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Abstract: Thanks to omic disciplines and a systems biology approach, the study of essential oils
and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting
can provide an effective strategy to characterize essential oil contents, network pharmacology is
revealing itself as an adequate, holistic platform to study the collective effects of herbal products
and their multi-component and multi-target mediated mechanisms. Multivariate analysis can
be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of
bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution
of bioinformatics and database availability, disease-target networks relevant to a growing number of
phytocomplexes are being developed. With the same potential actionability of pharmacogenomic
data, phytogenomics could be performed based on relevant disease-target networks to inform and
personalize phytocomplex therapeutic application.

Keywords: essential oil; network pharmacology; personalized medicine; phytogenomics;
multivariate analysis

1. From Traditional Use of Essential Oils to Phytocomplex Molecular Characterization

The use of plant extracts dates back to the ancient Mediterranean populations. Aromatic plants,
essences, and oils have been used for ages in traditional medicine, ceremonies, beauty care, food
preservation, and perfumes. They have also been the basis for herbal and botanical medicines and
remedies contributing, together with other traditional medicinal preparations, to the development
of pharmaceuticals [1]. The earliest essential oils (EO) usage evidence occurred from 3000 to 2500
B.C. Egyptians are known as the first culture to use aromatic extracts, and essential oils were used in
China and India, despite the first evidence of essential oils produced by steam or hydro-distillation
seems to be attributed to the Arabs in the Middle Ages [1,2]. Essential oils contain complex mixtures
of volatile compounds derived from aromatic plants, mostly composed of terpenes (monoterpenes,
sesquiterpenes, etc.) generated by the mevalonate pathways. However, other compounds are present,
like phenolics, derived via the shikimate pathway [3,4]. EO components can be synthesized by all plant
organs and are stored in secretory cells, cavities, canals, epidermic cells, or glandular trichomes [2,5].
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EOs are generally extracted by low/high-pressure distillation. Other processes include solvent
extraction, absolute oil extraction, resin tapping, wax embedding, cold pressing, liquid carbon dioxide,
or microwaves [6]. Most of the commercialized essential oils are chemotyped by gas chromatography
and mass spectrometry analysis. Analytical monographs are available (European pharmacopeia, ISO,
WHO, Council of Europe) [7], to ensure consistent EOs quality. Essential oil chemical profile differs
importantly depending on climate, soil composition, plant organ, age, vegetative state, and type of
extraction, displaying wide variability in the number of molecules and the stereochemical types of
molecules extracted. Due to the extreme variability of the essential oils’ chemical profile, the EO
biological effects can vary strongly, depending on the quality and quantity of the active molecules in
the phytocomplex [4,8]. Standardized conditions of extraction are required for consistency, the same
plant organ, growth in the same soil, under the same climate, and collected in the same season and the
same time of the day.

EOs are known for multiple biological activities, among which antioxidants, antiseptic, antifungal,
analgesic, anti-inflammatory, spasmolytic, and anesthetic properties [4,9–12] and for their cytotoxic
effect on different human cancer cell lines [13,14]. Although numerous molecular mechanisms of action
have been proposed for different EOs, most studies have tested purified molecules, making it hard
to correlate the biological activity with the mixture of different components of the phytocomplexes.
The high variability of the EO chemical composition and the use of not standardized phytocomplexes
has often led to different activities, even in the same contexts [15]. Chemical fingerprinting, like
metabolomic analysis, is normally used to precisely identify chemical composition and characterize
EOs [16].

2. Identification and Isolation of Bioactive Compounds and Derivatives from Essential Oils

EOs biological activities are usually tested on pharmacological experimental models, and
the activity is normally attributed to the most meaningful molecule(s) based on the composition.
Nevertheless, when used alone, the same purified single molecules usually do not possess the same
biological activity. This is usually attributed to the presence of many different molecules, many with
similar structures, that can collectively affect the biological activity. As a result, pharmaco-toxicological
parameters such as IC50, although useful to screen different EOs with respect to specific biological
activities [17], can hardly be used for their pharmacological standardization due to the wide variability
of EO components. Using the phytocomplexes’ main characteristic molecules or families has been
one common strategy to standardize herbal preparations, assuming a linear correlation between the
pharmacological activity and the main components of the phytocomplex [18]. The main limit of
this approach is the exclusion a priori of significant contributions of the lesser components of the
phytocomplex to the biological activity, as well as the biological cooperation between components,
thus misrepresenting the multiple component nature of the phytocomplex.

EO research has often used bioactivity-guided fractionation to identify fractions enriched with the
pharmacological activity of essential oils or other phytocomplexes, an approach that has often led to
the identification of molecules or families further developed to obtain drugs [19–21]. Phytocomplexes
are progressively fractioned, and the biological activity enriched. Fractions isolation depends on the
extraction methods, and in some cases, has led to the purification of some individual components
of the essential oil most endowed with the original biological activity. Isolation of single molecules
from essential oils follows the logic of the classical reductionist pharmacological approach to identify
single compounds associated with a specific activity. This approach has allowed the identification of
important bioactive compounds also in EO, as in the case of terpenes. Nevertheless, despite many
scientific in vitro and in vivo findings demonstrating the efficacy of single molecules extracted from
essential oils such as for thymol, carvacrol, eugenol, beta-caryophyllene, menthol, and pinitol among
others, the original bioactivity found in the phytocomplex is often reduced and few clinical studies
on humans have demonstrated their clinical applicability [22–28]. D-limonene is an example of
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translational failure. Considered a promising antitumoral molecule against many types of cancers,
when trialed in the clinic it revealed a lack of efficacy [29,30].

In general, the reductionist, magic-bullet oriented approach of identifying single molecules
to strike a pharmacological target, has revealed with time its intrinsic limits when dealing with
phytocomplexes. In most cases, the biological activity of the isolated compound does not correspond
to the initial biological activity of the phytocomplex, where multiple synergies and antagonisms
between molecules and between molecules and molecular targets occur and contribute to the biological
activity as a whole [31]. By removing the original natural context, molecule isolation and purification
eliminates the very intrinsic nature of the plant-prepared mixture, thus annihilating its multifaced
biological activity. Moreover, both experimental models and analytical methodologies designed for
pharmacological studies of single molecules, are often not suitable for investigating mixtures of different
substances, hampering the full exploitation of the intrinsic potentialities of natural phytocomplexes
such as essential oils. Different, more adaptable experimental models and analytical approaches would
be more feasible, where multiple molecules and multiple effects can be simultaneously analyzed while
maintaining the original context. The use of -omics technologies and a systems biology approach is
today a powerful strategy with unprecedented potential for studying phytocomplexes like essential
oils in their entirety, taking into consideration all the potentially active components [32,33].

3. Oneness and Multiplicity of the Phytocomplex: Pushing Too Far the Reductionist Approach
Can Lead to Biological Irrelevance

Herbal products have dominated the pharmacopeia for hundreds of years and have provided
large amounts of medicines [31,32,34]. More recently, while the pharmaceutical industry has focused on
single drug therapeutics and synthetic drug development, the use of natural products in drug discovery
has been reduced. This approach has been favored by the advent of structure activity-guided organic
synthesis and large-scale screenings. Synthetic pharmaceutical production reduced the connection
between plants and human health, making modern medicine highly dependent on medications
mostly based on single molecules endowed with target-specific molecular mechanisms of action [35].
Unfortunately, this reductionist approach, though leading to some of the most important therapeutical
breakthroughs, is intrinsically unfeasible for the study of herbal drugs, whose activity is linked
to the multiplicity of bioactive components present in the phytocomplex and the corresponding
plethora of molecular targets [31]. Complex mixtures of compounds in herbal drugs have been shown
to exert stronger effects than the single, isolated compounds [36]. Several trials evaluating whole
plant extracts activity versus purified preparations have shown that the potency declines with the
progressive fractionation and purification of the mixture [37,38]. The synergistic, cumulative, or the
addictive properties, as well as enhanced bioavailability of plant constituents, have been proposed to
explain the different effectiveness [39]. Endo-interactions (interactions between substances present
within the phytocomplex) and exo-interactions (interactions with other substances encountered in the
biological environment of the target organism) may have a profound effect on the pharmacokinetic
and pharmacodynamic properties, as well as on the potential toxicological side effects of complex
drugs [32]. Indeed any drug, as well as endogenous mediators, even when acting on one single target,
can trigger many different biological phenomena depending on the target compartmentalization.
Considering the complexity of a biological response to a single mono-active drug, the identification
of the herbal drug interactions of each single component with its own molecular target(s) can be
particularly challenging [32]. The biological effect of a phytocomplex is the collective effect of all
its components, some of which will cooperate and some might modulate, while others will act on
different, distantly connected targets, ultimately generating several biological events, most of which
will probably never overcome the redundancy threshold of the biological system balance control and
not become evident [40].

Diseases with a multifactorial etiology are today increasingly treated using different drug
combinations, aiming at different targets (e.g., systemic arterial hypertension, atherosclerosis, type-2
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diabetes mellitus, tuberculosis, cancer, infections by multi-resistant bacteria, heart failure, septic shock,
etc.) [39]. It is reasonable to assume that a mixture of compounds (phytochemical or synthetic) would
have greater bioactivity than a single compound because a mixture of bioactive compounds can
affect multiple targets [7,34,35]. Modern medicine has learned how rapidly pathogens and cancer
cells can develop resistance to single-ingredient drugs. Administration of complex drug cocktails to
circumvent or delay the development of resistance to drugs is today a winning therapeutical strategy.
Plants learned this strategy very early in their evolution to survive. By relying on combinations of
pleiotropic, multi-targeted molecules, plants may have perfected interacting phytochemical complexes
to accomplish many complementary tasks [41,42]. The synergism among single herbal extract
compounds are mainly related to two factors: the simultaneous solubility of a group of substances
with different polarities, and the multiplicity of targets including enzymes, receptors, ion channels,
transport proteins, antibodies, and many others [43]. There is thus a need for the development of new
approaches and methodologies for pharmacological studies and clinical trials evaluating the effects
produced by complex mixtures of compounds [37,40].

Systems biology integrates information about individual components of a biological system.
Large databases from various sources and dedicated software can be used to predict the effects
of substances on human health [44]. In network pharmacology, a systems biology approach can
reconstruct complex molecular pathways from large datasets, providing the basis for the identification
of the links between drugs, biological targets, and human diseases, which would be too challenging
to interpret experimentally [44,45]. The creation of complete databases containing information on
networks of human protein–protein interactions and protein–disease associations has made this
possible. Experimentally determined pharmacological data of a given chemical mixture can be fed
into these networks to obtain information on chemical interactions, their links to biological activities,
and then to human diseases [44]. This mixed in silico approach is today opening new possibilities to
properly study the multicomponent and multitarget effects of phytocomplexes like EO.

4. Phytochemical Research, the Emergence of the Holistic Approach

Omics technologies allow the simultaneous detection of entire molecular families in a given
biological system. At the same time, bioinformatics provide different software tools to collect, classify,
network, and view a large number of analytical data. Systems biology offers the system-level framework
and a holistic approach to all biologic phenomena, based on the analysis of molecular networks in
their dynamic interactions within highly interconnected pathways [46–52]. The application of -omics
techniques is thus demonstrating to be inherently appropriate for the pharmacological assessment of
EO and their multiple biological targets [53–56].

Phytocomplexes exert their biological activity by influencing the steady-state of a large number
of components in a biological system and their interactions. Biomolecules create tightly integrated
networks, and biological responses derive from the behavior of such networks [57]. Phytocomplex
mediated effects can be envisioned as the net output of changes in the properties of a vast number of
molecules, all acting in an interdependent fashion to form a highly connected network. The mutual
empowerment of omics and systems biology derived from their combined use, finally allows a view of
biological systems as a whole, and thus represents a holistic analytical alternative that is more feasible
to study complex mixtures as essential oil phytocomplexes [58–61].

5. Network Pharmacology Meets the Phytocomplex

The multimolecular systems approach of network pharmacology provides a strategy based
on bioinformatics tools (databases, software) to map the multiple simultaneous interactions of
the meaningful molecular clusters of the phytocomplex with their biological targets, highlighting
pharmacologically relevant pathways. By informing the therapeutic potential of the phytocomplex,
the analysis of relevant interactions with pharmacological network nodes empowers the actionability
of its applications.
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This field is currently being extensively used in pharmacology. Identifying in silico the most
promising compounds or mixtures of compounds for the desired molecular targets on virtual platforms
is currently one emerging strategy in the discovery of new drugs to be used for the treatment of
multifactorial diseases [62]. Currently, several research teams have developed in silico platforms
at a higher level, endowed with software capable of assembling and analyzing billions of known
bioactive compounds that can be used to verify their effectiveness against key proteins associated
with multifactorial diseases [63]. Molecular docking programs fit the molecules with the protein in
question, to understand if they are able to bind, identifying which, among the many possible molecular
orientations of the compound, are most effective. Today it is possible to analyze up to a billion
molecules for each of these targets, and some projects foresee the possibility of using increasingly
efficient cloud computing platforms [64].

Important results have been obtained with the analysis of herbal preparations from traditional
Chinese medicine (TCM), where plants are used as blended herbal medicines in formulas that comprise
mixtures of mixtures, with each herbal component supposed to exert its specific role, either as
an effector, an enhancer, or a mitigator [32,65]. TCM studies have turned abundantly to network
pharmacology to re-interpret this traditional knowledge scientifically. In most cases, components
of the phytocomplexes are identified and then correlated to biological activities, based on known
molecular associations collected in database libraries. In contrast, the actual biological activity is
only verified experimentally as a subsequent step. Although this approach takes into consideration
every molecule in the phytocomplex, it relies on informed databases with data from experimental
conditions in which the molecules had been used alone or in different mixtures or conditions that
may not faithfully represent what happens when herbal medicines are used entirely. A bias is thus
generated in the selection of the mechanisms of action of the molecule-target-disease network, which
might ultimately mislead the investigator.

These TCM studies are based on knowledge from the traditional use of herbal formulae. In most
cases, the evidence is a body of traditional medical observations collected during millennia of practical
experience, guided by a holistic philosophical framework. The medical approach focuses on wellness
based on maintenance of balance between opposite and complementary principles, linked by a flow of
energy (Qi) extending as a continuum from cosmos to individuals. Notwithstanding the non-scientific
framework, TCM has been successfully using herbal formulae for centuries, and these are still used
in integration with clinical, scientifically sound therapeutic interventions. The recent introduction of
omic analytical techniques, endowed with bioinformatics and a holistic systems biology approach, has
opened to the possibility of re-interpreting complex TCM herbal formulae within a scientific framework.
Indeed in the last ten years, numerous network pharmacology studies have produced a wealth of
experimental data that today provides a new interpretation supporting the use of phytocomplexes
from TCM formulae [66,67].

A network pharmacology approach involves a functional reconstruction of the phytocomplex
based on its molecular components. Their association with relevant molecular targets is the first layer
of the network, while the further association to disease and pharmacological effects completes the
network (see Figure 1 for an example of network pharmacology application to TCM formulae). Even
though this approach provides new insights into the molecular mechanisms of phytocomplexes, the
sum of the targets affected by the single molecules does not necessarily reflect the global activity
of a phytocomplex. It would thus be important to support the use of network pharmacology with
experimental data obtained directly from phytocomplexes [68]. This would make it possible to identify
targets sensitive to the phytocomplex as a whole.
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Figure 1. Example of network pharmacology applied to traditional Chinese medicine (TCM) formulae.
(A) use of databases and bioinformatics for the identification of correlations between TCM, substances,
targets and diseases; (B) building the pharmacological networks; (C) Database comparison and
assessment. Distributed under the terms of the Creative Commons Attribution License (CC BY)
Copyright© 2019 Zhang, Zhu, Bai and Ning [67].

Evolving from an experience-based medicine to an evidence-based one is still challenging,
but network pharmacology has allowed an unprecedented significant scientific growth in the field.
Well-structured traditional medicines, with a highly personalized approach and a deep knowledge on
preventative strategies, are at the forefront of a new impulse towards integrative methods, aimed at
bringing together deterministic and holistic medical traditions [69–75].

The same approach can be applied to the study of other multitarget mechanisms of action
typical of phytocomplexes, including EOs. A critical step to create molecule-target networks involves
pharmacodynamic and ADME (absorption distribution metabolism excretion) characterization to
verify their bioavailability to reach biologically significant targets. Once drugability has been evaluated,
computational methods and databases applied in herbal medicine can be used to identify potential drug
targets from multiple therapeutic areas. Identifying drug-target interactions provides essential elements
for a network construction where drugs and targets are represented as nodes and the interactions as
edges, where all the elements are connected to one or more nodes. The prediction of target profiles and
pharmacological actions can then lead to the drug-target-disease co-module associations [32,56,76–84].
To date, several studies have been conducted in different clinical areas, from cerebrovascular diseases
to neurodegenerative diseases, from cancer to mental illness, internal medicine, and wellness [85–95].

6. Analytical Strategies Fit for Studying Phytocomplexes

Essential oils can differently synergize, antagonize, and/or interact with the human body by
numerous mechanisms. Their pharmacological efficacy is obtained thanks to integrated multimolecular
systems that analyze different biological phenomena leading to a collective effect of clinical
significance [96]. Herbal medicinal products or herbal preparations, including essential oils, play an
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increasingly significant role in healthcare, as preventative medicines, nutraceutical, health foods,
and natural health products [97]. The composition of herbal products is highly variable, and
their standardization cannot be easily achieved, as would be required for clinical use. Moreover,
understanding their complex molecular mechanism of action is pivotal for a proper pharmacological
use, an aspect that encounters many technical problems at different stages, from pharmaceutical
standardization to consistency of effectiveness. Various genetic and phenotypic characteristics, growth
conditions, and the manufacturing chain can account for variations seen in the plant metabolome.
Given that the nature and function of bioactive constituents in herbal preparations are usually not well
understood, a satisfactory quality control of herbal preparations is often missing [98]. Standardization
of herbal drugs based on constituents with known therapeutic activity is commonly used, but this can
lead to a bias in the quality evaluation with the reductionistic assumption that single components are
solely responsible for the therapeutic efficacy. The identification and assessment of the contribution of
all components and their interactions to the pharmacological effect requires the application of advanced
analytical and high-content technologies, including “omics” methods, computational modeling and
simulation approaches, and, most of all, a holistic vision, and specifically, a systems biological
thinking [85,99].

Methods of multivariate statistics can evaluate chemical fingerprints to classify samples and
predict their quality. Chemometric methods can be used for assessing data relating to the quality of
herbal products [100]. Techniques include principal component analysis (PCA), local least square (LLS),
linear discriminate analysis (LDA), spectral correlative chromatography (SCC), heuristic-evolving latent
projections (HELP), information theory (IT), and orthogonal projection analysis (OPA). Other methods
can be used to provide key information for building networks and connections, like Bayesian networks
and graphical models (e.g., Markov random fields) [101]. Assessing the quality of herbal drugs from
a combined metabolomic-bioactivity profile perspective seems to be the most appropriate approach
to capture the relationships between multiple constituents and synergisms, to help understand the
active components and their mechanisms of action [99]. These methods play a key role in the quest
for active ingredients of essential oils, allowing their analysis as clusters within the context of the
phytocomplex, therefore allowing the building of molecule-target networks that reflect the real type
and level of biological activity experimentally observed.

7. Multivariate Approach to Study Essential Oils’ Biological Activity

There are only a few examples where essential oil biological activity has been associated with
its components directly from crude experimental data, a purely inductive methodology, as like most
classical experimental models. Our group used gas chromatography analysis coupled with mass
spectrometry (GC/MS) and principal component multivariate analysis (PCA) to study the cytotoxic
activity of essential oils from various species of the Pistacia genus on human tumor cell lines. The
biological activity of different samples from various species of Pistacia was plotted versus the molecular
fingerprint of the EOs, and several clusters of molecules resulted in associating significantly better with
the biological activity. In particular, PCA was performed on a Pearson correlation matrix, computed
with the contribution of each compound to the IC50 of each oil sample, taking into consideration the
intrinsic contribution of the compound to the cytotoxic effect of the phytocomplex. PCA allowed the
identification of 46 compounds in the phytocomplexes correlated with potential biological activity,
distributed within different clusters of molecules potentially cooperating to achieve the cytotoxic
activity on the cell lines. The analysis does not take into account the contribution of the single molecules,
but the final result of their presence in the biological environment, providing an inductive, and at the
same time, holistic reading of the experimental evidence. Merging the chemical composition data and
the biological results by a multivariate approach allows evaluating the bioactivity of complex mixtures.
At the same time, it highlights the cooperating clusters of bioactive molecules (see Figure 2) [68]. The
graphical display of the correlation matrix, obtained through PCA, also allows to display patterns
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and interpretative schemes capable of making hypotheses on the possible activities of the cluster of
substances present within the phytocomplex.Molecules 2019, 24, x FOR PEER REVIEW 8 of 15 
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Figure 2. Principal Component Analysis of the cytotoxic effect of Pistacia essential oils on LoVo cells.
(A) principal component analysis (PCA) biplot with PC1 and PC2 distribution of essential oil samples
and chemical components of the phytocomplexes. (B) PCA biplot with PC3 and PC4 distribution
of essential oil samples and chemical components of the phytocomplexes. Clusters of cooperating
compounds with a positive correlation to one or two components are identified with circles (green
for P. lentiscus, yellow for P. integerrima, and blue for P. terebinthus). Taken with permission from
Buriani et al. [68].

8. Network Pharmacology Guided Phytogenomics for Personalized Medicine

Once significant clusters of bioactive molecules are identified within the framework of their
original poly-molecular complex, the appropriate analytical steps need to be pursued to translate
the molecular knowledge into a potential therapeutic context. The best possible characterization
is needed for direct and indirect molecular mechanisms of action that together can contribute to a
therapeutic effect. As previously suggested, this step can be achieved using a network pharmacology
approach, with the construction of the phytocomplex-target-disease network based on the known
molecular targets of the experimentally bioactive molecules in the EO. With the characterization of
the disease-relevant target network, it is possible to rationalize the multiple effects of the essential
oil components maintaining the integrity of the poli-molecular nature of the phytocomplex and
standardize its use to treat or prevent specific medical conditions. The therapeutic actionability of
this information finally depends on the experimental strength of available data on the phytocomplex,
so that proper clinical trials can be carried out.
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Individual genetic profiling is becoming more common in the clinic and pharmacogenomic data
can be used to personalize therapeutic interventions. Pharmacogenomics is used to identify key
molecular assets of pharmacological interest, providing essential pharmacokinetic, pharmacodynamic,
and toxicological information. Personalization of therapies can be based on the genetic characteristics
of the individual, affecting how drugs are absorbed, distributed, metabolized and excreted, how
the pharmacological targets respond to treatment, and how susceptible the individual is to toxic
effects. Individual molecular characteristics can thus be identified for prominent risk factors and
treatments tailored using targeted therapies. The identification of networks between phytocomplexes
and targets highlights the molecular mechanisms that collectively are associated with the herbal effect
and depend on molecules whose genetics can significantly affect the efficacy of the herbal treatment [86].
Different individuals with different genetic variations in such molecules will likely respond differently
to the phytocomplex. Knowing the individual genomic assets concerning the molecular networks
implicated in a given herbal effect will allow a better choice and a more proper regimen for therapeutic
or preventive treatments, providing a phytogenomic individual profile. Genetic profiling and a
pharmaco-toxicological characterization of the patient could be performed before prescribing or
administering herbal products, thus allowing a personalization of its use [79,102,103]. Thanks to their
high sensitivity and analytical potency, metabolomic procedures, analyzing the dynamic changes of
endogenous metabolites in vivo after administration of herbal medicines, have been utilized to examine
biological fluids and monitor phytocomplex administration. Although the high variability of the
analytes can still be an obstacle to the standardization of the phytocomplex-biofluids metabolome, this
methodology can provide phytocomplex-specific biomarkers that can be used to monitor treatments,
and represent an effective diagnostic-omic approach for the evaluation of the effectiveness of a
personalized phytotherapeutic intervention [104–106]. Collectively, the advances of systems medicine
and network pharmacology, together with phytocomplex-related pharmacogenomics, provide new
potential strategies and tools for a guided and assisted use of phytocomplexes (see Figure 3 for a
schematic representation of the potential applicability line for EO phytocomplexes).
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In conclusion, the high-throughput power of omic disciplines together with bioinformatics,
multivariate analysis, and in silico methodologies, rationalized within the holistic framework of
network pharmacology, provide a fast-growing and unprecedented number of tools and a new strategy
to study multifactorial biological environments. This introduces a multidisciplinary scientific approach
to study complex mixtures that have long been approached with an experience-based view or a
reductionist single active-molecule isolation quest. Currently, it is becoming increasingly possible
to bridge together direct experimental data with the real multimolecular composition of biologically
active mixtures, thus contributing to an evidence-based study of phytocomplexes. Such an improved
insight into phytocomplexes can promote the development of drugs based on essential oil bioactivities,
as well as new strategies for activity-driven drug development based on multi-target and molecular
cooperation of drug combinations. In this context, the pharmacological activity of known drugs can
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be improved by the addition of other molecules, thus guiding the conception of new multimolecular
drugs, exploiting their synergy in multi-drug combination therapies, or multitarget drugs [65,107–112].
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