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ABSTRACT
Saposhnikovia divaricata is a traditional Chinese herb that mainly grows in arid
grasslands and strongly adapts to various stresses. Drought is not only a major
abiotic stress factor but also a typical feature conducive to producing high-quality
medicinal material. The present study investigated by treating S. divaricata
plants with polyethylene glycol (PEG-6000). Ultra-high performance liquid
chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)
identified 146 compounds from the roots of S. divaricata, among which seven
primary metabolites and 28 secondary metabolites showed significant changes after
drought treatment. UV-Vis spectrophotometer detected the activity of antioxidant
enzymes and the content of superoxide anion (O−:

2 ) and malondialdehyde (MDA).
The differential primary metabolites revealed that drought promotes glycolysis,
reducing primary metabolism and enhancing secondary metabolism. Meanwhile, the
differential secondary metabolites showed an increase in the content of compounds
upstream of the secondary metabolic pathway, and other glycosides and increased
that of the corresponding aglycones. The activities of antioxidant enzymes and the
content of O−:

2 and MDA shown different changes duing the drought treatment.
These observations indicate that drought promotes the biosynthesis and
transformation of the secondary metabolites and activity of antioxidant enzymes,
improving plant adaptability. The present study also analyzed a few primary and
secondary metabolites of S. divaricata under different degrees and durations of
drought and speculated on the metabolic pathways in an arid environment.
The findings indicate the biological nature, diversity, and complexity of secondary
metabolites and the mechanisms of plant adaptation to ecological stress.

Subjects Biochemistry, Biodiversity, Plant Science, Population Biology
Keywords Saposhnikovia divaricata (Turcz.) Schischk, Metabolomics, Reactive oxygen species,
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INTRODUCTION
Abiotic stresses, namely drought, heat, salinity, coldness, and pathogen infection represent
the major limitations on biological growth. Therefore, plants and animals must evolve
numerous mechanisms to accommodate with changes of stress. During the prolonged
evolutionary process, plants and animals adopted different adaptation strategies and were
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divided into two mutually distinct taxa (Ronald & Beutler, 2010). Animals can move and
migrate to different locations and stay protected from a harsh environment, but plants
cannot move and hence face severe abiotic stresses, such as drought, heavy metals, and
high salinity (Ronald & Beutler, 2010; Rehman et al., 2021), which affect their growth,
metabolism, and yield (Zhu, 2016).

Signal molecules, transcription factors, genes, and defense components are activated
under stress, triggering complex plant responses (Mittler, 2005). Meanwhile, plants absorb
more light energy than that required for carbon dioxide (CO2) fixation, resulting in the
reduction of excess O2 to superoxide anion (O−:

2 ) (Strizh, 2008). Besides, a part of O
−:
2 is

transformed into hydroxyl radical (·OH) and hydrogen peroxide (H2O2) (Zorov, Juhaszova
& Sollott, 2014; Bodega et al., 2019). These substances are called reactive oxygen species
(ROS) due to their strong oxidizing properties (Li et al., 2021; Li et al., 2015). Plants are
equipped with a unique antioxidant system, which can maintain ROS within an
appropriate range by regulating the oxidation–reduction balance (Kibria et al., 2017; Duan
et al., 2022). This system is composed of enzymatic and nonenzymatic components, which
prevent or delay cell damage by eliminating or inhibiting the oxidation of ROS (Dumont &
Rivoal, 2019).

The enzymatic antioxidant defense system comprises superoxide dismutase (SOD),
catalase (CAT), and peroxidase (POD) (Sachdev et al., 2021), which eliminate these ROS in
animals, plants, and fungi (Staerck et al., 2017). The first formed O−:

2 gets converted into
H2O2 spontaneously or via SOD and then into O2 and H2O2 by CAT or POD (Wang et al.,
2018). However, antioxidant enzymes are also proteins, which can be altered via excess
ROS (Datir, Singh & Joshi, 2020; Attia et al., 2021). Therefore, plants use their
nonenzymatic systems, which cooperate with the antioxidant enzymes to resist adversity
(Pisoschi & Pop, 2015).

Plant metabolites are an adaptation to cope with complex, stressful environments (Erb
& Kliebenstein, 2020). Many secondary metabolites (SMs) have been biosynthesized from
primary metabolites (PMs) and accumulated in plant cells. Generally, a plant contains
multiple SMs of the same category, which are affected by both the growth environment
and the metabolic pathways (Singer, Crowley & Thompson, 2003; Li et al., 2020). Humans
have also artificially synthesized SMs as a source of bioactive compounds directly used as
herbal medicine or preparing modern drugs for treating diseases. To date, about 25% of the
drugs have been obtained from medicinal plants (De Luca et al., 2012;Wurtzel & Kutchan,
2016). More than 2,140,000 of these plants display great diversity in structure, function,
and biosynthesis (Thirumurugan et al., 2018). Many studies have showed that the
elicitation based on the biotic or abiotic stressor stimulation in vitro was the most effective
technology strategy to improve the production of SMs from medicinal plants (Isah, 2015;
Isah et al., 2017; Pant, Pandey & Dall’Acqua, 2021). However, improving SM production
through biotic or abiotic stress stimulation is needed to support the application of this
technology (Ghosh et al., 2018; Al Hassan et al., 2017). Liquid chromatography–mass
spectrometry (LC–MS) is the most employed technique in plant metabolomics under
stress conditions (Tian et al., 2020; Schrimpe-Rutledge et al., 2016; Ghatak, Chaturvedi &
Weckwerth, 2017).
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Drought is the most common abiotic stress and the main factor leading to the mass
production of ROS in plants (Gepstein, Grover & Blumwald, 2008; Ozturk et al., 2021),
which significantly changes the physiological and biochemical indicators such as
antioxidant enzymes and metabolites (Jogawat et al., 2021; Ozturk et al., 2021; Zahedi,
Karimi & Venditti, 2021) and affects the accumulation of metabolites in medicinal plants.
Studies on the germination and physiological characteristics of maize (Zea mays) under
drought and salinity stresses, found that O−.

2 and MDA levels and the activities of
antioxidant enzymes such as SOD, POD, and CAT increased under these stresses (Yao
et al., 2016). The water content decreased with increasing PEG concentrations in maize
cultivars (Mohammadkhani & Heidari, 2007). A study on the effects of drought stress on
the physiological, biochemical, and chemical components of Cinnamomum cassia
seedlings revealed certain drought tolerance potential of the plants under short-term or
mild drought stress; however, when the drought exceeded a certain degree, the
physiological metabolism of seedlings was unbalanced (Zhong et al., 2021).

Saposhnikovia divaricata is one of the most commonly used herbal medicines in Asian
countries, with excellent analgesic, antipyretic, and anti-inflammatory effects (State
Pharmacopoeia Committee, 2020). Wild S. divaricata is mainly distributed in northeast
China, Inner Mongolia, Hebei, Shandong, Henan, Shaanxi, and Gansu (Feng et al., 2021).
The wild S. divaricata plants produced in Heilongjiang Daqing, Qiqihar, and Inner
Mongolia have the best quality due to the high-efficacy content and large yield of medicinal
materials (Wang et al., 2020a; Yang et al., 2020). Most high-quality producing areas of wild
S. divaricata are grassland areas with adverse environmental conditions, such as slight
annual rainfall, arid climate, and large temperature difference between four seasons (Men
et al., 2018; Han et al., 2017). S. divaricata is characterized by “taproot” and
“chrysanthemum heart” (State Pharmacopoeia Committee, 2020), which is the typical
plant feature in a drought condition (Jiang et al., 2018; Nishihara et al., 2018). Studies
showed that the main active components of S. divaricata were chromones and coumarins
(Okuyama et al., 2001; Batsukh et al., 2021; Zhao et al., 2010; Yang et al., 2017). Although
cimifugin 7-glucoside and 5-O-methylvisamicin are the major compounds (State
Pharmacopoeia Committee, 2020), cimifugin is the primary efficacy component (Jiang
et al., 2018). Glycosides such as cimifugin 7-glucoside get converted into cimifugin and
absorbed into the blood and play antipyretic, analgesic, and anti-inflammatory roles in the
human body (Yang et al., 2017; Lee et al., 2020). The content of cimifugin is two to three
times that of cultivated products, and hence the quality of wild S. divaricata is better
(Wang et al., 2017; Zhao et al., 2014; Li, 2011). The moderate use of drought stress
technology in the cultivated S. divaricata can effectively improve the accumulation of
metabolites and the quality of medicinal materials.

The current research on S. divaricata focuses on the pharmacological effects (Zhao
et al., 2010; Chun et al., 2016; Kong et al., 2013; Wang et al., 2017), separation and
purification method of main components (Nishihara et al., 2018; Zhang et al., 2008; Li
et al., 2006), such as chromones and coumarins (Ma et al., 2018; Sun et al., 2022;
Yang et al., 2015; Chen et al., 2018), genome (Liu et al., 2018), and antioxidant activity
(Kamino et al., 2016). However, the effects of S. divaricata on antioxidation and
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metabolites under drought stress have not been explored yet. The quality of herbal
medicine is closely related to the diversity and complexity of SMs, which determines the
effect of moderate ecological stress in medicinal plants. The present study used different
concentrations of polyethylene glycol (PEG-6000) to simulate drought stress in
S. divaricata plants (Shen et al., 2020; Lau et al., 2021;Meher et al., 2018) and explored the
changes in metabolites, ROS, MDA, and antioxidant enzymes. It provided a basis for
analyzing the adaptability of antioxidant enzymes and metabolites of S. divaricata under
plant stress, and clarifying the effects of S. divaricata under drought stress. The study
mainly indicated the biological nature, diversity, and complexity of metabolites and
antioxidant enzymes and the mechanisms of plant adaptation to stress.

MATERIALS AND METHODS
Plant materials
Two-year-old S. divaricata (Umbelliferae) plants were grown in the Medical Botanical
Garden of Heilongjiang University of Chinese Medicine (126�38′E, 4543′N) in June 2018
and identified by Prof. Xiang-Cai Meng, College of Pharmacy, Heilongjiang University of
Chinese Medicine. All the S. divaricata plants were grown under standard field conditions,
with an average day/night temperature of 16 �C/4 �C and 14/10-h photoperiod.

In this experiment, PEG-6000 was used to simulate drought stress (Fuchino et al., 2021;
Hellal et al., 2017; Arun et al., 2020). The Hogland’s nutrient solution was prepared, and
different concentrations of PEG-6000 were added to simulate the drought stress (Yao et al.,
2016;Mohammadkhani & Heidari, 2007; Zhong et al., 2021;Meher et al., 2018; Arun et al.,
2020; Chen et al., 2020). A total of 48 S. divaricata plants were collected, and their roots
were washed with running water. The S. divaricata plants were placed in the Hoagland’s
solution for 7 days for adaptive culture and then divided into three experimental groups:
thick (12–15 cm), medium (8–12 cm), and thin (4–8 cm). The samples were divided
into blank, mild (10% PEG-6000), moderate (15% PEG-6000), and severe (30% PEG-6000)
drought treatment groups. The transplanted S. divaricata plants were maintained in
a greenhouse under constant 16/8-h photoperiod, 14,000 lx/day of light intensity,
23 ± 1 �C/18 ± 1 �C day/night temperatures, and 45–55% humidity. The samples were
collected 0, 2, 4, 6, and 8 days after the drought treatment. Before sampling, the top 1.5 cm
was removed after the oxidation of the previous sampling. The root samples obtained from
the thick, medium, and thin plants were pooled, and the xylem was scraped off for further
treatment.

The S. divaricata samples adopted in this paper are collected from the Medicinal
Botanical Garden of Heilongjiang University of Chinese Medicine. Field experiments were
approved by Heilongjiang University of Chinese Medicine (No. 20210113). and causes no
damage to the environment.

Sample preparation using ultra-high-performance liquid
chromatography-quadrupole time-of-flight mass spectrometry
The extraction method referred to the previous research of the group, and the target
extracts were chromones, coumarins, flavones, and other compounds (Huo et al., 2021;
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Liu et al., 2018). Approximately 500 mg of sample powder was weighed into a 50-mL
centrifuge tube and extracted using 25 mL of methanol (Fischer Scientific, Horsham, UK)
at 80 �C twice, each for 1 h. The samples were centrifuged at 4 �C and 14,000g for 10 min,
and the supernatant was collected into a derivatized glass bottle and freeze-dried.
All the dried extracts were dissolved in methanol (1 mL) and filtered through a 0.22-mm
Millipore filter, and the filtrate was collected for ultra-high-performance liquid
chromatography–mass spectrometry (UPLC) analysis. Each sample was assayed three
times.

Sample preparation for superoxide anion (O−:
2 ), MDA, and antioxidant

enzyme analyses
The ice bath environment was prepared before sample processing, and all the vessels and
test solutions in contact were refrigerated. The sample processing was carried out in an ice
bath environment of 0 �C. Then, the 0.2000 g S. divaricata sample was accurately weighed
into a mortar, mixed with 2 mL of normal saline (Harbin Medisan Pharmaceutical Co.,
Ltd, Harbin, China), and ground evenly. The sample suspension was transferred into a
5-mL centrifuge tube and centrifuged at 4 �C and 14,000g for 10 min for analysis.

SAMPLE DETECTIONS
UPLC–ESI–Q–TOF–MS/MS analysis
An AB Sciex UPLC Exionl system (Waters Co., Milford, MA, USA) coupled with a triple
time-of-flight (TOF) 5600+ mass spectrometer (Sciex-Foster, Redwood City, CA, USA)
was employed for UPLC–triple–TOF/MS analysis in this study. A Waters Ethylene
Bridged Hybrid (BEH) C18 column (1.7 µm, 2.1 mm × 100 mm; Waters Co., Milford, MA,
USA) and an ACQUITYTM UPLC BEH C18 (1.7 µm, 5 mm × 2.1 mm; Waters Co.,
Milford, MA, USA) were used. The column temperature was maintained at 35 �C, and the
autosampler temperature at 10 �C. A linear gradient elution was performed with 0.1%
formic acid–water as mobile phase A and 0.1% formic acid–methanol as mobile phase B.
The gradient elution program was as follows: 95–50% eluent A for 0–10 min, 50–30%
eluent A for 10–13 min, 30% eluent A for 13–15 min, 30–0% eluent A for 15–20 min,
0–95% eluent A for 20–20.1 min, and 95% eluent A for 20.1–25 min. The flow rate was set
to 0.3 mL/min, and the injection volume was 3 mL. The mass spectrometer was operated in
negative and positive ion modes. All the samples were kept at 4 �C during the analysis.

Mass spectrometry
Electrospray ionization (ESI) mass spectrometry was used in separate injections for
positive and negative ion modes with dynamic background subtraction. The ESI source
operation conditions were as follows. In positive electrospray, the ion source voltage was
set at 5,500 V, source temperature at 550 �C, nebulizer gas (GS1) at 55 psi, auxiliary gas
(GS2) at 55 psi, curtain gas (CUR) at 35 psi, declustering potential (DP) at 80 V, collision
energy (CE) at 35 V, and the collision energy spread (CES) at 15 EV. TOF–MS was
operated in full scan at m/z 100–1,500 Da, and the information-dependent acquisition
(IDA) mode was applied, with eight most intense peaks exceeding 100 cps for MS/MS
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scans and the production ion set at m/z 50–1,500 Da. In negative electrospray, the ion
source voltage was set at −4,500 V, source temperature at 550 �C, GS1 at 55 psi, GS2 at 55
psi, CUR at 35 psi, DP at 80 V, CE at 35 V, and CES at 15 EV. TOF–MS was operated in
full scan at m/z 100–1,500 Da, and the IDA mode was applied, with eight most intense
peaks exceeding 100 cps for MS/MS scans and the product ion at m/z 50–1,500 Da.
AnalystTF (version 1.6; AB SCIEX, Framingham, MA, USA) software was used for data
acquisition. Data analysis and processing were performed using PeakView 2.0 software and
Master View 1.0 (AB Sceix, Framingham, MA, USA).

Data analysis
The metabolomics analysis was performed on UPLC-Q-TOF/MS data, and the mass
number, abundance, and secondary mass of the chromatographic peaks were obtained.
The PeakView 2.0 software with Formula Finder (AB Sceix, Framingham, MA, USA) was
used to estimate the chemical composition. The total ion chromatogram was imported to
PeakView2.0 (AB Sceix, Framingham, MA, USA) to elucidate the compounds and
determine the exact mass. The molecular formula of the chromatographic peaks of the
S. divaricata samples was determined following the principle of deviations of the
experimental values from the theoretical values below 5 ppm and the fit of abundance less
than 1.0, combined with the fragment of secondary mass spectrometry, mass spectrometry
fragment of standards, and the previous findings. The molecular composition and
structure that could not be obtained from the MS/MS fragmentation and chromatography
behavior, were inferred by referring to ChemSpider databases (www.chemspider.com).

The resulting peak list was further processed using Microsoft Excel and imported into
the SIMCA-P+ software (version 14.1; Umetrics; Sartorius AG, Göttingen, Germany) for
orthogonal projections to latent structures discriminant analysis (OPLS-DA). OPLS-DA
was performed using the scores plot for the compounds with large effects in the treatment
groups to observe the differences in chemical components. The differential compounds
were identified by comparing the mass-to-charge ratio and retention time. The target ions
with high intergroup dispersion (variable influence on projection, VIP) >2 were collected,
combined with the result of the intergroup t-test (P < 0.05) to identify the differential
compounds.

Determination of antioxidant enzyme activities and levels of O−:
2 and

MDA
All analyses were performed using kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). The operating instructions were downloaded from at http://www.njjcbio.
com/. The absorbance values of SOD, CAT, POD, phenylalanine ammonia-lyase (PAL)
O:−

2 , and MDA were measured at 550, 405, 420, 290, 550 and 532 nm using an
ultraviolet–visible spectrophotometer (UV-1600; Shimadzu, Kyoto, Japan), respectively.
All operations and calculations followed the manufacturer’s protocol.
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RESULTS
Identification of metabolites
The chemical composition of S. divaricata was elucidated via the secondary ion mass
spectrometry (Fig. 1 UPLC Chromatograms of S. divaricate), in terms of the retention time,
mass-to-charge ratio, molecular weight, structural formula, and elemental composition of
known ingredients in S. divaricata. Cimifugin was used as a reference to identify the
chemical composition. The ion (Retention Time = 6.43 min, [M + H]+ = 307.12) was
detected as C16H19O6 in positive ion mode based on elemental composition, isotopic
abundance fraction, and ChemSpider database from the S. divaricata roots. The MS/MS
fragment ion of peak 13 at m/z 289 Da was identified as C16H17O−

5 , which the fragment
formed after C16H19O6 dehydration; the MS/MS fragment ion of peak 12 at m/z 274 Da
was C15H14O−

5 obtained from C16H17O−
5 after CH3 removal; and the MS/MS ion atm/z 249

Da of peak 9 was C16H19O6 formed after C3H5OH (58 Da) removal. These observations
under different treatment groups confirmed the ion as cimifugin. The secondary ion mass
spectrometry of cimifugin is shown in Fig. 2, and the ion cracking analysis process of
cimifugin is shown in Fig. 3. Furthermore, 146 compounds, including 20 chromones, 30

Figure 1 UPLC Chromatograms of S. divaricata. Analysed in positive ionization mode and negative
ionization mode. (A) positive ion mode; (B) negative ion mode.

Full-size DOI: 10.7717/peerj.14336/fig-1

Figure 2 MS/MS spectra (ESI+) of cimifugin. The mirror image is the MS/MS fragment of cimifugin
standard. Full-size DOI: 10.7717/peerj.14336/fig-2
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coumarins, 16 aliphatic acids and organic acids, 13 benzene rings, 14 flavonoids, six
phenylpropanoids, eight aldehydes, five terpenoids and polyacetylenes, 14 esters, and 20
other compounds, were identified from the fresh roots of S. divaricata based on the
aforementioned analyses and the previous findings (Xue et al., 2019; Zhang et al., 2008; Li
et al., 2006;Ma et al., 2018; Sun et al., 2022; Yang et al., 2015; Chen et al., 2018; Zhao et al.,
2010; Yokosuka et al., 2017; Kreiner et al., 2017; Yoshitomi et al., 2020; Batsukh et al., 2020).
The distribution of compounds is shown in Fig. 4.

Figure 3 Splitting decomposition law inference (ESI+) of cimifugin based on UPLC-MS analysis. Full-size DOI: 10.7717/peerj.14336/fig-3

Percentage of compounds

13.70%  Chromones
20.55%  Coumarins
10.96%  Aliphatic Acid&Organic acids
8.90%  Benzene rings

Total=146

9.59%  Flavones
4.11%  Phenylpropanoids
5.48%  Aldehydes
3.42%  Terpenoids&Polyacetylenes
9.59%   Esters
13.70%  Others

Figure 4 Classification of the 146 metabolites of S. divaricata.
Full-size DOI: 10.7717/peerj.14336/fig-4
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Differential compounds identified based on metabolomics analysis
The candidate ions of S. divaricata under different treatment durations and PEG-6000
concentrations were preliminarily determined according to OPLS-DA. The OPLS-DA
score plots showed that the different drought treatment groups were clearly separated.
As shown in Fig. 5, the different treatment groups were divided into five regions. Also, the
repeated samples were placed together, indicating the significant chemical differences
between the treatments. Therefore, the established metabolomics method was used to
present the chemical characteristics successfully. The target ions with high intergroup
dispersion (VIP > 2) were identified as the differential compounds. Significant changes
were detected in 7 PMs and 28 SMs in the S. divaricata roots obtained from plants under
drought stress, as shown in Table S1.

Metabolomics data analysis of characteristic differential compounds
The hierarchical cluster analysis was performed using R software (www.r-project.org/).
The metabolite content data were standardized, and the differences in cumulative
metabolites between different samples were analyzed and displayed. As shown in Fig. 6, the
differential PMs were 3-phosphoglyceric acid, phosphoenolpyruvic acid, tryptophan,
shikimic acid, phenylalanine, Citric acid, and tyrosine. Citric acid was identified in the
control group but not in the other three groups. Compared with the control group, the
treatment groups showed a decrease in the levels of 3-phosphoglyceric acid, tryptophan,
phosphoenolpyruvic acid, tyrosine, and shikimic acid and an increase in the level of
phenylalanine. Meanwhile, the differential SMs were cimifugin, cimifugin 7-glucoside,
hamaudol, sec-O-glucosylhamaudol, 3′-O-i-butyrylhamaudol, 3-O-acetylhamaudol, 5-O-
methylvisammioside, 5-O-methylvisaminol, divaricatol, ledebouriellol, methyl hesperidin,
tectochrysin, naringin dihydrochalcone, scopoletin, scopolin, deltoin, imperatorin,
isofraxidin, phellopterin, crisilineol, marmesin, psoralen, bergapten, ostenol, 5-hydroxy-8-
methoxypsoralen, 5-methoxy-7-(3,3-dimethylallyloxy)coumarin, cleomiscosin A, and
ferulic acid. The treatment groups showed an increase in the levels of cimifugin, hamaudol,
3′-O-i-butyrylhamaudol, 3-O-acetylhamaudol, divaricatol, 5-O-methylvisaminol,
ledebouriellol, scopoletin, imperatorin, phellopterin, deltoin, marmesin, psoralen, ostenol,
5-hydroxy-8-methoxypsoralen, 5-methoxy-7-(3,3-dimethylallyloxy) coumarin, ferulic
acid, and scopolin and a decrease in cimifugin 7-glucoside, sec-O-glucosylhamaudol,
5-O-methylvisammioside, methyl hesperidin, cleomiscosin A, tectochrysin, naringin
dihydrochalcone, isofraxidin, crisilineol, and bergapten compared with those in the
group (Fig. 6).

Antioxidant enzyme activities and the contents of superoxide anion
(O−:

2 ) and MDA
The activities of SOD, CAT, POD, and PAL are shown in Fig. 7. The SOD activity in
S. divaricata in the drought treatment groups was generally lower than that in the control
group; SOD under drought showed an increase and then a decrease, as shown in Fig. 7A.
The SOD activity increased significantly on day 4 of 10% PEG-6000 treatment and
decreased on day 4–8 in each treatment group. The CAT activity in the treatment groups
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Figure 5 Orthogonal principal component analysis (OPLS-DA) score plots of metabolites under drought treatment. (A) CK treatment group;
(B) 10% PEG-6000 treatment group; (C) 15% PEG-6000 treatment group; (D) 30% PEG-6000 treatment group. The brown (circle), dark blue (box),
black (triangle), yellow (inverted triangle) and pink (diamond) points represent 0, 2, 4, 6, 8 days treatment respectively. Data are presented as three
replicates. Full-size DOI: 10.7717/peerj.14336/fig-5

Cao et al. (2022), PeerJ, DOI 10.7717/peerj.14336 10/25

http://dx.doi.org/10.7717/peerj.14336/fig-5
http://dx.doi.org/10.7717/peerj.14336
https://peerj.com/


was generally lower than in the control group; The CAT under drought first reduced and
then increased under drought conditions, as shown in Fig. 7B. The POD activity in the
drought treatment groups was significantly higher than that in the control group, with the
most significant change under severe drought conditions (Fig. 7C). The CAT activity
under 10%, 15%, and 30% PEG-6000 treatment was 263.16%, 136.22%, and 188.63%
higher than that in the control group, respectively, on the day 8. The PAL activity in each
drought treatment group was higher than that in the control group; the enzyme activity
first increased and then decreased, as shown in Fig. 7D. The PAL activity in the 15% and
30% PEG-6000 treatment groups was 135.68% and 147.74% higher than that in the control
group, respectively, on day 4.

The content of O:−
2 in S. divaricata represents the degree of damage to plant cells under

drought conditions, which increased significantly in the 15% and 30% PEG-6000
treatment groups on day 2 (Fig. 7E). The MDA content represents the lipid peroxidation
level of fresh roots under oxidative stress and indirectly reflects the damage level of cells.
The MDA content in the drought treatment groups was close to that in the control group
in the early stage of treatment, but increased significantly in the late stage (Fig. 7F).
The MDA content increased significantly on day 6 and decreased on day 8 in each group,
which was higher than that in the control group.

DISCUSSION
ROS are inevitably produced in plants for growth and development. Under mild drought,
high temperature, and other adverse conditions, ROS at appropriate concentrations act as
signal molecules and induce a series of physiological changes and adjustments in
metabolism (Miller et al., 2010). However, when the plants are exposed to severe adversity
for a long period, the scavenging system fails to eliminate the additional ROS generated

Figure 6 Heat map visualization of S. divaricata in different treatment groups under drought stress.
The color range from blue to yellow indicates relative abundance from low to high (Color scale key above
heat map). Data are presented as three replicates. Full-size DOI: 10.7717/peerj.14336/fig-6
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and results in oxidative damage (Pallavi et al., 2012; Das, Majumder & Biswas, 2021).
Drought is the main abiotic stress of plants, which leads to oxidative stress by producing
different forms of ROS. A balance in ROS depends on their production and elimination,
which is determined by the type, content, and activity of antioxidants (Qi et al., 2017).

Drought promoted the transformation glycosides into aglycones
Glycoside molecules contain a hydrophilic glucose group without the ability to pass
through biofilms. However, the glycosides are often enclosed in the cells with biofilms, and
their antioxidant activity is reduced. As shown in Fig. 7E, the content of O−:

2 increased
significantly in the early stage and decreased in the following days under drought stress.

Figure 7 The contents of S. divaricata on antioxidant enzymes activities, superoxide anion (O:−
2 ) and

malondialdehyde (MDA) under drought stress. (A) Superoxide dismutase (SOD), (B) catalase (CAT),
(C) peroxidase (POD), (D) phenylalanine ammonia lyase (PAL), (E) superoxide anion (O−:

2 ) and
(F) malondialdehyde (MDA). The brown, orange, light orange and yellow represent CK, 10%, 15% and
30% PEG-6000 treatment groups represently. Data are presented as three replicates.

Full-size DOI: 10.7717/peerj.14336/fig-7
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However, plants have SMs besides antioxidant enzymes, which can convert the stored
glycosides into aglycones to enhance the antioxidant effect and reduce the ROS produced
under oxidative stress. As shown in Fig. 6, most of the 28 SMs detected under drought
stress were glycosides and their glycosidic counterparts, such as cimifugin and cimifugin
7-glucoside, 5-O-methylvisammioside and 5-O-methylvisaminol, hamaudol and
sec-O-glucosylhamaudol, scopoletin and scopolin, and marmesin, which got interchanged
under the action of hydrolases and glucosaminidases. This results in the accumulation
of compounds with stronger antioxidant activity, which was consistent with researches of
the previous findings (Shen et al., 2020; Karuppusamy, 2010; Ahmed et al., 2021; Martim,
2014). The model plant used in present study, S. divaricata, is a common medicinal plant;
cimifugin with excellent analgesic, antipyretic, and anti-inflammatory effects is the main
component of this plant (State Pharmacopoeia Committee, 2020; Yang et al., 2017; Lee
et al., 2020; Wang et al., 2017). Cimifugin 7-glucoside and 5-O-methylvisammioside have
little pharmacodynamic action unless the hydrophilic sugar molecules are removed and
converted into the corresponding nonglycosidic components in vivo (Han et al., 2017).
Under favorable conditions, the intracellular ROS are present at moderate concentrations,
and the glycoside components, such as cimifugin 7-glucoside, 5-O-methylvisammioside,
hamaudol, and scopolin, are stored at high levels but with low activities. However, under
adverse conditions, cimifugin 7-glucoside, 5-O-methylvisammioside, hamaudol,
imperatorin, and scopolin quickly remove a glucose molecule and get converted into
cimifugin, sec-O-glucosylhamaudol, 5-O-methylvisaminol, and scopoletin under the
action of the hydrolytic enzymes (Chen et al., 2018; Zhao et al., 2016; Döll et al., 2018),
which is consistent with the results of the present study shown in Fig. 6. The antioxidant
effects are enhanced due to the additional –OH group after removing the sugar base by
hydrolysis. Therefore, the levels of cimifugin 7-glucoside, 5-O-methylvisammioside, and
sec-O-glucosylhamaudol decreased rapidly under oxidative stress, while the levels of
cimifugin 5-O-methylvisaminol, and hamaudol increased. Hence, the number of –OH
groups in metabolites increased, and the antioxidant activity was enhanced accordingly.
When the ROS level decreased in a suitable environment, excessive free aglycones of
cimifugin, 5-O-methylvisaminol, and hamaudol were converted into the bound state by
glucosyltransferases, leading to the decreased activities. These observations indicated that
the activities of glycosides and their glycosidic counterparts varied greatly with the
environment changes. The conversion of glycosides and their corresponding products
needed only one-step hydrolysis and biosynthesis, which could quickly complete the
reaction in cells. Therefore, it can quickly adjust the antioxidant capacity and adapt to the
environment. Thus, glycosides and their glycosidic counterparts acted as a “buffer pair”
maintaining the redox balance and stabilizing the ROS level rapidly in cells when the
external environment changed.

Drought promoted active metabolite generation
Drought induced changes in levels of PMs in the fresh roots of S. divaricata. Citric acid,
which is an important component of the tricarboxylic acid (TCA) cycle, was detected in
the control group but not in the other three drought treatment groups, indicating that the
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oxidative stress inhibited the primary metabolism in S. divaricata. As the intermediate
substances in transforming PMs into secondary metabolites (Pant, Pandey & Dall’Acqua,
2021), the levels of tryptophan, tyrosine, and shikimic acid increased during the treatment,
indicating that oxidative stress enhanced the biosynthesis of SMs (Qian et al., 2019; Guan
et al., 2021; Yokoyama et al., 2021). The increase in the levels of downstream substances,
such as 5-O-methylvisaminol, inevitably required raw materials obtained from
3-phosphoglyceric acid and phosphoenolpyruvic acid, which were the products of
glycolysis (Pacold & Anderson, 1973). Although these compounds were continuously
consumed, their levels still showed a slight increase, indicating the promotion of glycolysis
under oxidative stress. The synthetic pathway of S. divaricata under drought stress is
shown in Fig. 8. These observations suggested that severe oxidative stress induced SMs via
a negative feedback pathway, indicating a increased adaptability of S. divaricata.

Drought enhanced the levels of highly SMs
Drought enhanced the levels of SMs in S. divaricata metabolites such as imperatorin,
scopoletin, psoralen, cleomiscosin A, 5-hydroxy-8-methoxypsoralen, cimifugin,
hamaudol, 5-O-methylvisamitol, bergapten, and 5-methoxy-7-(3,3-dimethylallyloxy)
coumarin, which were first synthesized rapidly. These upstream substances, which lacked
sugar groups and had low molecular weight, could diffuse freely into the cells but were
synthesized rapidly, improving the antioxidant effect. More importantly, the amount and
the kinds of active groups in the molecules determined the activities of chemicals (Wang
et al., 2020b; Kawaii, Ishikawa & Yoshizawa, 2018). Moreover, these upstream substances
had more –OH, –OCH3, and unsaturated double bonds, which directly determined the
antioxidant ability of cells (Naikoo et al., 2019; Zheng et al., 2017; Avila-Nava et al., 2021).
Once the level of ROS was reduced to an appropriate level, these upstream, high-activity
products were converted into downstream, low-activity products and stored. The results
indicated that the secondary metabolites can protect against oxidative stress.

Regulatory roles of antioxidases
Drought induces various reactions, including oxidative stress, growth inhibition and
synthesis of some nontoxic compounds, to increase the osmotic potential of plant cells and
thus allow metabolic processes to enhance the activities of some antioxidant enzymes.
Previous studies showed that the changes in SOD activities depended on the severity,
duration, and type of drought (Quartacci & Navari-Izzo, 1992; Badiani et al., 1990). SOD,
which can catalyze the conversion of O−:

2 into H2O2, widely exists in plants and participates
in almost all metabolic processes. In the present study, the antioxidation of S. divaricata
under early or mild drought stress increased (Fig. 7A). However, SOD could not
completely eliminate ROS, while H2O2 was mainly eliminated by CAT and POD (Hao
et al., 2019; Jiang & Zhang, 2002; Dhanda, Sethi & Behl, 2010). SOD activity was lower
under moderate and severe drought conditions than that of control group, indicating a
limited oxidative stress resistance effect of SOD. Thus, SOD is not a key enzyme in the
antioxidant enzyme system of S. divaricata under aggravated or long-term oxidative stress.
The activity of CAT in each drought treatment group was similar to that of the control
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group (Fig. 7B), indicating that the drought conditions induced by PEG-6000 had little
effect on CAT, which was consistent with the previous findings (Fuchino et al., 2021; Fu &
Huang, 2001). Meanwhile, POD can effectively remove H2O2 produced when SOD
scavenges O−:

2 (Liu et al., 2014; Khan et al., 2021). The results showed that the activity of
POD increased continuously in the low-concentration group and showed an increase at
first and then a decrease at medium and high concentrations (Fig. 7C), indicating that
POD scavenged ROS under oxidative stress, which was consistent with previous findings
on different plants (Bano et al., 2021; Jing et al., 2013; Rangani et al., 2018; Ayyaz et al.,
2021). In this study, the content of O−:

2 increased significantly on day 2 under 15% and 30%
PEG-6000 treatments and decreased in the following days (Fig. 7E). These changes were

Figure 8 Metabolic networks of S. divaricata under drought stress. The proposed metabolic pathways were based on the current research and
web-based database of metabolic pathways. Content changes of difference compounds were presented by color changes. Metabolites in gray are not
found in this study. The changes of metabolite content were based on the drought stress data stimulated by 15% PEG-6000, and the changes of
metabolite content at different treatment times were compared based on the control. The content change trend has been indicated in the figure.
Metabolites in blue represent decrease whereas yellow represent increase. Full-size DOI: 10.7717/peerj.14336/fig-8
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highly correlated with the high activities of SOD, POD, and CAT (Figs. 7A–7C), which
effectively eliminated ROS in the early and middle stages of treatment and maintained a
dynamic balance between the production and elimination of ROS, these observations were
consistent with previous findings (Fu & Huang, 2001). However, the protective effect of
antioxidant enzymes on plants was reduced in the late stage of drought, resulting in a large
accumulation of ROS, which were transformed into more active ·OH viaHaber–Weiss and
Fenton reactions (Zorov, Juhaszova & Sollott, 2014). These changes intensified membrane
lipid peroxidation and significantly increased MDA content. However, the antioxidant
enzymes are also proteins, and their antioxidant activity is reduced under a long-term
adverse environment. Therefore, other pathways are needed to exert synergistic
antioxidant effects. The present study showed that the main components of S. divaricata
were chromones, coumarins, and flavones derived via the phenylalanine biosynthesis
pathway. PAL is the rate-limiting enzyme of the phenylalanine biosynthesis pathway,
which is closely related to the generation of SMs in S. divaricata (Parra-Galindo et al.,
2021; Li et al., 2013; Yao et al., 2017). In this study, the moderate and severe drought
stresses improved the PAL activities in S. divaricata (Fig. 7D), showing that oxidative stress
increased the rapid production of phenylalanine biosynthetic pathway compounds in
S. divaricata, which was consistent with the change displayed in Fig. 6.

The activities of compounds depend on their active groups, such as –OH, –CH3, and
double bonds (Naikoo et al., 2019; Zheng et al., 2017; Avila-Nava et al., 2021). Generally,
phenolics with more –OH are considered the most important group of SMs, and the
activity of –OH is much higher than that of –OCH3. However, the major SMs in
S. divaricata were chromones with –OCH3 and not –OH; the chemical composition
indicated weak adaptability for S. divaricata. Meanwhile, O−.

2 gets converted into H2O2

mainly under the action of CAT or POD. However, POD in plants is a glycosylated
protein, and the glycosylation can stabilize the conformation of enzymes and avoid
protease degradation. Therefore, POD shows better stability and is the main enzyme for
scavenging ROS under adverse conditions (Han et al., 2017; Qi et al., 2016). Numerous
studies have shown that POD is an environment-induced enzyme. Its biosynthesis and
activity increase rapidly under adverse conditions. However, unlike CAT and POD,
S. divaricata is rich in chromones, and no hydrogen donors are required to scavenge ROS.
Therefore, POD regulated the activities of SMs in S. divaricata, while the environment
regulated the POD activity in this study. Under environmental stress, chromones can play
a better role in antioxidation.

CONCLUSION
The present study found that the SMs played essential roles in regulating the adaptability
of S. divaricata to adversity. The plant S. divaricata regulates the content and activity of
various chemical compounds via the biosynthesis of SMs and the transformation of
different active ingredients to protect against oxidative stress. The content and activity of
free SMs with phenolic hydroxyl and high-antioxidant activity groups increase under
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oxidative stress, and excess ROS are scavenged. These substances can be transformed into
less-active substances and stored under favorable conditions. The SMs in S. divaricata are
numerous, just like the “buffer pair” of chemical solutions, which maintain ROS balance to
adapt to changing environments. Thus, the present study confirmed that the quality of
herbal medicine was closely related to the SMs, which explained the diversity and
complexity and the effect of moderate ecological stress in medicinal plants.
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