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Automated Magnetic Resonance Image
Segmentation of Spinal Structures at the L4-5 Level
with Deep Learning: 3D Reconstruction of Lumbar

Intervertebral Foramen
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Objective: 3D reconstruction of lumbar intervertebral foramen (LIVF) has been beneficial in evaluating surgical trajec-
tory. Still, the current methods of reconstructing the 3D LIVF model are mainly based on manual segmentation, which
is laborious and time-consuming. This study aims to explore the feasibility of automatically segmenting lumbar spinal
structures and increasing the speed and accuracy of 3D lumbar intervertebral foramen (LIVF) reconstruction on mag-
netic resonance image (MRI) at the L4-5 level.

Methods: A total of 100 participants (mean age: 42.2 � 14.0 years; 52 males and 48 females; mean body mass
index, 22.7 � 3.2 kg/m2), were enrolled in this prospective study between March and July 2020. All participants
were scanned on L4-5 level with a 3T MR unit using 3D T2-weighted sampling perfection with application-
optimized contrast with various flip-angle evolutions (SPACE) sequences. The lumbar spine’s vertebra bone
structures (VBS) and intervertebral discs (IVD) were manually segmented by skilled surgeons according to their
anatomical outlines from MRI. Then all manual segmentation were saved and used for training. An automated seg-
mentation method based on a 3D U-shaped architecture network (3D-UNet) was introduced for the automated seg-
mentation of lumbar spinal structures. A number of quantitative metrics, including dice similarity coefficient
(DSC), precision, and recall, were used to evaluate the performance of the automated segmentation method on
MRI. Wilcoxon signed-rank test was applied to compare morphometric parameters, including foraminal area,
height and width of 3D LIVF models between automatic and manual segmentation. The intra-class correlation
coefficient was used to assess the test-retest reliability and inter-observer reliability of multiple measurements for
these morphometric parameters of 3D LIVF models.

Results: The automatic segmentation performance of all spinal structures (VBS and IVD) was found to be
0.918 (healthy levels: 0.922; unhealthy levels: 0.916) for the mean DSC, 0.922 (healthy levels: 0.927;
unhealthy levels: 0.920) for the mean precision, and 0.917 (healthy levels: 0.918; unhealthy levels: 0.917) for
the mean recall in the test dataset. It took approximately 2.5 s to achieve each automated segmentation, far
less than the 240 min for manual segmentation. Furthermore, no significant differences were observed in the
foraminal area, height and width of the 3D LIVF models between manual and automatic segmentation
images (P > 0.05).
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Conclusion: A method of automated MRI segmentation based on deep learning algorithms was capable of rapidly gen-
erating accurate segmentation of spinal structures and can be used to construct 3D LIVF models from MRI at the L4-5
level.

Key words: 3D reconstruction; Automated magnetic resonance image segmentation; Deep learning; Lumbar inter-
vertebral foramen

Introduction

The lumbar intervertebral foramen (LIVF) approach is a
common surgical approach of percutaneous endoscopic

discectomy (PED) for treating lumbar disc herniation and
spinal stenosis.1,2 Establishing an appropriate working chan-
nel as well as planning an optimal trajectory are prerequisites
to the success of PED.3 The optimal trajectory is critical to
the successful entry of the obturator, endoscope, and other
relevant instruments into the lumbar intervertebral fora-
men.4 In contrast, improper orientation can result in more
fluoroscopy frequency, longer operation times, and incom-
plete views, increasing the possibility of complications.5,6

With a narrow surgical field and a high reliance on the sur-
geon’s skills, this LIVF approach of PED has a steep learning
curve.6,7

To avoid complications and decrease the learning
curve, a thorough understanding of the anatomical structures
of LIVF is crucial to mastering this procedure.7 It is well
known that LIVF is a complex three-dimensional
(3D) anatomical structure.8,9 The anatomical boundary of
LIVF is composed of the upper and lower adjacent pedicles,
the posterior and inferior margin of the upper vertebral
body, the intervertebral disc, the posterior superior vertebral
notch and the superior and inferior articular processes.10,11

Most of the existing preoperative measuring methods involve
2D X-ray images or MRI cross-sections.12 However, these
existing methods cannot precisely evaluate the relationship
between the anatomical lumbar structure and the working
channel, because the LIVF and trajectory are 3D. Free
manipulation of the 3D LIVF model would help surgeons in
evaluating the size of enlarging foramen and enable easy and
safe trajectory planning for the LIVF approach of PED.3 But
unfortunately, the current methods of reconstructing the 3D
LIVF model are mainly based on manual segmentation,
which is laborious and time-consuming.

Recently, numerous interest-based reports have
addressed deep learning-based approaches to automatic seg-
mentation of spinal structures.13–16 Previous studies have
demonstrated the success of deep learning in the automatic
MRI segmentation, but these studies have mainly focused on
segmenting vertebra bodies and intervertebral discs without
segmenting the vertebral notch and articular processes.17,18

Few studies19,20 have focused on the automatic segmentation
of the vertebral notch and articular processes, essential to
lumbar structures. Su et al.20 have developed a method for
3D reconstruction of Kambin’s triangle, not for rapid 3D
LIVF reconstruction. Liu et al.19 have developed a deep

learning model for automatic MRI of vertebra bone struc-
tures (vertebra body, vertebral notch and articular processes)
and intervertebral discs. But only lumbosacral intervertebral
foramen was investigated in their work. Automated MRI seg-
mentation of other lumbar levels was also required for rapid
3D LIVF reconstruction, especially at the L4-5 level, which is
the most frequently involved in lumbar spinal stenosis.21 To
date, few have accomplished rapid 3D reconstruction of
LIVF at the L4-5 level, not to mention evaluating the size of
foramen enlargement and planning the ideal trajectory
of TF-PED.

Therefore, it is urgent to develop an automated MRI
segmentation method to reconstruct 3D LIVF model at the
L4-5 level accurately and rapidly. This study aims to assess:
(i) whether deep learning is effective in achieving automated
MRI segmentation of vertebra bone structures and inter-
vertebral discs at the same time; and (ii) whether 3D recon-
struction of LIVF at L4-5 level based on automated MRI
segmentation is rapid and reliable in clinical practice.

We hypothesized that automated MRI segmentation
based on 3D-UNet could be used to construct 3D LIVF
models rapidly and accurately at the L4-5 level.

Methods

Ethical Approval
This study was approved by the Ethics Committee of our
hospital (2020 K05-1), and the trial was registered online
before initiation (NCT04647279). Forms of informed con-
sent were signed by all participants before study began.

Study Participants
A total of 100 L4-5 levels in 100 participants (mean age:
42.2 � 14.0 years; 52 males [52.0%] and 48 females [48.0%];
mean body mass index, 22.7 � 3.2 kg/m2), were enrolled in
the current study between March and July 2020. In the
100 L4-5 levels, 29 levels were healthy and 71 levels were
unhealthy, including three levels with spinal stenosis, 42 levels
with disc herniation, and 26 levels with both. All participants
in the study were scanned on L4-5 level with a 3T MR unit
(Magnetom Verio; Siemens, Erlangen, Germany) using 3D
T2-weighted sampling perfection with application-optimized
contrast with various flip-angle evolutions (3D-SPACE)
sequences. 3D-SPACE sequences enable high-resolution mul-
tiplanar reformatted images and thin slice thicknesses to be
used to examine small lesions and surrounding tissues.22,23
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The participants’ demographics and MRI parameters of the
datasets are outlined in Table 1.

Inclusion and Exclusion Criteria
The inclusion criteria included the following PICOS princi-
ples: (i) participants aged > 18 years old; (ii) underwent lum-
bar spine MRI examination with 3D SPACE sequences in
the supine position; (iii) VBS and IVD segmented form
images; (iv) foraminal area, height, and width at the L4-5
levels; and (v) a prospective study. The exclusion criteria of
the participants in the current study included the following:
(i) history of previous lumbar spinal surgery; (ii) anatomic
abnormalities; (iii) lumbar spondylolisthesis; and (iv) severe
artifacts of images.

Image Annotation and Data Preprocessing
Manual segmentation was performed using Mimics 19.0
(Materialise, Leuven, Belgium) after all images were saved in
DICOM format. The segmentation of VBS and IVD were
performed manually by one surgeon with more than 5 years
of experience, according to their anatomical outlines.

In addition, all segmented masks were assessed by an
expert radiologist and a different expert surgeon. Any dis-
agreements of segmentations were openly discussed and
revised among the three doctors. The revised manual seg-
mentations of the VBS and IVD were served as the ground
truth. Lastly, all manual segmentation files were exported as
NIfTI files for preprocessing.

Cropping, normalizing, and padding were all applied
to all images whereby given an image I �ℝD�H�W , the
cropped image Icrop was acquired as follows:

Icrop Ið Þ¼ I : ,
1
4
H�10 :

3
4
Hþ10,

1
4
W�20 :

3
4
W

� �
,

D, H, and W are the depth, height, and width of the image.
In this dataset, H¼W¼ 320 and D varied from 88 to 128.
By subtracting the average voxel value from the standard
deviation of the voxels, the cropped image size was
D�180�180. Image normalization was eventually padded
with 128�180�180 by padding normalized images with
zeros.

Deep-learning Algorithm and Experimental
Configurations
A deep-learning algorithm based on 3D-UNet24 was used in
this study for automatic segmentation of lumbar spine struc-
tures. As shown in Fig. 1, the 3D-UNet was composed of an
encoder (the left path) and a decoder (the right path). The
input of 3D-UNet was a 128�180�180 MRI with a chan-
nel. In the output, there were four channels, one for back-
ground, one for upper vertebra, one for IVD, and one for
lower vertebra. L4 and L5 vertebrae were represented by the
upper and lower vertebrae at L4-5 level. The size of con-
volutional kernels was 3�3�3 except the last convolutional
layer, which used a 1�1�1 convolutional kernel. By
implementing trilinear interpolation, the upsample module
was implemented.

In this study, performance was evaluated using a five-
fold cross-validation. Using a randomization method, each
dataset was divided into five groups, each containing 20 sam-
ples. As training dataset for the automated segmentation
model, four groups of 80 samples were used, while a group
of 20 samples was used as the test dataset. A random sample
of 10 samples was selected for validation during training. For
each experiment, there was a total of 70 samples for training,
10 samples for validation, and 20 samples for testing. The
3D-UNet was trained in Pytorch 1.5.1 (open-source,
Facebook Artificial Intelligence Research) using the Adam
optimizer and a batch size of two epochs. A learning rate of
0.0005 was initially set, but subsequently lowered by five
times at epochs 33 and 66. An RTX 2080Ti GPU (Nvidia,
Santa Clara, CA, USA) was used for training and testing the
3D-UNet for 2.5 s per subject, which lasted approxi-
mately 7 h.

Performance Evaluation
The dice similarity coefficient (DSC), precision, and recall
were applied as the quantitative metrics to assess the seg-
mentation performance.17,25 DSC measures the similarity
between automatic and manual segmentation (TP = true
positive, FP = false positive, FN = false negative). An
accurate classification is determined by the recall, which
is the proportion of true positives. The precision is the
proportion of true positives among all positive classifica-
tions. The following are the equations of the three
metrics:

TABLE 1 Dataset demographic breakdown

Sequence and Parameters

3D T2-SPACEa

No. of participantsb

Men 52 (52)
Women 48 (48)
Age (years) 42.2 (22–82)
Men participants 40.7 (22–82)
Women participants 43.9 (23–74)
Body mass index (kg/m2)c 22.70 (22.07, 23.33)

Notes: Unless otherwise specified, data are means, with ranges in paren-
theses. 3D T2-SPACE = 3D T2-weighted sampling perfection with
application-optimized contrast with different flip-angle evolutions.; a 3D
T2-weighted sampling perfection with application-optimized contrast with
different flip-angle evolutions sequence with the following parameters: rep-
etition time msec/echo time msec, 2800.0/189.0; flip angle, 45�; field
of view, 240 � 240 mm; matrix, 320 � 320; section thickness, 0.8 mm;
bandwidth, 579 kHz; and final image resolution, 0.8 � 0.8 � 0.8 mm.; b

Data are numbers of patients, with percentages in parentheses.; c Data
are means, with 95% confidence intervals in parentheses.
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DSC¼ 2�TP= FPþ2TPþFNð Þ,
Precison¼TP= TPþFPð Þ,
Recall¼TP= TPþFNð Þ:

Scores (x) of 0 ≤ x < 0.7 would indicate poor performance,
0.7 ≤ x < 0.8 would indicate fair performance, 0.8 ≤ x < 0.9
would indicate good performance, and x ≥ 0.9 would indi-
cate excellent performance.26 Metrics were calculated in the
original image space for each object (VBS or IVD). The aver-
ages were then taken across all metrics for the five-fold
cross-validation datasets.

Morphometric Parameters
The performance of the automated segmentation method
was evaluated, followed by the morphometry analysis of 3D
LIVF models using manual and automatic segmentation
images.

Foraminal Area
An outline of the LIVF was used to define the foraminal
area.27 It determined by measuring the boundary of the adja-
cent superior and inferior vertebral pedicles, the post-
erosuperior portion of the inferior vertebral body, the
posterior portion of the intervertebral disc, the
posteroinferior portion of the superior vertebral body and
the anterior portion of the articular processes (Fig. 2).

Foraminal Height
The height of the LIVF was defined as the longest distance
between the boundary of the superior and inferior
pedicle.27–29 As shown in Fig. 2, it was measured from the
inferior aspect of the upper pedicle to the superior aspect of
the lower pedicle.

Foraminal Width
The width of the LIVF was defined as the shortest distance
between the posteroinferior corner of the superior vertebrae

Fig. 2 The LIVF dimensions were measured at the lateral views. The

LIVF height (FH) was defined as the longest distance between the

cranio-caudal boundary (green line); the width (FW) was defined as the

shortest distance between the postero-inferior corner of the proximal

vertebrae and the opposing boundary (blue line); and the area (FA) was

drawn with the temporary boundaries set at 0.5 mm increments (red

circle) according to the 3D LIVF model outline (red line)

Fig. 1 The 3D-UNet architecture. The blue boxes denote feature maps. The number of channels is denoted above each feature map. The arrows of

different colors indicate different operations
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and the opposing boundary.28 Figure 2 shows the measure-
ment made on a line through the posteroinferior corner of
the superior vertebra and vertical to the anterior surface of
the opposing facet.

Three morphometric parameters were measured for
the 3D LIVF models derived from manually or automatically
segmented images, using 3-Matic. First, three morphometric
parameters, including the foraminal area, height, and width,
were measured separately by two observers. One month later,
all morphometric parameters of 3D LIVF models were re-
measured by one of the observers in this study. Calculations
for the intraclass correlation coefficient were hence obtained
to assess the test-retest reliability and inter-observer reliabil-
ity of multiple measurements.

Statistical Analysis
In this study, SPSS 26.0 (IBM Corporation, Chicago, IL,
USA) was used to analyze all statistical tests. Without assum-
ing the underlying distribution, Pearson’s coefficients of cor-
relation and Wilcoxon signed-rank tests were used to
compare the associated differences of these morphometric
parameters between automatically and manually segmented
3D-LIVF models. The significant difference was set at a P-
value <0.05. The intra-class correlation coefficients (ICCs)
were also used to assess the test-retest reliability and inter-
observer reliability of multiple measurements for the
described morphometric parameters of the 3D LIVF model.
An intra-class correlation coefficient of 0 to 0.20 indicates
slight agreement; 0.21 to 0.40 indicates fair agreement; 0.41
to 0.60 indicates moderate agreement; 0.61 to 0.80 indicates
substantial agreement; and 0.81 to 1 indicates almost perfect
agreement.

Results

Performance and Speed
The segmentation performance of all spinal structures (VBS
and IVD) was found to be 0.918 (healthy levels: 0.922;
unhealthy levels: 0.916) for the mean DSC, 0.922 (healthy
levels: 0.927; unhealthy levels: 0.920) for the mean precision,
and 0.917 (healthy levels: 0.918; unhealthy levels: 0.917) for
the mean recall in the test dataset. The detailed quantitative
segmentation metrics evaluation was highlighted in Table 2
and Table 3.

The entire training of the 3D-UNet took about 7 h in
each cross-validation fold. After training, the 3D-UNet was
able to complete the automatic segmentation of each subject
within 2.5 s. Therefore, this method took much less time
than the 240 min required for manual segmentation.

Morphometric Analysis of 3D LIVF Models
Results showed that the method based on 3D-UNet could
successfully segmented spinal structures (VBS and IVD) on
axial MRI. Furthermore, the 3D LIVF models were com-
pared between the automatic segmentation (Fig. 3A,C) and
the manual segmentation (Fig. 3B,D).
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Foraminal Area
No significant differences were observed in the foraminal
area of the 3D LIVF models between manual and automatic
segmentation images (P = 0.191). The mean area of 3D
LIVF was between 133.40 � 30.47 mm2 and
133.33 � 30.32 mm2 on manual segmentation and auto-
mated segmentation (R = 0.978), respectively. The sca-
tterplots and Bland-Altman plots of the test dataset were as
depicted in Fig. 4.

Foraminal Height
No significant differences were observed in the foraminal
height of the 3D LIVF models between manual and auto-
matic segmentation images (P = 0.214). The mean height of
3D LIVF was between 19.75 � 2.31 mm and
19.70 � 2.08 mm on manual segmentation and automated
segmentation (R = 0.924), respectively. Foraminal height
was 15 millimeters or less in five of the 200 LIVF models
generated from manual segmentation, similar to five of the
200 LIVF models generated from automatic segmentation.
Figure 5 shows scatterplots and Bland-Altman plots of the
test dataset.

Foraminal Width
No significant differences were observed in the foraminal
width of the 3D LIVF models between manual and auto-
matic segmentation images (P = 0.251). The mean height of
3D LIVF was between 6.30 � 1.77 mm and 6.23 � 1.48 mm
on manual and automated segmentation (R = 0.778), respec-
tively. Foraminal width was 8 millimeters or less in 169 of
the 200 LIVF models generated from manual segmentation,
which is less than 180 of the 200 LIVF models generated
from automatic segmentation. Figure 6 shows scatterplots
and Bland-Altman plots of the test dataset.

Reliability
The intra-class correlation with 3D LIVF models from man-
ual segmentation (automated segmentation) was found to be
0.994 (0.999) for the foraminal area, 0.991 (0.992) for the

foraminal height and 0.992 (0.985) for the foraminal width.
The interclass correlation with 3D LIVF models from man-
ual segmentation (automated segmentation) was 0.991
(0.995) for the foraminal area, 0.983 (0.988) for the forami-
nal height, and 0.990 (0.984) for the foraminal width. There
have been excellent ICCs in all measurements.

Discussion

In this study, deep learning method was shown to per-
form well in segmenting lumbar spinal structures (VBS

and IVD). Reconstructing the 3D LIVF model on MRI
using this method can be done rapidly and accurately.
Furthermore, morphometric parameters of 3D LIVF
models were not significantly different among automatic
and manual segmentation methods in this study. More-
over, the reliability test demonstrated a strong test-retest
reliability and inter-observer reliability of morphometric
measurements.

Performance Analysis of Automated Segmentation
Deep learning-based methods are popular in vertebrae seg-
mentation of CT data16,30 and IVD segmentation of MRI
data.14,31 Janssens et al.16 proposed a cascaded 3D fully con-
volutional network-based method for the automated segmen-
tation of lumbar vertebrae from CT data. Their methods
have achieved a mean DSC of 0.958 for all lumbar vertebrae
and 0.954 for L4 vertebrae, taking an average of 79 s to finish
the segmentation of one CT data. For automated segmenta-
tion of IVD, Li et al.14 developed a 3D multi-scale context
fully convolutional network, which achieved a mean segmen-
tation DSC of 0.912, taking an average of 9 s to segment
IVD from MRI data. However, the exiting deep learning-

A B

C D

Fig. 3 Example 3D LIVF models show comparison between automatic

segmentation, (A–C), and manual segmentation, (B–D). (A), (B) in left

views and (C), (D) in right views

TABLE 3 The mean accuracy results of all spinal structures at
the test dataset

Performances and
test dataset

Diagnosis

Healthy SS DH

SS
and
DH

DSC 0.922 0.932 0.914 0.918
Precision 0.927 0.944 0.914 0.925
Recall 0.918 0.920 0.918 0.915

Note: At 100 L4/5 levels, there were 29 healthy levels, 71 unhealthy
levels with spinal stenosis: 3 levels, disc herniation: 42 levels, or both:
26 levels.; Abbreviations: DH, disc herniation; SS, spinal stenosis; SS
and DH, spinal stenosis and disc herniation.
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based works of the automated segmentation of spinal struc-
tures mainly include separate vertebrae and IVD, failed to
consider the dependencies between the adjacent struc-
tures.13,14 In our study, the deep learning-based method
achieved the simultaneous segmentation of vertebrae bone
structures and IVD with a mean DSC of 0.918 for spinal
structures (VBS and IVD), 0.925 for VBS and 0.904 for IVD.
According to these results, our method has shown excellent
performance when it comes to segmenting spinal structures
from MRIs. In addition, after training, our deep learning-

based method could accomplish an automatic segmentation
from MRI dates in 2.5 s, which is faster than previous stud-
ies. Notably, the segmentation performance of healthy levels
was identical to unhealthy levels, because the performance of
our method was not generally affected by lumbar diseases.

Three-dimensional Reconstruction of Lumbar
Intervertebral Foramen
To the best of our knowledge, this study is the first to inves-
tigated 3D reconstruction of LIVF and generated 3D models

Fig. 5 Scatterplots (left) and Bland–Altman plots (right) show comparison of FH meansurements of L4-5 test dataset produced from manual and

automatic segmentation methods. FH = foraminal height

Fig. 4 Scatterplots (left) and Bland–Altman plots (right) show comparison of FA meansurements of L4-5 test dataset produced from manual and

automatic segmentation methods. FA = foraminal area
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at the L4-5 level, using a deep learning-based method. No
significant differences were observed in the foraminal area,
height and width of the 3D LIVF models between manual
and automatic images. In addition, our results showed simi-
lar measurements of foraminal height from 3D models to the
previous studies at the L4-5 level.28,32,33 The mean of forami-
nal width from 3D models was consistent with Senoo et al.’s
study.29 However, the results of the foraminal area from 3D
LIVF models were smaller than the results in Zhong et al.’s
study28 but were larger than Iwata et al.’s study.27 Different
imaging modalities and measurement approaches may con-
tribute to these differences. Moreover, 3D reconstruction
from automated MRI segmentation of VBS and IVD can
generate a complete and accurate 3D LIVF models, which is
more advantageous for morphometric analysis.

Clinical Application of 3D LIVF Models
A long learning curve is associated with PED because LIVF
has a complex anatomical structure.7 In order to avoid com-
plications and decrease the learning curve, it is crucial to be
well versed in the anatomical structure of LIVF.6,7 Auto-
mated segmentation using a deep learning algorithm leads to
rapid generation of 3D LIVF models, which provides detailed
and commonplace information of the surgical field. Free
manipulation of the 3D model will quickly identify the ideal
trajectory of PED, thereby helping junior surgeons to master
the 3D anatomy LIVF and evaluate the size of foramen.

Surgeons may need to perform foraminoplasty to
enlarge the LIVF during PED surgery, especially in patients
with foraminal stenosis. To determine the need of a suitable
foramen enlargement during the procedure mainly depends
on the foraminal stenosis condition and whether the working
channel size is satisfied. When the foraminal height was

15 millimeters or less,34 or the foraminal width was
8 millimeters or less,35 a suitable foramen enlargement for
PED was required.

Limitations

This study had some limitations. First, the scan time with
MRI was considerably longer than CT. However, the

imaging time of about 8 min for the detection of each lum-
bar level in MRI was acceptable. This pilot study only
explored segmentation on the L4-5 level. Other 3D recon-
structions using automated magnetic resonance image seg-
mentation for different spinal regions (thoracic and cervical)
need to be studied in the future. To evaluate the clinical effi-
cacy of the described method, further clinical experiments
will be also required. Despite these limitations, the present
study still demonstrates a promising performance of the deep
learning method in the automatic segmentation of lumbar
spinal structures (VBS and IVD) at the L4-5 level.

Conclusion

This present study increased the ability of automated VBS
and IVD segmentation to speed, accuracy and precision.

Automated MRI segmentation can segment spinal structures
seemingly within the near-human expert performance and
demonstrate the efficacy in constructing 3D LIVF models at
the L4-5 level. The goal of this study is to provide a new
method for reconstructing 3D LIVF models, which provides
an important step toward surgical trajectory planning for
PED at the L4-5 level.
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