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Flexural phonons in supported 
graphene: from pinning to 
localization
Wei L. Z. Zhao   1, Konstantin S. Tikhonov   2,3 & Alexander M. Finkel’stein1,4

We identify graphene layer on a disordered substrate as a system where localization of phonons can 
be observed. Generally, observation of localization for scattering waves is not simple, because the 
Rayleigh scattering is inversely proportional to a high power of wavelength. The situation is radically 
different for the out of plane vibrations, so-called flexural phonons, scattered by pinning centers 
induced by a substrate. In this case, the scattering time for vanishing wave vector tends to a finite limit. 
One may, therefore, expect that physics of the flexural phonons exhibits features characteristic for 
electron localization in two dimensions, albeit without complications caused by the electron-electron 
interactions. We confirm this idea by calculating statistical properties of the Anderson localization of 
flexural phonons for a model of elastic sheet in the presence of the pinning centers. Finally, we discuss 
possible manifestations of the flexural phonons, including the localized ones, in the electronic thermal 
conductance.

Most of the research in graphene emphasizes the relativistic character of its electron spectrum. However, 
graphene is also interesting due to its out-of-plane (flexural) vibrational phonon modes. Flexural phonons (FPs) 
are a unique addition that Van der Waals heterostructures have brought into microscopic physics1. Usually, FPs 
are considered in the context of the suspended graphene. Here we argue that graphene layer placed on the top of 
the supporting SiO2 substrate gives an opportunity to observe Anderson localization2 for the FPs.

To get an idea, let us recall the known facts about a long-wave acoustic wave scattering on a cylinder. The out-
put depends drastically on the boundary conditions for the velocity potential Φ on the surface of the cylinder3. If 
the velocity component normal to the surface of the cylinder vanishes, i.e., ∂ Φ == 0r r a , the scattering 
cross-section σR is proportional to a(ka)3, where a is the radius of the cylinder and k is the wave vector. This is the 
conventional Rayleigh scattering result4 for two dimensional (2d) geometry. However, when pressure is constant, 
the boundary condition reads Φ(a) = 0, and this influences forcefully the scattering. Unlike the Rayleigh scatter-
ing, the zero angular harmonic is involved, and as a result the cross section diverges at small k as ∝

−( )k ln
ka

2 1 1
. 

(The same takes place for an electro-magnetic wave scattering on a metallic cylinder).
In graphene, the substrate cannot scatter effectively the usual acoustic waves, longitudinal and transverse, 

because graphene itself is one of the most rigid substances. The other thing are the out of plane phonons. From 
the analysis of intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2 substrate, it has been 
concluded that in this system the layer is suspended between hills of the substrate5–8. We have checked that scat-
tering of the FPs from areas attached to the substrate is similar to the scattering from a rigid obstacle9. The zero 
harmonic is also involved, and the scattering cross-section diverges as σfl = 4/k.

In this work we study statistical properties of the out of plane excitations for a pinned-suspended flexible 
sheet. Whether pinning centers are located in the vicinity of the maximal heights of the substrate where the 
interaction with the layer is the strongest, or there are charges on the substrate which interact strongly with their 
images, will be not important for our purposes. First of all, we are interested in the scattering rate of the FPs in 
the presence of the randomly located pinning centers with concentration ni. Taking into consideration that the 
spectrum of the FPs ω(k) = αk2 is quadratic, i.e., velocity is linear in k, one obtains a scattering rate τ−1 = vσflni, 
that is finite in the low-energy limit. Thus, for the FPs one may expect localization of the low-energy modes with 
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ω(k) < τ−1. This is in striking contrast with localization of acoustic modes, which is known to happen only at high 
enough frequency10–14.

Let us comment upon the graphene layer deposited on the top of the corrugated substrate. Naively, the 
membrane-like layer either follows the substrate or hovers over the surface at some distance. Measurements 
with the use of cantilevers15 indicate, however, towards a possibility of the detaching a graphene sheet from a 
substrate to relieve its strain by slipping. (This is manifest by straightening of the cantilever). In the case of the 
SiO2 substrate, both experiment and theory agree that for typical magnitude for corrugations, the graphene layer 
is partially detached from the substrate. Moreover, the theoretical considerations16,17 justify the use of a contact 
force that is finite when graphene is conforming to the substrate and zero otherwise. The basic experimental facts7 
which lead to the conclusion that graphene layer deposited on SiO2 is partly freely suspended are as follows: The 
long-range corrugation of the substrate with the correlation length of about 25 nm is also visible on the graphene 
sheet, but with a smaller amplitude than on the substrate. Mesoscopic corrugations with smaller length of about 
15 nm not induced by the substrate were also identified. These short range corrugations are similar in height 
and wavelength to the ones observed on suspended graphene18,19. In addition, the picture of partially suspended 
graphene, and the presence of the FPs in the graphene on the SiO2 substrate, has been confirmed by the trans-
port20 and thermal measurements21,22.

Results
Here, we demonstrate that the FPs in a pinned-suspended flexible sheet are more similar to disordered electrons 
rather than to acoustical phonons. The main point here is that the pinning centers are effectively rigid obstacles 
for the FPs. As we have already explained, this leads to the non-vanishing scattering rate at small energies. Let us 
touch upon this point in more detail.

Pinning potential as a barrier for FPs.  Usually by a rigid obstacle one understands an inclusion with the 
Young’s modulus much higher than that in surrounding area. For graphene, which itself is very rigid, this is not 
an issue. However, the pinning potential introduces an energy barrier of a finite height for the flexural modes:

κ ρ ρω∇ +
∂

∂
= −h t h t

t
h tr r r r( , ) ( , ) ( ) ( , ),

(1)
4

2

2 0
2

Here h(r, t) is displacement in the out of plane direction; the term describing the barrier is on the right-hand side 
of the above equation. As a result, a flexural phonon with an energy smaller than ω0 cannot enter the area of pin-
ning. We have checked that such an inclusion is equivalent to a rigid obstacle. For not small ka, the cross-section 
σfl(k) = 4f(ka)/k. Interestingly enough, for ka 1, f(ka) ≈ ka, for a discussion see Section I in METHODS. 
Therefore, the limiting cross-section is ≈4a, i.e., twice larger than the width of the obstacle3. (This form of σfl(k) 
is, of course, valid only when the energy of the phonon is much less than the pinning potential, i.e., ω ωk( ) 0. 
Relying on the existing experimental data23 we assume that the pinning potential ω0 is about few meV).

Let us now touch upon a subtle question of the openness of the ensemble of the FPs which can be relevant for 
their localization. In the discussed model, the low-energy FPs cannot penetrate into the areas of strong contact 
with the substrate. Therefore, the most relevant channel connecting the FPs with the other degrees of freedom 
is the interaction with conducting electrons. The effect of this interaction can be estimated by comparing the 
amount of heat stored in the FPs with the rate of cooling of electrons. At low temperatures, most of the heat in 
the graphene layer is stored by the FPs, as they are the softest modes. The amount of this heat is ∝T2. The rate of 
energy exchange between electrons and FPs, as discussed below in section “Thermal transport”, is proportional to 
T3. Therefore, the openness of the FPs, cannot effectively destroy their localization at low temperatures.

Numerical study.  A general question has been addressed: If to compare with the electrons propagating in 
a disordered lattice, will the statistical properties of the eigemodes of the pinned elastic layer be the same or 
different? The question makes sense because for phonons in a pinned-suspended sheet there is no analogue of 
the on-site disordered potential W. Instead, there is concentration of the pinned sites. Furthermore, the FPs are 
described by the square of the Laplacian, rather than by the Laplacian in the case of electrons. To understand the 
general properties of the FPs in the presence of random pinning scatterers, we solve the equation of motion for 
the out-of-plane displacements using finite difference method on a 2d square lattice. We study a model in which 
the graphene sheet is completely attached at the pinning centers. For that, we use discretized LHS of Eq. 1 with 
condition h = 0 at randomly chosen pinned sites, so that one pinned site represents an attached area of the size 
≈2a (See Fig. 6 in METHODS for illustration of the model).

We estimate the size of an attached area to be a2 7 nm. Typical distance between the pinning centers ai is around 
20 nm; we will assume that = −n ai i

2. The representative fraction of the pinned sites is ≈ .a a(2 / ) (7/20) 12 5%i
2 2 . 

Correspondingly, we studied “samples” with 5–20% of the pinned sites to determine statistical properties of the eigen-
modes and eigenvalues. In doing so, we considered samples with periodic boundary conditions of the size up to 
200 × 200 sites. In what follows, we measure the energy eigenvalues E in units of α/(2a)2 which approximately equals 
0.08 K for the parameters mentioned above. We found out here that typical energy scale for strong localization, ωloc

str, 
for the discussed concentration of pinned sites is a fraction of 1 K. We believe that for graphene layer on the top of the 
SiO2 substrate ω ≈ .0 3loc

str  K is a realistic estimate. Eigenmodes at two representative energies are shown on the Fig. 1 
for a 200 × 200 sample (only 100 × 100 fragments are shown).

Phononic “conductance”.  As is well known, localization is a quantum critical phenomenon. The peculiar-
ity of 2d is that the critical point is at  =g1/ 0, where g  is electrical conductance per square measured in units 
e2/(2πħ). At a finite g, statistical properties are determined by the localization length lloc, which is analogue of a 
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correlation length at a quantum phase transition. A sample of size <L l g( )loc   is in the regime of criticality which 
may take place in a very broad range of the sample sizes, because for small g  the localization length is exponen-
tially large24. A consequence of strong fluctuations of wave function amplitude in the critical region is the multi-
fractality (that is when an eigenstate is extended but the occupied volume is noticeably smaller than the volume 
of the sample).

Turning back to disordered FPs, the first question that needs to be answered is: Is there a transition to delocal-
ized states at a certain energy (i.e., the “metal-insulator” transition with the mobility edge), or there is a crossover 
from strong to weak localization (WL)?

To figure this out, we first studied the dependence of the Inverse Participation Ratio (IPR) on the sample size 
L for various phonon energies. A discussion of the IPR is given below in METHODS, section “Weak multifractal-
ity of eigenfunctions”. (For more details the reader is referred to ref.25). From our simulations, it is clear that 
low-energy modes are localized: the IPR scales with the sample size to a finite value. For higher energies, the 
behavior of the wave functions changes, see Fig. 1, because the localization length lloc starts to exceed the sample 
size. We are particularly interested in studying the FPs in this region when l Lloc . Note that although the 2d 
Anderson model does not constitute a truly critical system, thanks to exponentially large (but still finite) localiza-
tion length at  g 1, the criticality takes place in a very broad range of the system sizes, L lloc. Therefore, 2d 
electrons at large g share many common properties with systems at the critical point of the metal-insulator 
transition2,26. As we shall see, similar physics holds also for our system of the FPs.

We proceed as follows: From the size dependence of the IPR at a given energy as shown on the Fig. 2, we 
extracted an energy-dependent fractal dimension. For disordered electronic system of a given symmetry class, the 
fractal dimension is determined by the conductance g. For example, in the case of the Gaussian Orthogonal 
Ensemble (GOE), the size dependence of the IPR is described by the fractal dimension27,28 equal to 

π= −D L g L( ) 2 2/ ( )2 , where dependence of g L( )  on L is due to the WL corrections. Thus, for each concentra-
tion of the pinned sites we can prescribe for different energies ω the corresponding value of the phonon “conduct-
ance” gph(%, ω), using the expression for the fractal dimension D2 for electrons. We defer the discussion of the 
dependence of D2 on the sample size, D2(L), to the end of section “Weak multifractality of eigenfunctions”.

Figure 1.  The intensity of the phonon wavefunctions ∝h2 for 5% of the pinned sites at E = 0.5 (left) and E = 3.1 
(right). Pinned sites are indicated as dots.

Figure 2.  Scaling of the IPR with the system size for 20% of the pinned sites and several values of energy E. For 
the smallest energy the effect of the WL correction to gph(L) is clearly seen.
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For disordered electrons in 2d, the well developed theory connects the behavior of various physical quantities 
with the value of the conductance25. We have calculated numerically the same quantities for the FPs, using the 
values of gph extracted from IPR, and found a very good agreement with the theoretical predictions existing for 
the disordered electrons in the case of the GOE. Below we present some results of such calculations.

Statistical properties.  First, we have checked (see Fig. 7 in METHODS, section “Energy level statistics”) 
that the distribution function of the level spacing P(s) for localized states has almost Poissonian statistics, while 
for metallic states it is of the Wigner-Dyson form. Next, in 2d it becomes especially interesting to study the vari-
ance ωΣ Ω( , )2 , which is a two-level correlation function characterizing the fluctuations of the number of levels N 
in a strip of width Ω around the energy ω: ωΣ Ω = 〈 Ω 〉 − 〈 Ω 〉N N( , ) ( ) ( )2 2 2. The reason why it is of particular 
interest is that, in contrast to d = 1 and 3, in two dimensions this quantity is directly related to the WL correc-
tions29. Figure 3 demonstrates the level number variance as a function of the ratio Ω/Δ, where Δ is the average 
level spacing. It starts with the ergodic behavior described by the Random Matrix Theory (RMT). The ergodic 
regime holds up to Ω about the Thouless energy. For larger Ω there is a noticeable deviation: the variance starts to 
increase rapidly. The numerical results presented in Fig. 3 are in full accord with the theoretical expression 
obtained by us for d = 2; for details the reader is referred to section “Energy level statistics”.

To the best of our knowledge, this is the first demonstration of the mesoscopic fluctuations of the number of 
levels in d = 2, while for the 3d Anderson model, the function ωΣ Ω( , )2  was studied long ago30.

Another important statistical property is the distribution of the amplitudes of the eigenmodes, ψ2, which is 
called the wave function intensity distribution  y( ), where in our case y is ∝h2. For metallic granulas, in the 
ergodic regime described by the RMT, the intensity distribution is given by the Porter-Thomas distribution 
 y( )RMT . Owing to the fluctuations in the diffusive motion, there appear deviations from the ergodic behavior. 
When calibrated with respect to  y( )RMT , the function y( )  yields a curve with a very specific non-monotonous 
shape. As Fig. 4 shows, an excellent agreement with the theory of ref.31 is found.

To summarize, we have calculated numerically a number of quantities characterizing statistical properties of 
FPs using the values for gph extracted from the data for the IPR, and found a very good agreement with the theo-
retical predictions existing for the disordered Anderson model electrons in the case of the Orthogonal Class of 
Universality. Furthermore, the theoretical expressions for the number of variance ωΣ Ω( , )2  and the wave function 
intensity y( ) , both are intimately connected with the effects of the WL originating from the Cooperons. The 
excellent agreement demonstrated in Figs 3 and 4 justifies that in the discussed model the regime of WL is the 
same as in the Anderson model in 2d. We believe that the reason for the observed universal behavior is that the 
FPs in the lattice with pinned sites are eventually described with the same Non-Linear σ-model as disordered 
electrons in the Orthogonal Class of Universality.

Estimate of the scales.  Let us estimate energy of the FPs at which a crossover from strong to WL occurs. 
Strong localization, ω τ1/ , holds for momenta k n8 i

2  that for our choice of ai yields < ≈ . −k k nm0 14loc
str 1. 

So far, we didn’t consider the effect of strain. The strain u , ignoring anisotropy, is known to add the term ρuv kL
2 2 

into the equation of motion, Eq. (1), where vL is velocity of the longitudinal phonons. In the isotropic approxima-
tion this yields ω α= +k k u v k( ) ( ) ( )L

2 2 2 . One has to keep in mind that scattering of a FP from a high enough 
barrier doesn’t depend on details, and the cross-section remains 4/k, if k < a−1. Then, for the linear spectrum the 
condition for strong localization is k n4 i

2 , which is similar to what we have got above. Typically, u  is ~10−4, and 
the two terms in ω(k) are of comparable strength for the discussed scales.

So far, we have discussed point-like pinning centers only. In reality, the size of the attached areas can be compa-
rable with the distances between them. Then, owing to the factor f ≈ ka > 1, the energy of the strongly localized FPs 
can be a few times larger. As we have already mentioned, a reasonable estimate for ωloc

str for graphene layer on SiO2 is 
≈0.3 K. Furthermore, effects of the weak localization noticeably expand localization of the FPs. One may easily show 

Figure 3.  Blue dots: level number variance Σ Ω( )2  in a sample 200 × 200 with 20% of the pinned sites for E ≈ 3.5. 
The theoretical fit with gph = 1.6 is plotted by a solid line in cyan. The RMT result is given in magenta.
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that, as compared to the strong localization, the weak localization increases momenta of the FPs which undergo 
localization by a factor ln(L/l). (In this estimate, it is necessary to take into consideration the factor f in the scattering 
cross-section). Correspondingly, weak localization boosts the energy of the localized FPs by a factor ln2(L/l). For a 
standard micron size sample, ≈( )ln 5L

nm10
. As a result, the energy of localized FPs may increase up to few K.

Effects of anharmonicity.  In writing Eq. (1) we have neglected effects of interaction of the FPs with the 
in-plane phonons (anharmonicity) and with ripples32–36. For graphene on a random substrate, FPs not only scat-
ter from the points of contact with the substrate, but also excite acoustic phonons. One may check, following the 
calculations of ref.37 for disorder-assisted scattering, that at low temperatures the effect is vanishingly small.

Next, as it is well known anharmonicity yields a strong effect on the bending rigidity in graphene. The point is 
that the in-plane rigidity of graphene is extremely high (i.e., it has a very large Young’s modulus, Y0), while a bend-
ing rigidity κ0 is relatively modest. The anharmonicity transfers the strong in-plane rigidity into the bending one. 
The effect is controlled by the temperature, and is of the infrared origin. For small wave vectors 

q qth, the 
bending rigidity driven by thermal fluctuations is scale dependent: κR(q) ~ κ0(q/qth)−η with the scaling exponent 
η ≈ 0.8–0.8538,39. The transition scale is given by =

πκ
qth

k TY3

16
B 0

0
2

. For graphene, at room temperature qth ≈ 1.6 nm−1. 

As a result, effective bending rigidity of an atomically thin graphene ribbon that are 10–100 micrometers in size 
at room temperature can be thousands times larger than at T = 040–43. (At T = 0, the quantum non-linear effects 
lead to only logarithmic corrections, hence generally much smaller than the power-law renormalization produced 
by thermal fluctuations44).

Strong effects caused by the renormalizations, which have been mentioned above, correspond to the vanishing 
wave vector q → 0. However, above the transition vector qth thermal fluctuations caused by anharmonicity are no 
longer significant and κR(q) ≈ κ0. In graphene, the energy of a FP with the wave vector qth is equal to 
ω ≈ . k T k T0 03th B B . Thus, there is a substantial energy gap between the thermal phonons and phonons, for 
which the effects of the anharmonicity are relevant. For our estimate of ω ≈ .0 3loc

str  K, temperature should be about 
10 K or higher to influence our analysis of statistical properties of the FPs on the SiO2 substrate. Furthermore, in 
our analysis, we were mostly interested in FPs with the frequency exceeding ωloc

str , so that they can propagate 
between pinned regions colliding randomly with them.

Discussion
We shall discuss now the implications of the FPs on the thermal transport of a graphene layer placed on a corru-
gated SiO2 substrate. We argue that traces of localization of the FPs may have been observed in the experiments 
at low temperatures.

Thermal transport.  The temperature behavior of overheating in graphene on the top of SiO2 at low tempera-
tures, refs37,45–49, has not been fully understood, yet. Theoretically, the heat flux from electrons to the FPs is known37 
to be ∝Tel

3 (correspondingly, the reversed flux from the FPs to electrons is ∝Tph
3 ). We consider the heat exchange 

with the FPs as realistic explanation of the exponent δ = 3 observed in refs45,46 at low temperatures and far away 
from the neutral point. At concentrations of the electric carriers, electrons or holes, n ~ 1012 cm−2 the alternative 
explanation of δ = 3 with the use of the result obtained for the case of the unscreened deformation potential49 is not 
realistic; a discussion of this point is given below in section “Electron-phonon interaction at low temperatures”.

Moreover, we believe that the existence of localized FPs may explain the experimental result of ref.46 for cool-
ing rate of graphene at the lowest temperatures  .T 0 85 K. In this regime, the cooling is dominated by the elec-
tron heat diffusion along the sample. However, the Lorenz number  estimated in this way, was found to be 35% 
above its nominal value 0 . It has been shown in refs50–52 that neither the Fermi liquid nor renormalization-group 
corrections in disordered 2d electron systems can modify the Lorenz number  and, therefore, the result requests 

Figure 4.  Blue dots: the intensity distribution calibrated with respect to the RMT result for 10% of the pinned 
sites at E ≈ 3.5. Solid line: fit with theory (31) with g = 5.63 and L/l = 5.
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for an explanation. Here we argue that the heat exchange of electrons with the localized FPs, δPep
loc, may resolve this 

problem. The point is that the heat exchange with the localized phonons has the form imitating the electron heat 
diffusion contribution, δ ∝ −P T T T( )ep

loc
el ph .

Let us comment upon δPep
loc. First of all, we recall that interaction of an electron with the FPs is described by the 

two-phonon processes. Correspondingly, the heat exchange between the electrons and FPs, which is proportional to 
square of the two-phonon amplitude, contains four powers of the FP-momenta. However, the localized FPs are not 
goldstone modes anymore. For localized FPs, the momenta that enter into the matrix elements of the electron-FP 
interaction should be substituted by the inverse of the localization length. As a result, two powers of frequencies in 
the expression for the heat flux P saturate at ω ω loc

str. This, however, leads to a dramatic consequences. The factor 
describing the dependence on the occupation numbers in the case of the two-phonon processes for temperatures 
larger than the energy of the phonons diverges like ω−2. The diverging integration should be cut-off at energies typ-
ical for the localized FPs. As a result one gets a contribution to the cooling rate of the order δ ω∝ −P T T T( )loc

str
el phep

loc . 
The obtained correction to the heat flux has just the form of the electron heat diffusion. In order to obtain experi-
mentally observed magnitude of the deviation of  from 0 , one has to suggest ω ∼ .0 3loc

str  K. This is in full corre-
spondence with our expectations of the scale energies where localization of the FPs takes place.

Summary.  Studying effects of disorder on the properties of elastic membranes has a long history36,53–59. 
However, a layer placed on the top of a corrugated substrate, which has been discussed in the present work, is very 
different from the disordered membranes considered so far. First, disorder here is external rather than internally 
quenched. Next, disorder pins rigidly the height of randomly chosen points of the layer, rather than acting on the 
metric and curvature tensors describing the deformation of the membrane. Questions of localization of the FPs 
to the best of our knowledge have not been addressed previosly.

Graphene layers on top of SiO2 substrates are expected to play an important role in applications related to 
thermal transport and for ultrasensitive bolometry. While the graphene sheet is pinned at random points, the 
FPs may exist in between due to the corrugation typical for this substrate surface. We have argued that in this 
system Anderson localization of low-energy FPs develop. We showed that the ensemble of flexural phonons in 
a pinned-suspended flexible sheet is statistically identical to an ensemble of disordered electrons, despite the 
very different underlying mathematical descriptions. Localization of flexural phonons should be important for 
thermal transport in such hybrid systems even at not very low temperatures. Traces of localization of the FPs may 
have been already observed in the experiments. Let us note that we have already shown that FPs give a significant 
contribution to dephasing rate of electrons in graphene60. Here, we have argued that localization of the FPs opens 
interesting perspectives for thermal transport.

Methods
Scattering of a flexural phonon by a rigid obstacle.  According to9, the scattering cross-section of the 
FP by a rigid obstacle of the radius a equals σ = f ka( )fl k

4  where f(z) is given by the following expression:

∑ ε=
−

−=

∞ ′ ′

′ ′
f z J z K z J z K z

H z K z H z K z
( ) Re ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

(2)n
n

n n n n

n n n n0
(1) (1)

where ε = 10 , ε => 2n 0 . The function f(z) with asymptotes f(0) = 1 and ≈f z z( 1)  is shown in Fig. 5. For short 
wave-lengths the limiting cross-section is twice larger than the width of the obstacle. Note that the factor f is 
important for the effectiveness of the weak localization in samples of large size.

Weak multifractality of eigenfunctions.  The spatial distribution of wave functions is conveniently char-
acterized by inverse participation ratios:

∫ ψ= | | .P d r r( ) (3)q
d q2

2 4 6 8 10

2

4

6

8

10

12

Figure 5.  Function f(z), determining the scattering cross-section, σ = f ka( )fl k
4 .
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After sample average, 〈Pq〉 shows the scaling behavior with the system size L:

〈 〉 ∼ .− −P L (4)q
D q( 1)q

Obviously, in the insulating state Dq = 0, while in a metal Dq = d. At a critical point, Dq is a fractional which 
leads to anomalous scaling behavior in 〈Pq〉. This is a manifestation of the wave function multifractality, which is 
a consequence of the spatial correlations of the wave function.

In 2d, the inverse participation ratios scale as

〈 〉 −








π− −
−

P q L L
l

(2 1)!! ,
(5)q

q g q q
2( 1)

1 ( 1)

that corresponds to

π
= − .D q

g
2

(6)q

Here, the deviation of Dq from dimension 2 is determined by a small parameter 1/πg. The above result 6 was 
first obtained by Wegner27 via the renormalization group calculations for a system of disordered (non-interacting) 
electrons; see also28. The dimensionless parameter g is a conductance of a sample measured in quantum units. In 
analogous to weak localization, the phenomena is coined “weak multifractality”.

We study a model of random pinning centers, in which the graphene sheet is completely attached at the 
pinning centers; see Fig. 6. In our analysis of multifractality of the FPs we used q = 2. The corresponding inverse 
participation ratio, Pq = 2, was denoted as IPR. This quantity allowed us to extract the phononic “conductance”, 
which we used for the statistical analysis of our system. Note that, because of the absence of the genuine critical 
point in 2d, g becomes size-dependent, i.e., g(L) = g0 − (1/π) ln L/l where l is the mean-free path of FPs at a given 
energy, and g0 = g(l). This implies that for each scale L one can use the standard formula given above, but with 
slowly varying g(L) in the exponent. This is possible because corrections to g are not large in a finite size sample, 

Figure 6.  Elastic flexible 2d sheet on a substrate: pinning centers are indicated as red cylinders.

Figure 7.  Crossover from the Poisson to Wigner-Dyson level statistics at 20% disorder.
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and owing to the slow dependence of g on spatial scale L. With this procedure, we have obtained an excellent 
agreement between the theory of the logarithmic corrections to the conductivity and our numerical results as it 
is shown in Fig. 2 of the main text.

Energy Level Statistics.  Several quantities are introduced to measure the fluctuations of energy levels ωn, such 
as the distribution function of level spacing P(s), and the level number variance ωΣ Ω( , )2 .

Random Matrix Theory (RMT) could be used to describe these quantities in ergodic systems (e.g., for elec-
trons in metallic granules). Here, we will focus on the case of Gaussian Orthogonal Ensemble (GOE). Then the 
distribution function of level spacing is well described by the Wigner surmise: = −π π( )P s s s( ) expo 2 4

2 , where 
=

ω ω−

Δ
+s n n1  and Δ is mean level-spacing. In the localized phase the level correlations are absent, and the distri-

bution function of level spacings is Poissonian: P(s) = exp(−s). In our system of the FPs the crossover from the 
localized to delocalized behavior is illustrated on Fig. 7.

In the RMT, the level number variance ωΣ Ω( , )2  increases logarithmically with Ω. For Ω Δ , it varies as 
πΣ Ω = 〈 〉 + + 〈 〉

π βN c O N( ) ln(2 ) ( )2 2
2 , where 〈N〉 = Ω/Δ, and cβ is a known constant. This, however, is far from 

the true behavior (as one can see from Fig. 3 of the main text). For a further analysis it useful that function 
ωΣ Ω( , )2  is closely related with the two-level correlation function ΩR( ), which is defined as

ρ ω ρ ω
ρ ω

Ω =
− Ω + Ω

− .R( )
( /2) ( /2)

( )
1

(7)2

Here ρ ω δ ω ω= ∑ −−V( ) ( )n n
1  is the Density of States (DOS), and 〈ρ〉 is the average DOS, which is related to 

the mean level-spacing Δ as ρ =
ΔV

1 . The connection between the two correlation functions can be presented 
as

∫ωΣ Ω = 〈 〉 −
〈 〉

N s R s ds( , ) 2 ( ) ( ) , (8)
N2

0

or, equivalently, Ω = Δ ∂ Σ Ω

∂Ω
R( )

2
( )2 2 2

2 .
Kravtsov and Lerner recognized in29 that in 2d, unlike d = 1 and d = 3, the level correlation function R(Ω) and, 

hence, ωΣ Ω( , )2  are governed entirely by the weak localization corrections. They found that Ω = ∑
π

Δ

− Ω
R( ) Req Dq i

1
( )2 2 2  

with the diffusion constant D → D + δD, where δ = − ∑π
Δ

− Ω
D D Q DQ i

1
2 . This gives

∑
π

Ω =
Δ


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
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.

π
Δ

+ Ω( )Dq i
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1
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Q
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DQ

2
2

( )
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2 2 2

Now, instead of splitting this expression into two parts as it was done in29), we use Eq. 8 to calculate the level 
number variance. After integration in Q and s, this yields

∑Σ 〈 〉 = Σ 〈 〉 +











+ +





−




π

π π

≠

〈 〉 〈 〉 〈 〉⁎ ⁎ ⁎N N( ) ( ) log 1 ,
(11)

RMT
n

N g

n

N g

n

N g

n
2 2 1

0

/ / /
2

2

2

2 2

4

2

2

where π= + π
⁎g g2

4

2
. We use the expression determined by formula 11 for fitting the numerical data presented 

in Fig. 3 in the main text.

Statistical Properties of the Wave Functions.  Porter and Thomas were first who studied the distribu-
tion of eigenfunction amplitudes within the RMT framework. Their result shows simply Gaussian distribution, 
which leads to the following distribution of the intensities y:

π
=

−
P y e

y
( )

2
,

(12)
RMT

y/2

Here ψ= | |y Vi i
2  is normalized in such a way that 〈y〉 = 1.

The supersymmetric field theory was applied to the study of the eigenfunction statistics in a d-dimensional 
disordered system. The eigenfunction intensity ψ= | |y V r( )2

0  in a point r0 is distributed as:

∑ν
δ ψ δ= | | − − .

α
α αP y V r y E E( ) 1 ( ( ) ) ( )

(13)
0

2

For d = 2, and not too large y, one can calculate perturbatively the deviations from the RMT distribution P(y). 
The corrected distribution function was found by Fyodorov and Mirlin in (31):
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κ
≈


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
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+

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− +
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
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




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P y P y y y( ) ( ) 1
2

3
2

3
2 (14)

RMT

2

with κ =
π

ln
g

L
l

1 . Notice that the expression in the square brackets is non-monotonous. A peculiar behavior of 
this expression as a function y can be seen in Fig. 4 of the main text.

Electron-Phonon Interaction at Low Temperatures.  Some recent experiments interpreted the cooling 
rate in terms of the weakly screened electron-phonon (e-ph) interaction down to very low temperatures. In par-
ticular, in46 the T3 law has been observed down to 0.5 K for sample D3. Such a behaivior corresponds to the dirty 
regime with negligible screening of the e-ph deformation potential according to the Table 1 presented in49. We 
believe, however, that applicability of the screenless approximation for the e-ph interaction at such low tempera-
tures and concentration of carriers n ~ 1012 cm−2 is highly questionable.

To illustrate our point, let us estimate, following49, temperature above which screening becomes irrelevant in 
the dirty regime < =T T s lk/dis B. Comparing the expressions for the energy flux at strong and weak screening49, 
one finds that crossover from the T5 to the observed T3 behavior should happen at > ⁎T T  which satisfies

κ.










≈⁎T
T

0 1 1,
(15)BG

2
2

with =T n54 /10 cmBG
12 2  for the Bloch-Gruneisen temperature and κ for an effective dielectric constant (for 

graphene on SiO2 substrate, κ ≈ 3). Here we expressed the result in terms of TBG using the fact that in graphene 
the inverse of the screening radius is of the order of the Fermi momentum. The unscreened T3 behavior may 
occur at temperatures higher than ⁎T  assuming that it is less than Tdis. (For samples D1 and D3 in (46) one has 
Tdis ≈ 40 K).

For the aforementioned sample D3, TBG ≈ 80 K. Thus, one may expect for the crossover temperature 
≈ ≈

κ⁎T 80250  K. It is clear that pushing ⁎T  down to 1 K region for the discussed densities of charge carriers 
would require an unrealistic value of κ. We, therefore, believe that this mechanism may be discarded for explana-
tion of the T3 scaling of the electron-phonon heat flux observed at low temperatures.

Data Availability
All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this 
paper may be requested from the authors.
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