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Abstract

The very effective anticancer drug doxorubicin (DOX) is known to have cardiotoxic side

effects, which could be accompanied by autonomic modulation. Autonomic disbalance

might even be an initiating mechanism underlying DOX-induced cardiotoxicity and can be

studied noninvasively by the analysis of heart rate variability (HRV). A number of strategies

have been assessed to predict chemotherapy-induced cardiac dysfunction while HRV, a

potential detecting tool, has not yet been tested. Thus, we aimed to determine the effect of

DOX treatment on HRV in a rat model of colorectal cancer. While pretreatment with fullere-

nol (Frl) acts protectively on DOX-induced cardiotoxicity, we aimed to test the effect of Frl

pretreatment on DOX-induced HRV alterations. After the induction of colorectal cancer,

adult male Wistar rats were treated with saline (n = 7), DOX (1.5 mg/kg per week, n = 7) or

DOX after pretreatment with Frl (25 mg/kg per week, n = 7) for three weeks (cumulative

DOX dose 4.5 mg/kg). One week after treatment rats were anaesthetized, standard ECG

was measured and HRV was analyzed in time and frequency domain. During autopsy the

intestines and hearts were gathered for biochemical analysis and histopathological exami-

nation. DOX treatment significantly decreased parasympathetically mediated high-fre-

quency component (p<0.05) and increased the low-frequency component of HRV (p<0.05),

resulting in an increased LF/HF ratio (p<0.05) in cancerous rats. When pretreated with Frl,

DOX-induced HRV alterations were prevented: the high-frequency component of HRV

increased (p<0.01), the low-frequency decreased (p<0.01), LF/HF ratio decreased conse-

quently (p<0.01) compared to DOX only treatment. In all DOX-treated animals, disbalance

of oxidative status in heart tissue and early myocardial lesions were found and were signifi-

cantly reduced in rats receiving Frl pretreatment. Autonomic modulation accompanied the

development of DOX-induced cardiotoxicity in rat model of colorectal cancer and was pre-

vented by Frl pretreatment. Our results demonstrated the positive prognostic power of HRV

for the early detection of DOX-induced cardiotoxicity.
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Introduction

Doxorubicin (DOX) is an important effective drug for the treatment of cancer patients. How-

ever, its use is limited by acute and chronic side effects, such as hepatotoxicity, nephrotoxicity,

pulmotoxicity and cardiotoxicity [1–3]. The cardiotoxicity is characterized by electrophysio-

logical, biochemical and morphological alterations [4] leading to irreversible cardiac dysfunc-

tion [1] and to the development of overt heart failure [5]. Suggested contributors to DOX-

induced cardiomyopathy include mitochondrial disruption [6], inadequate cellular energetic

[7], formation of free radicals [8–9], apoptosis [10], inhibited expression of cardiomyocyte-

specific genes [10], production of proinflammatory, reduction of antiinflammatory cytokines

[11] and alteration of adrenergic system in the heart [1,12], but the patophysiology is still not

completely understood [1, 6–10]. It is commonly accepted that DOX increases oxidative stress

[9], which could be particularly harmful to cardiomyocytes with sparse antioxidant defense

[13]. Thus, the use of antioxidants as protective agents could have beneficial effects on DOX-

induced toxicity, especially on cardiotoxicity. A lot of studies found a protective effect of fuller-

enol C60(OH)24 (Frl) as a potent free radical scavenger in biological systems [2,14,15] and con-

firmed its role in the prevention of acute DOX-induced cardiotoxicity [3,4]. No effect of Frl

treatment on DOX anticancer activity was reported [3]. Our previously published paper [3]

reported the lengthening of QRS and SαT segments of ECG in rats treated with DOX after

tumor induction and the normal ECG pattern in rats pretreated with Frl.

Many studies suggest that neurohumoral and autonomic tone imbalance play an important

role in the pathophysiology of heart disease in humans and in various animal models [16–20].

A powerful noninvasive tool that allows studying the autonomic cardiovascular modulation is

the analysis of heart rate variability (HRV) [21–23]. The reduction in HRV is strongly related

to the severity of heart disease [24,25] and could have a reliable prognostic value for its clinical

outcome [24–29]. Furthermore, the study of DeAngelis et al. [30] reported that alterations in

autonomic modulation may be an initiating mechanism underlying the onset of cardiovascular

diseases. The results of the study of Lončar-Turukalo et al. [31] confirmed HRV alteration as

an early marker of cardiotoxicity in DOX-induced cardiomyopathy in healthy rats. Since it is

known that illness itself can provoke autonomic modulation [32], a rat model of colorectal

cancer was applied in our study to reveal whether HRV changes can be used as a marker of

DOX-induced cardiotoxicity in cancer.

Because DOX-induced cardiotoxicity can cause irreversible damage to the myocardium,

prevention is the most effective strategy. It is crucial to detect subclinical signs of cardiotoxicity

before cardiac dysfunction develops. Since dose-dependent DOX-induced damage to the tis-

sue was found in dogs [33] and the cumulative dose of DOX was reported to be the most

important risk factor for the development of cardiotoxicity in humans [34], it is crucial to find

a strategy to detect early signs of cardiotoxicity occurring at a low cumulative DOX dose.

To the best of our knowledge, there are no available studies on the impact of DOX and

DOX applied after pretreatment with Frl, a potent drug against the DOX cardiotoxicity, on

HRV in cancer.

The aim of our study was to determine whether HRV monitoring could be a promising

strategy for early detection of DOX-induced cardiotoxicity. Thus, we studied the effect of low

cumulative DOX dose treatment on HRV in a rat model of colorectal cancer and the potential

beneficial effect of Frl pretreatment on DOX-induced HRV alteration. In order to explore the

effect of DOX and Frl on the cardiac function of the rats with colon cancer, lactate dehydroge-

nase (LDH) activity, antioxidant defense system capabilities and histological examination of

the rat hearts were assessed simultaneously.

Cardiac autonomic modulation induced by doxorubicin and fullerenol in a rodent model of cancer
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Materials and methods

Animals

In an experiment 21 male Wistar rats (HsdRccHanTM:WIST) were used at 7 weeks of age (bred

and maintained at the Medical Experimental Centre, Slovenia). They were quarantined and

housed 3–5 per cage (Ehret, Germany; 1825 cm2 floor space) on Lignocel bedding material (Ger-

many) in a standard controlled environmental with conditions at 22±1˚C room temperature,

55 ± 10% humidity and a 12 h light/dark cycle (illumination between 07.00 p.m. and 07.00 a.m.).

They had free access to a standard laboratory diet (Altromin 1324, Germany) and tap water.

Clinical state and body weights of rats were monitored on a weekly basis. The experiment was

approved by the Ethical Committee for experiments on animals of the Republic of Slovenia and

the Veterinary Administration of the Republic of Slovenia (Permit No. 34401-61/2007/7) and was

conducted in accordance with the European Convention for the protection of vertebrate animals

used for experimental purposes. Colon cancer was induced by 1,2-dimethylhydrazine (DMH)

(Fluka Chemie, Switzerland), prepared according to the standard method [35]. All rats received

subcutaneous applications of DMH (20 mg/kg) once a week during 15 weeks. The animals were

randomly divided into three groups (7 per group): control group, DOX group and Frl/DOX

group. At 24th, 25th and 26th week of age, rats were treated with saline only (control group), with

1.5 mg DOX/kg per week [36,37] (DOX group) and with DOX at the same dose as the DOX

group but pretreated with 25 mg Frl/kg per week [3] 30 minutes before DOX (Frl/DOX group).

Measurements

Seven days after the last application the rats were anesthetized with ketamine (75 mg/kg IP)

and xylazine (9 mg/kg IP). A standard 6 channel ECG (Cardiax, IMEDE, Budapest, Hungary)

was measured for 3 minutes using subcutaneous needle electrodes. All recordings were carried

out between 10 and 10.30 AM. The data were stored in a computer database using Cardiosoft

ECG software (Huston, Texas, USA). After ECG measurement the animals underwent further

investigations and were sacrificed at the end. The survival rate of the animals was 100%.

Histology

At autopsy all internal organs were removed, weighted and macroscopically examined. The

intestine was opened longitudinally, flushed with tap water, pinned on cardboard, and examined

macroscopically for the presence of tumors. The location, number and size of the tumors were

recorded and the intestine, heart and all detected lesions were fixed in 4% buffered formalin.

Large intestine was cut longitudinally and sent for histological examination in total length

along with all the macroscopically visible lesions. All tissue samples of the large intestine were

embedded in paraffin, serially sectioned at 4–5μm and stained with Kreyberg-Jareg method.

Aberrant crypts (AC) with dysplastic epithelium, adenomas and carcinomas were assessed by

histological criteria described elsewhere [38].

Each heart was quickly removed from the sacrificed rat, placed in an ice-cold solution and

divided into two parts. One part taken for histology was fixed in 10% buffered formalin,

embedded in paraffin and stained with haematoxylin-eosin. The rat hearts were scored indi-

vidually for the following parameters: the intensity and diffusion of cytoplasmic myofibrillar

loss, cytoplasmic vacuolation, apoptosis, necrosis and degeneration of cardiomyocytes, edema,

congestion and central vein thrombosis, and infiltration of poly- or mononuclear cells in the

heart sections. [3]. Scoring was done as follows: (0) none, (1) focal-mild, (2) multifocal-moder-

ate and (3) widespread-progressive, respectively. Histological evaluation of tissue samples was

carried out blindly.
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Biochemical analysis

LDH activity in the heart tissue was assayed for evaluating cardiac damage [39]. The oxidative

status of the heart tissue was assessed by determining the levels of oxidative stress markers

(malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG)) and oxidative

enzyme activities [superoxide dismutase (SOD) and catalase (CAT)].

The second part of the heart was minced and homogenized in a Tris-buffer solution (pH 7.4;

organ: buffer 1:10; w/w) and divided into two portions; one was used for MDA determination

(Chromsystems Diagnostic, Munchen, Germany), and the other was centrifuged at 13,000 × g

for 20 min at 4˚C (Beckman refrigerated, Ultracentrifuge). The supernatant was used for the

assays of LDH (Chema Diagnostica, Jesi, Italy), GSH and GSSG (Chromsystems Diagnostic,

Munchen, Germany), SOD (Ransod, Crumlin, UK) and CAT [2]. Free GSH/GSSG ratio was

calculated.

Data processing and statistical analysis

The R peaks of ECG were detected using Nevrokard software (SA aHRV file preparation, Med-

istar, Slovenia); the eventual R peak detection artifacts were removed manually, R-R interval

(RR) time series was obtained. To analyze the spontaneous fluctuations in RR interval in time

and frequency domain, advanced heart rate variability analysis for small animals (SA aHRV,

Nevrokard, Medistar, Slovenia) was applied.

In the time domain HRV was determined as the standard deviation of successive normal

RRs, measured between consecutive sinus beats (SDNN) and as the root mean square of suc-

cessive differences between normal RRs (RMSSD).

Spectral analysis of RR variability was calculated by fast Fourier transform algorithm using

Welch’s method with a Hanning window (256) and 50% overlapping in accordance with the

standard spectral estimation procedures [40].

Usually, three oscillatory components are distinguished in the spectral profile: the very low

(VLF), the low (LF), and the high-frequency (HF) band [40]. The VLF was not evaluated in

our study because the ECG measurement was too short to give reliable results in VLF band

[40]. Power spectrum analysis was evaluated by LF power in the frequency range 0.20–0.75 Hz

[41], which is related to the interplay between cardiac sympathetic and parasympathetic influ-

ences [40] and HF power in the 0.75–2.5 Hz [41] frequency band, which is exclusively under

parasympathetic (vagal) control [23,40,41]. The peak frequency in the HF domain corresponds

to the respiratory sinus arrhythmia [40]. Each of both power spectral components was calcu-

lated as integrals under the respective part of the power spectral density function and expressed

in normalized units (nLF and nHF) according to the standard procedure [40,42]. Normalized

LF power of HRV was proposed to reflect sympathetic cardiac modulation [40], particularly

when the cardiac-sympathetic drive is activated [43]. The LF/HF ratio was calculated and con-

sidered as an index of sympathovagal balance [42,44].

All results are presented as mean ± standard error of means. Statistical comparison between

experimental groups was done using One way ANOVA procedure in Sigma Stat 2.3 software

for Windows. LSD post-hoc test was applied for pairwise comparison of histological data and

Bonferonni t-test for HRV data. The significance level was set at p< 0.05.

Results

Health status of rats

The rats were in good general health status and their body weights increased during experi-

ment till the first Dox administration (Fig 1) showing the toxic adverse effect of Dox therapy.
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The histopathological analysis of the intestine revealed that all rats developed small micro-

scopically visible colon lesions (Fig 2). DOX treatment significantly reduced the development of

AC and adenocarcinomas in both, Dox (4.1 ± 0.7 ACs; p< 0.05 and 0.6 ± 0.2 adenocarcinomas;

p< 0.05) and Frl/DOX (4.1 ± 1.2 ACs; p< 0.05 and 0.4 ± 0.2 adenocarcinomas; p< 0.05)

groups compared to controls (9.1 ± 2.2 ACs and 1.4 ± 0.6 adenocarcinomas). The number of

adenomas did not differ among groups. Pretreatment with Frl did not affect the DOX antican-

cer activity.

Changes in oxidative status and morphology of the heart

DOX resulted in increased oxidative stress in the heart tissue as demonstrated by increased

SOD and CAT activities, increased MDA level and decreased GSH/GSSG ratio as well as in

increased damage of the heart tissue, demonstrated by increased LDH activities (17.9 ± 3.6 U/

L in comparison to both control (6.4 ± 2.8 U/L) and Frl/DOX (3.6 ± 1.8 U/L), p< 0.01). Pre-

treatment with Frl provided marked normalization of oxidative status: decreased SOD and

CAT activities, decreased MDA level and increased GSH/GSSG ratio (p< 0.001) when com-

pared to the group treated with DOX alone.

Fig 1. Body weight of rats throughout the experiment. Each curve represents one group of animals.

Control: group of rats with colon cancer without anticancer treatment; DOX: doxorubicin-treated group; Frl/

DOX: doxorubicin-treated group with fullerenol pretreatment. *:p < 0.05 weight gain at 19th week compared to

16th week in control group, no significant weight gain in the same time interval in both DOX group. Arrows

indicate time of Dox administration.

https://doi.org/10.1371/journal.pone.0181632.g001

Fig 2. Representative histologic pictures of the colon lesions. All DMH-treated Wistar rats developed

small microscopically visible colon lesions such as hyperplastic (a) or dysplastic crypts (b), adenomas (c) and

adenocarcinomas (d). Kreyberg staining, magnification 400x (a,b), 200x (c,d).

https://doi.org/10.1371/journal.pone.0181632.g002

Cardiac autonomic modulation induced by doxorubicin and fullerenol in a rodent model of cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0181632 July 20, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0181632.g001
https://doi.org/10.1371/journal.pone.0181632.g002
https://doi.org/10.1371/journal.pone.0181632


Effects of DOX and Frl treatment on heart oxidative status in rats with colon cancer are

summarized in Fig 3.

Histology confirmed that DOX-induced myocardial lesions, histologically classified as

myofibrillar loss, parenchymal degeneration and lymphoid infiltration, were significantly

reduced in rats that received Frl pretreatment (Fig 4, Table 1).

Heart rate analysis

DOX administration schedule used in our study in DOX group produced significant changes

in the frequency domain of HRV compared to controls. An example of power spectral analysis

of HRV in control and DOX-treated animal is given in Fig 5.

Fig 3. Biochemical evaluation of the heart oxidative status in cancerous rats treated with DOX alone or with Frl

pretreatment. MDA: malondialdehyde; GSH/GSSG: free glutathione to free glutathione disulfide ratio; SOD: superoxide

dismutase; CAT: catalase. *: p < 0.05 compared to DOX; #: p < 0.01 compared to DOX; &: p < 0.05 compared to control group.

https://doi.org/10.1371/journal.pone.0181632.g003

Fig 4. Representative histologic pictures of the heart sections. (a) DMH-treated Wistar rats, control

group; (b) after DOX therapy; (c) DOX therapy in combination with Frl pretreatment, haematoxylin-eosin

staining, magnification 400x.

https://doi.org/10.1371/journal.pone.0181632.g004
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Administration of DOX significantly decreased parasympathetically mediated nHF of HRV

(p< 0.05) (Table 2, Fig 6). In contrast, sympathetically mediated nLF of HRV was significantly

increased after DOX treatment (p< 0.05), resulting in an overall increased LF/HF ratio

(p< 0.05) (Table 2, Fig 6). There were no significant alterations in HRV across both men-

tioned frequency bands in the Frl/DOX group compared to control group (Table 2, Fig 6).

Comparing Frl/DOX to DOX, nHF was increased (p< 0.01) and nLF decreased (p < 0.01)

with corresponding LF/HF decrease (p< 0.01) (Table 2, Fig 6).

There were no statistically significant changes in heart rate and the HRV parameters in the

time domain (Table 2, Fig 7) among the groups studied. However, a tendency toward higher

values of time domain indices was observed in the DOX group (Table 2, Fig 7).

Discussion

The main findings of the present study are as follows: 1.) DOX treatment of cancerous rats

(cumulative dose 4.5mg/kg) altered HRV compared to untreated cancerous rats one week

after DOX treatment cessation; 2.) pretreatment with Frl, an effective antioxidant and a potent

protecting agent against DOX-induced cardiotoxicity, completely prevented HRV changes; 3)

HRV alterations in DOX-treated animals were accompanied by elevated oxidative stress of the

heart tissue and by histological changes typical for DOX-induced cardiotoxicity, whereas no

HRV modulations, less oxidative stress and normal myocardial microscopy were observed

when pretreated with Frl.

According to the commonly accepted interpretative HRV guidelines [40,45], the results of

our experiment showed that DOX treatment of cancerous animals modulates autonomic sys-

tem activity to the heart. DOX-induced increases in nLF and LF/HF display the overactivation

of cardiac sympathetic drive [40,46] in DOX-treated cancerous rats compared to controls. On

the other hand, a DOX-induced decrease in nHF indicates concomitant withdrawal of cardiac

parasympathetic activity [40,45] in DOX-treated rats compared to controls. Accordingly, sym-

pathetic overactivity in combination with reduced vagal tone to the heart characterizes the

main effect of DOX on cardiac autonomic modulation in cancerous rats. Contrary to DOX-

only treatment, pretreatment with Frl did not result in any significant changes in the tones of

any particular parts of autonomic activity to the heart, suggesting its protective role against

cardiac autonomic disbalance caused by DOX.

Cardiac autonomic disbalance observed in the DOX group in our study was accompanied

by elevated oxidative stress of the heart tissue and by histological changes typical of DOX-

induced cardiotoxicity [3]. In normal healthy conditions, free oxygen radicals are efficiently

detoxified by antioxidant enzymes such as SOD and CAT [47]. In the present study, the

Table 1. Cardiac lesion scores in cancer controls, rats treated with doxorubicin and doxorubicin pre-

treated with fullerenol.

Control DOX Frl/DOX

Degeneration 9* 12 9*

Lymphoid infiltration 3* 8 1#

Myofibrillar loss 3# 8 2#

*: p <0.05 compared to DOX

#: p <0.01 compared to DOX.

Significantly better cardiac lesion scores were found in control and Frl/DOX group compared to DOX.

Control: group of rats with colon cancer without anticancer treatment; DOX: doxorubicin-treated group; Frl/

DOX: doxorubicin-treated group with fullerenol pretreatment.

https://doi.org/10.1371/journal.pone.0181632.t001
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activities of SOD and CAT were increased in the DOX group compared to both control and

Frl/DOX groups, indicating that myocardial tissue tried to detoxify the oxygen-free radicals

but insufficiently. Concerning GSH redox cycle, GSH/GSSG maintenance is crucial to keeping

cellular redox status [48]. In our study, GSH/GSSG ratio in heart tissue was found to be signifi-

cantly decreased in the DOX group as compared to control and Frl/DOX, additionally con-

firming the disbalance in oxidant-antioxidant status in heart tissue in DOX. As a result, lipid

Fig 5. Power spectra of RR intervals for two representative rats. (A) Rat from the control group with colon

cancer without anticancer treatment. (B) Rat from the DOX group with colon cancer, treated with doxorubicin

(DOX). LF: low-frequency band of power spectrum, HF: high-frequency band of power spectrum, NU:

normalized units, PSD: power spectrum density.

https://doi.org/10.1371/journal.pone.0181632.g005
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peroxidation and oxidative tissue injury are induced by DOX [9,47]. Indeed, MDA, a marker

of lipid peroxidation, was significantly increased in the heart tissue of DOX-treated animals in

our study, and heart tissue damage was confirmed by histopathological examination.

Histopathological consequences of doxorubicin-induced cardiotoxicity are demonstrated

in several studies. Yagmurca et al. [49] investigated the results of cumulative 20 mg/kg doxoru-

bicin treatment in an experimental rat model of severe cardiotoxicity and found disorganiza-

tion of myocardial histology. Similarly, Chen et al. [50] reported myofibrillar loss and myocyte

degeneration in histopathological examination of myocardium by application of cumulative

15 mg/kg doxorubicin treatment in an experimental rat model. Our histopathological results

are in compliance with the above-mentioned reports albeit low cumulative DOX dose (4.5 mg/

kg): DOX-induced myocardial lesions, histologically classified as areas of myofibrillar loss, sin-

gle cell necrosis and parenchymal degeneration, as well as moderate lymphoid infiltration of

the heart tissue. During the three consecutive applications of DOX at a dose of 1.5 mg/kg/

week, it produced a marked increase in the heart LDH level as compared to control and Frl/

Dox group, additionally confirming that heart tissue damage was present.

No HRV changes were found in DOX rats that received Frl pretreatment, indicating that

Frl prevents DOX-induced autonomic changes to the heart. Concomitantly, in Frl/DOX

group, the heart tissue levels of MDA, LDH and GSH/GSSG ratio returned to their baseline

values. The activities of the antioxidant enzymes SOD and CAT decreased and myocardial

damage was significantly attenuated in Frl/DOX group. A lot of other studies have already

confirmed the protective effects of fullerenols (C60(OH)n) against the cytotoxicity of DOX in

animal models, especially Frl [2,3,51]. In DOX-induced citotoxicity Frl with its high antioxida-

tive potential acts as a free radical sponge and/or removes free iron through the formation of

the fullerenol-iron complex [51], which further disables the oxidative cell damage induced by

DOX. Additionally, Flr could have an anti-inflammatory effect on the organism after treat-

ment with DOX. On the other hand, current knowledge indicates that fullerenols show low or

no toxicity [52] and may contribute to the inhibition of tumor growth and the protection of

Table 2. Heart rate and heart rate variability parameters in time and frequency domains.

Control DOX Frl/DOX

RR (ms) 234.5±13.7 272.5±17.6 249.6±7.29

HR (min-1) 255.8±14.9 220.18±14.2 240.38±7.0

SDNN (ms) 2.8±0.4 5.6±1.4 3.6±0.5

RMSSD (ms) 4.9±0.8 6.6±1.7 6.5±1.5

nLF (NU) 22.13±5.33* 36.65±2.24 20.51±2.68#

nHF (NU) 76.20±5.01* 62.02±2.35 78.50±2.67#

LF/HF 0.32±0.10* 0.60±0.06 0.27±0.04#

*: p <0.05 compared to DOX

#: p <0.01 compared to DOX.

Heart rate variability parameters in frequency domain showed a significant difference in the control group

and Frl/DOX compared to DOX. Heart rate is expressed in RR interval duration (RR); SDNN: standard

deviation of successive normal RRs, measured between consecutive sinus beats; RMSSD: root mean

square of successive differences between normal RRs; nLF: integral under the low-frequency (LF) part of

the power spectral density function expressed in normalized units; nHF: integral under the high frequency

(HF) part of the power spectral density function expressed in normalized units; LF/HF: the ratio between

power spectrum density in HF part and LF part of the total power spectrum. Control: group of rats with

induced colon cancer without anticancer treatment; DOX: doxorubicin-treated group; Frl/DOX: doxorubicin-

treated group with fullerenol pretreatment.

https://doi.org/10.1371/journal.pone.0181632.t002
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Fig 6. Frequency domain indices in control, DOX and Frl/DOX groups of animals. Statistically

significant differences of control and Frl/DOX group were found in nLF, nHF and LF/HF compared to DOX.

Control: group of rats with colorectal carcinoma without anticancer treatment, DOX: group of rats with colon

cancer, treated with doxorubicin (DOX), Frl/DOX: group of rats with colon cancer, treated with doxorubicin,

pretreated with Fullerenol. *—statistically significant difference of control group compared to DOX (p<0.05), #

—statistically significant difference of Frl/DOX group compared to DOX (p<0.01). nLF: integral under the low-

frequency (LF) part of the power spectral density function expressed in normalized units (NU), nHF: integral

under the high frequency (HF) part of the power spectral density function expressed in NU; LF/HF: the ratio

between power spectrum density in HF part and LF part of the total power spectrum.

https://doi.org/10.1371/journal.pone.0181632.g006

Fig 7. Time domain indices in control, DOX and Frl/DOX groups of animals. No statistically significant

differences in time domain indices were found between groups. Control: group of rats with colon cancer

without anticancer treatment, DOX: group of rats with colon cancer, treated with doxorubicin (DOX), Frl/DOX:

group of rats with colorectal carcinoma, treated with doxorubicin and pretreated with Fullerenol. SDNN:

standard deviation of successive normal RRs, measured between consecutive sinus beats; RMSSD: root

mean square of successive differences between normal RR intervals in ECG.

https://doi.org/10.1371/journal.pone.0181632.g007
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normal cells through their antioxidant properties, as well as to the regulation of expression of

genes involved in apoptosis and angiogenesis, and stimulation of the immune response in

humans [52]. Accordingly, pretreatment with Frl did not affect the DOX anticancer activity in

the current study.

The same changes in HRV as induced by low cumulative DOX dose in our study are char-

acteristic of the initial phases of congestive heart failure in rodents and humans where a signifi-

cant increase in LF and a decrease in HF were detected and interpreted corresponding to

sympathetic overactivity and reduced vagal tone [53–55]. In addition, statistically significant

differences in LF/HF, nLF and nHF were found between normal and cardiovascular risk sub-

jects [16]. Sympathetic overactivity early in DOX-induced cardiotoxicity merges with the pub-

lished evidence that common pathogenesis for heart diseases of different etiologies could be

based on a sympathetic homeostatic shift toward higher activity [20,56].

The link between reduced cardiac vagal activity and heart failure development was clinically

confirmed in many studies [54,56,57]. In mice, attenuated parasympathetic tone ultimately

causes the progression of depressed left ventricular function to heart failure [56,58].

Our results are consistent with the results of the study by Lončar-Turukalo et al. [31] which

evaluated the influence of DOX treatment on the autonomic nervous system activity in healthy

rats. In accordance with their study, it can be concluded that DOX treatment equally affects

the regulation of the autonomic nervous system activity to the heart in healthy as well as in

cancerous animals.

Analyses of cardiac autonomic control based on HRV changes do not provide any evidence

of the potential mechanisms involved. However, there are several studies demonstrating the

impact of different autonomic and non-autonomic factors on HRV, which could be associated

with DOX-induced cardiotoxicity. Concerning autonomic factors, modulation of autonomic

nervous activity to the heart, adrenoceptor (AR) and muscarinic receptor density [59, 60],

their function [46] and AR receptor activated intracellular signaling pathways [46,61] are pro-

posed while suggested non-autonomic factors mainly include inflammation [62,63] and oxida-

tive stress [46,63,64]. Based on the reports of the above-mentioned studies, some potential

mechanisms underlying the HRV modulation in DOX-induced cardiotoxicity observed in the

present research might be proposed.

According to the study of Hrushesky et al. [65], it is unlikely that alterations in HRV were

provoked by DOX-induced autonomic neuropathy. They proposed that the direct effect of

DOX on the heart muscle itself caused HRV changes [65].

Indeed, Merlet et al. [66] revealed increased β2-AR expression and overexpression of inhib-

itory G protein (Gi), particularly its α-2 subunit (Giα-2) in the early phase of DOX-induced

cardiomyopathy in rats. The importance of Giα-2 involvement in fine-tuning of β-AR func-

tion in DOX-induced cardiotoxicity was additionally approved by the study of specific micro-

RNAs [67], which play potent regulatory roles in both cardiovascular disease and cancer.

While direct in vivo experiment examining the role of Gi signaling in the sinoatrial node [68]

found the selective loss of nHF in mice with expressed Giα-2 compared to mice with silenced

Giα-2 expression, decreased nHF found in DOX-treated animals in our study supports the

involvement of Giα-2 in DOX-induced cardiotoxicity. The above-mentioned findings sug-

gested that the new myocardial phenotype in terms of β-ARs densities and G protein signaling

was expressed by DOX and this might be the main determinant of the observed HRV modifi-

cations [69].

Concerning parasympathetic modulation, reduced nHF in DOX group, detected in our

study, could be further interpreted as a consequence of a decreased expression of M2 receptors

in cardiomyocytes of DOX-treated rats [70] in accordance with the study of Ribeiro et al. [71],
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who showed that M2 receptor level was significantly correlated with HF power values in the

human heart.

Depression in HF component of HRV reported during systemic administration of endo-

toxin to rats is associated with increased cytokine production (IL-6) [72]. While DOX treat-

ment increases cardiac IL-6 [73] level, inflammation could be another explanation for reduced

nHF in DOX group compared to both other groups in our study.

Chaswal et al. [74] reported that increased oxidative stress influenced cardiac autonomic

response. They found enhanced serum MDA level in L-NAME treated rats associated with the

same HRV changes as reported in our research: attenuated HF and increased LF/HF ratio.

However, the same study revealed that sympathectomy importantly modifies those HRV

changes, reflecting a significant role of autonomic tone to the heart in oxidative stress-induced

HRV modulatin, which could also not be excluded in our study.

While HRV was found to depend on HR [75], it is debatable whether this procedure can be

used to analyze autonomic nerve activity of the heart when HR is changing. In our study, all

groups of rats had similar mean HR (Table 2) justifying the use of HRV to evaluate cardiac

autonomic tone which showed evident differences among groups at the same mean HR. While

mean HR in common opinion represents the net effect of the simultaneous sympathetic and

vagal influences on cardiac pacemaker activity [42], equal LF/HF ratio would be expected in all

groups of animals. However, LF/HF ratio differed in DOX group compared to control or Frl/

DOX, suggesting that vagal and sympathetic influences on cardiac pacemaker cells were not

equally processed as receptor number and function are changed and downstream mechanisms

are altered as already discussed in previous paragraphs.

In our research, the time domain HRV parameters (SDNN and RMSSD) did not alter as

normally expected at sympathetic overactivation, confirming again the possible impact of

non-autonomic factors on HRV in DOX.

The current paradigm for cardiotoxicity detection in humans relies primarily upon the

assessment of the left ventricular ejection fraction (LVEF) [76]. Multigated acquisition scan

(MUGA) and echocardiography are the most studied methods for the measurement of LVEF

in humans; echocardiography was applied also in rats [31,37]. As LVEF measurements are

very variable and insensitive [77] and the normal heart has a huge recruitable contractile

potential [78], it is important to find other markers for the detection of early cardiac damage.

Our study confirmed that HRV monitoring could be a potential strategy. While heart must

have undergone a considerable damage and myocyte loss to express the decreased LVEF [78],

echocardiography was not employed in our study, where only subtle myocardial changes were

expected [3]. Even at higher cumulative DOX dose (7.5 mg/kg), no alterations in echocardio-

graphic scoring were reported [37].

Results of animal studies are valuable for understanding changes in heart rate and heart

rate variability generated by pharmacological or pathological manipulations but they have lim-

itations. A lot of analogies exist between rats and humans with respect to HRV [46,68]. How-

ever, a number of important caveats remain [46], precluding a simple extrapolation of rodent

cardiovascular data to humans.

It is well known that anesthesia itself can provoke autonomic modulation. However, the

slightest alterations of HR were observed using ketamine and xylazine anesthesia [79]. Keta-

mine and xylazine were found to increase parasympathetic activity and suppress sympathetic

activity in rat [80]. Since decreased parasympathetic and increased sympathetic activity were

found in our study, we might assume that the effects of anesthesia were overridden by the

HRV modulation provoked by DOX.
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Conclusions

In conclusion, DOX treatment (cumulative dose 4.5 mg/kg) of rats with colorectal cancer

induced HRV changes compatible with sympathetic overactivity and reduced vagal tone to the

heart. These HRV changes were accompanied by heart tissue damage, increased oxidative

stress and histological changes typical for DOX-induced cardiotoxicity. Pretreatment with Frl

completely prevented HRV alterations induced by DOX, decreased oxidative stress and nor-

malized myocardial histopathological score. HRV could be used as a noninvasive tool for early

detection of DOX-induced cardiotoxicity in cancer.
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Writing – original draft: NP RI.

Writing – review & editing: NP MP AC RI ŽF.
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