data. Our model could dif-
ferentiate 22 label classes containing nine organs at
risk, two support structures, one GTV target structure,
and the CTV and PTV for five different targets with an
unweighted classification accuracy of 98.8% and 99.8%,
for uncleaned and cleaned CT test data (“other” class
label removed), respectively. Corresponding weighted
F1 scores were 98.4% and 99.8%. With respect to this,
we believe our model has improved class diversity and
usefulness for uncleaned real clinical data compared to
previous publications and models.

Excellent results from prostate structure text label-
based methods have also been published by Schuler
et al.34 with classification accuracy close to 100% and
Syed et al.23 who reported unweighted F1 scores of 0.97
and 0.93 on internal and external test data. However,
text-based methods do not account for incorrect label
names with respect to the geometric structure content28

or when the same label name is used for multiple
structures.23 Interestingly, this problem was observed
and manually corrected for a total of 290 times in our
clinical training dataset prior to training,see section “cre-
ation of datasets.”

Further, during evaluation of the test data in our study,
the model predicted five objects in the CT test dataset,
one object in the MRI test dataset and four objects in
the Umeå test dataset to a different class label than
the suggested clinical ground truth. Upon detailed
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inspection, errors in the clinical ground truth label name
were discovered. This did not alter the reported results
in this study but demonstrated two important things: the
major limitation of using text-based methods for real
clinical datasets and the powerful capabilities of our
suggested method.

In the test CT dataset, 13 of 28 failing structures
were mislabeled optimization structures, which demon-
strate the importance of correctly labeled optimization
structures as our method was not trained on such data.
Extending training to include these class labels could be
challenging as the structure contents can be very sim-
ilar or identical to other targets or OAR structures. The
classification performance on the MRI test dataset was
slightly lower compared to the CT test dataset. In the
MRI test dataset, six of the total seven failed structure
classifications corresponded to CTV structures being
classified as PTV (Figure 5,Table SA4).As double CTVs
existed for each subject, where one of the CTVs was
larger than the other CTV, similar to the geometric rela-
tion between CTV and PTV, it is probable that a CTV
could be interpreted as a PTV,see Figure 2.However, the
MRI dataset originated from a clinical study39 where the
workflow differed compared to clinical routine. It is rather
unlikely that clinical patient data will contain multiple
CTVs or PTVs in such a manner. In any case,we believe
that this can be accounted for by training the model with
suitable data.A future improvement to avoid misinterpre-
tations would be to use a combination of our model and
existing target label text information, also noted in Syed
et al.23 The QC method raised flags for body and couch
structures for all subjects in the MRI data, and this was
due to the smaller scan volume performed for MRI scan-
ning compared to the CT-based reference values. The
results from the Umeå test dataset demonstrated the
model’s ability to generalize very well on trained class
labels. However, 11 new class labels were found in the
Umeå dataset compared to the training data, and this
gave rise to a major part of failed classifications (Figure
SA2.)

Misclassification due to lack of class label-specific
training data was a clear limitation in the method, as
an assigned class label is determined from the largest
class probability. This was demonstrated in the Umeå
dataset, and the same applies for mislabeled optimiza-
tion structures. The problem can be mitigated by includ-
ing data for these labels or use boolean structure com-
binations as augmentation to enrich the training data.
We also believe that a higher QC acceptance prob-
ability threshold could be of value to lower the false
positives.

The QC method did not show a convincible perfor-
mance for failed structure classifications as 55/88 QC
flags in the CT test dataset were false positive and
issued from structure volume analysis. Issuing warning
with respect to structure volume might be a blunt tool
due to the existing volume range overlap between many

RT structures. As we release this software as open-
source, we hope to encourage future QC improvements
and implementations of the method to other anatomical
sites.

Future application of our method could enable auto-
matic fusion, cleaning, and harmonization of multicen-
ter datasets with differences in RT structure nam-
ing standards. This could further facilitate data-driven
machine learning research where intra- and interinstitu-
tional collaborations compose the data source for clini-
cal research. The same method could also be used to
provide descriptive metadata and enrich existing clin-
ical archive data. In the future, we aim to implement
our model into the MICE toolkit (NONPI Medical AB,
Sweden, Umeå) where the metadata can be supplied
to an MIQA database, which provides structured uni-
fied storage of RT data at several Swedish University
RT clinics.30

5 CONCLUSION

A DL-based open-source software for automatic renam-
ing of prostate RT DICOM structure labels was devel-
oped and evaluated. The model was imaging modality
independent and trained on multiple targets, OAR and
support structures with state of the art classification
accuracy in clinical CT, and MRI test datasets. Sufficient
accuracy could be achieved with a moderate amount of
training data, and the importance of input data repre-
sentation was demonstrated. Clinic-specific contouring
standard however needs to be represented in the train-
ing data for successful use,and further improvements in
QC assessment are needed.
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