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Abstract: The ability to sense external force is an important technique for force feedback, haptics
and safe interaction control in minimally-invasive surgical robots (MISRs). Moreover, this ability
plays a significant role in the restricting refined surgical operations. The wrist joints of surgical robot
end-effectors are usually actuated by several long-distance wire cables. Its two forceps are each
actuated by two cables. The scope of force sensing includes multidimensional external force and
one-dimensional clamping force. This paper focuses on one-dimensional clamping force sensing
method that do not require any internal force sensor integrated in the end-effector’s forceps. A new
clamping force estimation method is proposed based on a joint torque disturbance observer (JTDO)
for a cable-driven surgical robot end-effector. The JTDO essentially considers the variations in cable
tension between the actual cable tension and the estimated cable tension using a Particle Swarm
Optimization Back Propagation Neural Network (PSO-BPNN) under free motion. Furthermore, a
clamping force estimator is proposed based on the forceps’ JTDO and their mechanical relations.
According to comparative analyses in experimental studies, the detection resolutions of collision
force and clamping force were 0.11 N. The experimental results verify the feasibility and effectiveness
of the proposed clamping force sensing method.

Keywords: surgical robot end-effector; clamping force estimation; joint torque disturbance observer;
PSO-BPNN; cable tension measurement

1. Introduction

In recent years, more and more researchers, companies and hospitals have paid attention to
the development, commercial aspects, and application of minimally-invasive surgical robot (MISR)
techniques. The advantages of robot-assisted minimally-invasive surgery (MIS) include positioning
accuracy, easier realization of MIS, an improved success rate, a reduction in pain, and a reduction in
recovery time [1,2]. Many MISR systems including the da Vinci surgical system [3], the DLR MIRO [4],
the Raven system [5] have been shown to be valid and feasible and to provide advancements in
MIS operations. The capacity to sense force is an important technique for force feedback, haptics,
and safe interaction control in MISRs. This ability can also help to restrict refined operations and
improve operational safety [6]. Moreover, this ability can help surgeons to determine tissue hardness
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and evaluate the anatomical and histological properties of object organs in order to perform better
manipulation in MIS [7,8]. Thus, the study of force sensing is an important research direction of MISR.

The wrist joints of a surgical robot end-effector usually have multiple degrees of freedom to ensure
good flexibility and dexterity [9]. Cable-driven actuators have been widely used in rehabilitation
and medical robots [10–12]. Furthermore, flexible continuum instruments present good application
prospects. Hwang and Kwon proposed a novel constrained strong continuum manipulator by using
auxiliary links attached to the main continuum links [13]. Li et al. developed a flexible endoscope
based on the tendon-driven continuum mechanism [14]. The wrist joints of an end-effector are
usually actuated by several long-distance cables with a small diameter. Each of its two forceps are
actuated by two cables. The scope of force sensing includes multidimensional external force (including
three-dimensional force and three-dimensional torque) and one-dimensional clamping force. Use of a
surgical robot end-effector with the ability to sense force is an important and a feasible way to realize
feedback from an external force or a clamping force.

Two methods for sensing external forces have been studied by MISR system researchers. One
is the direct sensing method, which integrates force sensors into the surgical instrument’s tip. Some
surgical tools have been designed for an MISR system with the ability to sense force [15–17]. Li et al.
designed and developed a three-axis force sensor using a resistance-based sensing method [18]. Yu et al.
developed a six-dimensional force/torque sensor with a double-crossbeam structure for a surgical
robot end-effector [19]. Lim et al. proposed a kind of forceps with an optical fiber Bragg grating
sensor integrated into it [20]. Kim et al. developed a surgical robot with a multi-axis force sensing
instrument [21,22]. Radó et al. developed a surgery robot with a three-axis force sensor integrated into
it to provide force feedback [21]. However, because wrist joints need to be designed to be narrow and
small in size in order to meet the requirements of surgical robot end-effectors, and considering the
limiting factors of the disinfection method, the material hemolysis effect, and the economic cost, many
challenges and difficulties remain with the application of these force sensing methods by integrating
internal force sensors into the tip of surgical forceps [23,24].

The other method for sensing external forces is the indirect sensing method, which uses system
information including current, torque, tension, displacement, pressure, and a visual image of the
laparoscope. The design of an external force disturbance observer or a similar estimation method has
attracted a great deal of attention. Zhao and Nelson developed a cable-driven decoupled surgical robot
end-effector and proposed a method for estimating the three-axis force using a motor current [25].
Because the friction and elasticity of cables are omitted in the overall model, as well as the filtering
processing of the motor current, so the estimated accuracy was limited with relatively big errors.
Li et al. [26] and Haraguchi et al. [27] both proposed external force disturbance observers for the force
estimating the force acting at the forceps of pneumatically driven MISR. These studies were purely
based on the system dynamic model and the cylinder pressure disturbance observers. The results
showed good dynamic performance with acceptable estimated accuracy. Xue et al. proposed a tension
sensor using fiber gratings for estimating the grasping force in a laparoscope surgical robot [28]. The
property index of the sensor showed good performance. The hysteresis characteristics of the sensor
and the friction between the cable and beams affect the resolution of the proposed sensor. They
also proposed a method for estimating the grasping force based on a model of cable-pulley systems
considering its tension transmission characteristics [29]. These two clamping force estimation methods
were deeply affected by the model precision of cable-pulley transmission system. Li and Hannaford [30]
proposed a Gaussian process regression for predicting the clamping force of a cable-driven surgical
robot end-effector for the Raven system. The estimated accuracy was still the main problem for these
clamping force estimation methods using the motor currents. In addition, artificial neural networks
and deep learning algorithms provide us with another way to realize sensorless force sensing in
MISRs [31–33]. Yu et al. proposed a bidimensional external force and clamping force sensing method
based on changes in cable tension for a surgical micromanipulator [34]. The results showed acceptable
accuracy. However, the comprehensive resistance of the cable tension was estimated and limited by
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the BP Neural network under free motion. This work was the preliminary study of the clamping
force sensing compared with the new estimation method in this paper. Hwang and Lim proposed a
force estimation method based on a deep learning method that utilize sequential images of an object’s
shape changed by an external force [35]. It was difficult to learn and predict the interaction force
using such many sequential and variational images in real time, due to the camera movement during
the surgery operation. Huang et al. proposed a method for clamping force estimation based on a
neural network for a cable-driven surgical robot [36]. The results showed the training process and
training errors, but not considered the generalization ability verification. Marban et al. proposed a
force estimation model for robotic surgery based on convolutional neural networks and long-short
term memory networks [37]. The camera and organs were static while the surgical instrument was in
motion. The real-time estimation is still a big challenge during the dynamic process of the real surgery.

To summarize, the property that these above proposed indirect sensing methods have in common
is the combination or segregation of the disturbance observers and neural networks or learning
methods. The accuracy, rapidity and robustness of the clamping force estimation are still the main
challenges for the cable-driven surgical robot end-effector without the forceps’ internal force sensors.
The motivation and contribution of this study are trying to find a new way of the clamping force
estimation, which is considering the cable-driven system dynamics, the cable tension measurements
and estimation, and the joint torque disturbance observer of the forceps in real time, such that aims to
achieve a good comprehensive performance with low-cost and easy realization.

This paper focuses on one-dimensional clamping force sensing method that do not require any
internal force sensors to be integrated into the wrist joints of a surgical robot end-effector. The main
contribution of this study is the development of a novel method for estimating the clamping force
of a forceps based on a joint torque disturbance observer, which essentially considers the variations
in cable tension between the actual cable tension and the real-time estimated cable tension using a
Particle Swarm Optimization Back Propagation Neural Network (PSO-BPNN) under free motion of the
end-effector. A clamping force estimator is proposed based on the JTDO and the mechanical relations
in the forceps. The main advantages of this method are the combination of cable-driven system
dynamics and joint torque disturbance observer using PSO-BPNN, for improving the comprehensive
performance. We verify the estimation method through a series of experiments with an equivalent
experimental system.

2. Methods

2.1. Description of the 3-Degrees of Freedom (3-DoF) Cable-Driven Surgical Robot End-Effector

A surgical robot end-effector is a key device in a surgical robotic system. Figure 1a shows the
experimental prototype of a 3-DoF surgical robot end-effector, which is actuated by three cable-driven
actuators with six cables. The external diameter of the wrist joints and the slender shaft is limited to
8 mm.

Figure 1b shows the principle diagram of the configurational characteristics and the cable-driven
systems. This 3-DoF forceps of a surgical robot end-effector has one yaw joint and two pitch joints,
which are all actuated by cables. Meanwhile, the 3-DoF consist of yaw, pitch, and opening & closing.
The opening & closing and pitch movement are compound motions between forceps A and B with
different combinations of rotation directions. A multi-axis motion is the result of a 3-DoF compound
action. The wrist joints of the end-effector are actuated by three long-distance cable-driven modules
with a cable of approximately 500 mm in length inside of the slender shaft. The cable-pulley systems
form the transition bridge between the wrist joints and three servo motors. Obviously, clamping force
estimation focuses on the force conditions of forceps A and B for the 3-DoF cable-driven surgical robot
end-effector. Furthermore, the driving torques of forceps A and B are directly related to the driving
cable tensions. This means that the relationship between the driving torques and the cable tensions can
be used to estimate the clamping force.
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computer, and control software. 
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cables. Figure 2b shows a block diagram of the system’s composition. The nominal diameter of the 
driving wire cable is 0.45 mm. The measuring range of the tension sensor is 0–50 N. The max subdivs 
value of the linear stepping motor driver is 512. The motion control card can drive six motors. Six 
tension sensors are integrated between the motor driving system and the cable-pulley systems. This 
means that the cable tension of the input side can be measured. For detecting the actual clamping 
force, two pressure sensors (FlexiForce A201, Tekscan®, South Boston, MA, USA) are installed on the 
two sides of the triangular block, which is the grasping object for forceps A and B. In terms of overall 
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to the 3-DoF cable-driven surgical robot end-effector (shown in Figure 1). 

 

Figure 1. 3-DoF cable-driven surgical robot end-effector. (a) Experimental prototype;
(b) Principle diagram.

2.2. Equivalent Experimental System for the Surgical Robot End-Effector

In order to study external force and clamping force sensing methods, we designed and built
an equivalent experimental prototype for the 3-DoF cable-driven surgical robot end-effector.

As shown in Figure 2a, a clamping force sensing study can be performed by using this equivalent
experimental system. The wrist joints are the same as shown in Figure 1. Their cable-pulley systems are
expanded into a horizontal plate form, in order to achieve convenient installation and an easy layout.
The equivalent experimental prototype consists of 3-DoF wrist joints, one slender shaft, cable-pulley
systems, a cable tension detection module, motor driving system, a data acquisition system, a computer,
and control software.

Overall, the difference between Figures 1 and 2 are in the motor driving system. Figure 1 shows
three servo motors for driving six cables. Figure 2 shows six linear stepping motors for driving six
cables. Figure 2b shows a block diagram of the system’s composition. The nominal diameter of
the driving wire cable is 0.45 mm. The measuring range of the tension sensor is 0–50 N. The max
subdivs value of the linear stepping motor driver is 512. The motion control card can drive six motors.
Six tension sensors are integrated between the motor driving system and the cable-pulley systems.
This means that the cable tension of the input side can be measured. For detecting the actual clamping
force, two pressure sensors (FlexiForce A201, Tekscan®, South Boston, MA, USA) are installed on the
two sides of the triangular block, which is the grasping object for forceps A and B. In terms of overall
function and robotic mechanisms, the equivalent experimental system (shown in Figure 2) is equal to
the 3-DoF cable-driven surgical robot end-effector (shown in Figure 1).
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Figure 2. Experimental set-up. (a) Equivalent experimental prototype; (b) System composition
block diagram.

As mentioned in the descriptions above, the equivalent experimental prototype is designed
equivalent with the 3-DoF cable driven surgical robot end-effector. Their mechanical structures are
the same on the aspect of mechanism principle. Moreover, they have the same 3-DoF wrist joints and
forceps. The other main reason of equivalence principle is that, their kinematic mapping methods
between the motor position and joint angle are the same principles only with different parameters.
This means that the equivalent experimental prototype has the function and capability to represent the
kinematics, dynamics, external forces, clamping force and kinematic mapping of the 3-DoF cable driven
surgical robot end-effector. In the experiments on clamping force, the pitch joint lacked convenience.
The deeply reason is that the manufacturing and assembly errors of the pitch joint greatly influence
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the decoupling of the wrist joints. Therefore, in order to verify the feasibility and effectiveness of the
clamping force sensing method that we proposed in this paper, we discarded the pitch joint as shown
in Figure 2. This means that the experiments of clamping force estimation were carried out with a
pitch joint angle of 0 degrees and a specific opening angle of 65 degrees, which is a limitation of the
experimental mechanical structure.

2.3. Strategy for Estimating the Clamping Force of the Surgical Robot End-Effector

2.3.1. Modeling the System Dynamics of the Forceps

As mentioned in previous sections, the mechanical model between the joint torques and the
cable tensions is the key to establishing the overall dynamics model, which provides a model for
calculating the clamping force. Figure 3 shows a simplified dynamic model of the cable-driven surgical
robot end-effector. Because the initial cable tensions were preadjusted to suitable values during the
adjustment process, the elasticity of cables can be neglected in the modeling process. Moreover, the
friction of the cable-pulley system is temporarily hided in the cable tension losses Ff of the overall
dynamics, as well as the nonlinear characteristics of cables. These two factors are the uncertain models.
But they can be estimated by the PSO-BPNN. In order to study the problem of estimating the clamping
force of the cable-driven surgical robot end-effector, the modelling, analysis and experiment were all
carried out at the system’s zero position without considering the coupling problem and manufacturing
errors of the wrist joints’ motion. The main reason is that the experiment condition is limited at the
system’s zero position according to the measurement of the clamping force using two flexible pressure
sensors. Under these circumstances, the feasibility and effectiveness of the estimation method can
be verified.
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The subscripts A/a, B/b, S/s in the following formulas denote the relations to yaw joint A, yaw
joint B, and pitch joint S, respectively. F1

A, F1
B, and F1

S denote the respective actual measured values of
the motor driving cables. F2

A, F2
B, and F2

S denote the respective actual measured values of the motor
returning cables. F1

AT, F1
BT, and F1

ST denote the respective driving cable tensions. F2
AT, F2

BT, and F2
ST

denote the respective returning cable tensions. f 1
A, f 1

B , and f 1
S denote the respective driving cable tension

losses. f 2
A, f 2

B , and f 2
S denote the respective returning cable tension losses. The cable tension losses

include the frictions of the cable-pulley systems, the nonlinear characteristics of cables, and other
uncertain items. τa, τb, and τs denote the respective joint driving torques. τfa, τfb, and τfs denote the
respective joint friction torques. xa, xb, and xs denote the respective motor displacements of driving
cables. −xa, −xb, and −xs denote the respective motor displacements of returning cables. θ2A, θ2B, and
θ1 denote the respective joint angles of yaw joint A, yaw joint B and pitch joint S. Meanwhile, the
opening angle of forceps A and B can be calculated as (θ2A + θ2B), according to the initial position
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in Figure 2. r1 and r2 denote the effective drive radius of yaw joint A, yaw joint B and pitch joint
S, respectively.

Suppose that FM is the set of actual measured values of the motor driving cable tensions for forceps:

FM =
[

F1
A F2

A F1
B F2

B

]T
(1)

Suppose that FT is the set of cable tensions for actuating forceps A and B:

FT =
[

F1
AT F2

AT F1
BT F2

BT

]T
(2)

Suppose that Ff is the set of cable tension losses for actuating forceps A and B:

Ff =
[

f 1
A f 2

A f 1
B f 2

B

]T
(3)

Obviously, from Equations (1) to (3), the following relationship can be obtained:

FM = FT + Ff (4)

The driving torques τab of forceps A and B can be calculated as:

τab =

[
τa

τb

]
= r2

[
F1

AT − F2
AT

F1
BT − F2

BT

]
= r2


(
F1

A − f 1
A

)
−

(
F2

A + f 2
A

)(
F1

B − f 1
B

)
−

(
F2

B + f 2
B

)  (5)

where, τa and τb denote the driving torques of forceps A and B.

Suppose that
^
FE is the set of estimated values from the cable tension sensors under free motion

of the forceps, which means that no clamping force or external force is applied to the wrist joints of
the surgical robot end-effector. An artificial neural network model can be employed for the estimated

values of the cable tension sensors’ tensions
^
FE under free motion. Suppose that

^
FfE is the set of cable

tension losses for actuating forceps A and B under free motion:

^
FE =

[
F̂1

A F̂2
A F̂1

B F̂2
B

]T
(6)

^
FfE =

[
f̂ 1
AE f̂ 2

AE f̂ 1
BE f̂ 2

BE

]T
(7)

Therefore, the set of cable tension disturbances from the tension sensor measurement modules

can be defined as
^
FD:

^
FD =

[
F̂1

AD F̂2
AD F̂1

BD F̂2
BD

]T
= FM −

^
FE (8)

The simplified dynamic model of forceps A and B can be given as:

τab =

[
τa

τb

]
=

 JA
..
θ2A + g(θ2A) + τfa + FA

extleA

JB
..
θ2B + g(θ2B) + τfb + FB

extleB


= r2

[
F1

AT − F2
AT

F1
BT − F2

BT

]
= r2


(
F1

A − F2
A

)
−

(
f 1
A + f 2

A

)(
F1

B − F2
B

)
−

(
f 1
B + f 2

B

) 
(9)

where, JA and JB, τfa and τfb, θ2A = xa/r2 and θ2B = xb/r2, leA and leB, and FA
ext and FB

ext are the
equivalent rotating inertias, the joint frictions, the joint angles, the arms of external force, and the
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external force of the joints of forceps A and B, respectively. We neglected the forceps’ gravities since
they are installed in the horizontal plane.

Equation (9) can be revised as Equation (10) when there is no external force or clamping force
under free motion:

^
τab =

[
τ̂a

τ̂b

]
=

 JA
..
θ2A + g(θ2A) + τ̂fa

JB
..
θ2B + g(θ2B) + τ̂fb


= r2


(
F̂1

A − F̂2
A

)
−

(
f̂ 1
AE + f̂ 2

AE

)(
F̂1

B − F̂2
B

)
−

(
f̂ 1
BE + f̂ 2

BE

)  (10)

Considering that linear stepping motors were chosen to be the drive units for the wrist joints,
the acceleration and deceleration modes were set to the ‘S’ type in the motion control card, their
acceleration and deceleration time were set to be 0.02 s, and the constant velocity was set to be variable.
Because the inertias of the wrist joints are very small, their inertial forces only have marginal effects on
the wrist joints’ system dynamics, so the inertia forces of the wrist joints were ignored in this paper.
If the joints’ driving torques can be estimated under free motion, then Equations (9) and (10) can be
simplified as Equations (11) and (12), respectively:

τab =

[
τa

τb

]
=

[
τfa + FA

extleA

τfb + FB
extleB

]
= r2


(
F1

A − F2
A

)
−

(
f 1
A + f 2

A

)(
F1

B − F2
B

)
−

(
f 1
B + f 2

B

)  (11)

^
τab =

[
τ̂a

τ̂b

]
=

[
τ̂fa

τ̂fb

]
= r2


(
F̂1

A − F̂2
A

)
−

(
f̂ 1
AE + f̂ 2

AE

)(
F̂1

B − F̂2
B

)
−

(
f̂ 1
BE + f̂ 2

BE

)  (12)

Combining Equations (11) and (12), the joint torque disturbance
^
τD =

[
τ̂aD τ̂bD

]T
of forceps A

and B can be given as:

^
τD = τab −

^
τab =

[
τfa − τ̂fa + FA

extleA

τfb − τ̂fb + FB
extleB

]
= r2


(
F̂1

AD − F̂2
AD

)
−

(
f 1
A + f 2

A

)
+

(
f̂ 1
AE + f̂ 2

AE

)(
F̂1

BD − F̂2
BD

)
−

(
f 1
B + f 2

B

)
+

(
f̂ 1
BE + f̂ 2

BE

)  (13)

Under the circumstances of free motion and no clamping force, the joint frictions and cable tension
losses of forceps A and B satisfy the condition approximated below:[ (

f 1
A + f 2

A

) (
f 1
B + f 2

B

)
τfa τfb

]T
≈

[ (
f̂ 1
A + f̂ 2

A

) (
f̂ 1
B + f̂ 2

B

)
τ̂fa τ̂fb

]T
(14)

Therefore, the joint torque disturbance
^
τD of Equation (13) can be further simplified as:

^
τD =

[
τ̂aD

τ̂bD

]
≈ r2

[
F̂1

AD − F̂2
AD

F̂1
BD − F̂2

BD

]
=

[
FA

extleA

FB
extleB

]
(15)

Furthermore, the estimated external force
^
Fext of forceps A and B can be given by Equation (16):

^
Fext =

[
F̂A

ext F̂B
ext

]T
≈

[
τ̂aD
leA

τ̂bD
leB

]T
(16)
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Finally, the estimated clamping force of forceps A and B can be calculated by Equation (17):

F̂CF ≈
1
2

(∣∣∣F̂A
ext

∣∣∣+ ∣∣∣F̂B
ext

∣∣∣) (17)

2.3.2. Strategy for Estimating the Clamping Force

According to the process for modeling the forceps’ clamping force, a strategy for estimating the
clamping force of the forceps is given as shown in Figure 4. Essentially, the block diagram of this
estimation strategy is a kind of open-loop form, which is constructed according to the open-loop
control strategy of the joints’ motion using the feedback of the kinematic mapping relation.

Firstly, the desired opening angle or grasping angle θC is input into the control software; then, it
is converted to yaw joint angle θY according to the kinematic relation.

Secondly, angle θY is input into the driving system according to the mapping relation of the joint
angle to the cable and motor displacement; then, the calculated motor displacement xm and setting
motor velocity vm are input into the driving system of the linear stepping motors.

Thirdly, the motors pull or push the cable loops with the desired displacement while the force
sensors measure the driving and returning cable tensions FM. Meanwhile, the wrist joints are actuated
by the difference in the cable tensions in the cable-pulley systems. Forceps A and B are actuated
by the difference in tension with the result of an opening or a closing action on the two flexible
pressure sensors, which provide comparisons of the measured joint external forces FA

ext and FB
ext, and

the measured clamping force FCF.
Fourthly, the motor displacement xm and the motor velocity vm of forceps A and B are input into

the cable tension estimation model based on PSO-BPNN under free motion in order to estimate the

tensions
^
FE. Therefore, the cable tension disturbance

^
FD can be calculated by inputting the actual cable

tensions FM and the estimated cable tensions
^
FE. The yaw joint torque disturbance

^
τD can be obtained

using the cable tension disturbance
^
FD.

Finally, the external force
^
Fext of the yaw joints can be estimated by Equation (16), and the clamping

force F̂CF can be calculated using the clamping force estimator. To sum up, the strategy for estimating
the clamping force is based on the measured motor driving cable tensions, the cable tension model
based on PSO-BPNN under free motion, the joint torque disturbance observer, and the clamping
force estimator that does not require internal force sensors to be integrated into the end tips of the
wrist joints.
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2.3.3. Joint Torque Disturbance Observer Using PSO-BPNN

The purpose of designing the yaw joint torque disturbance observer shown in Equation (15)
is to estimate or predict the variation in the motor’s driving cable tension as compared with the
same motor’s displacement and velocity under free motion. This means that the forceps’ external
force or clamping force affects the motor’s driving cable tension with respect to the condition of free
motion or no clamping force. The core requirement for this joint torque disturbance observer is to
build a high-accuracy model for predicting the cable tension under free motion with the same motor
displacement and velocity. The parameters estimations with evolutionary algorithms using tweezers
show its superiority in a coupled nonlinear dynamics [38]. In this paper, the PSO-BPNN was employed
to fit an artificial neural network model for estimating or predicting the motor’s driving cable tension
under free motion.

The artificial neural networks can approximate any function to an arbitrary degree of accuracy due
to its high learning capability and parallel computing nature [39]. The BPNN is a supervised artificial
neural network, and it is widely used for nonlinear and non-convex function approximation [40].
However, its main disadvantages include slow learning speed, a propensity to easily fall into a local
minimum, a limited number of network layers, and overfitting [41]. The traditional BPNN can be
improved by global optimization of PSO to solve the problems of oscillation, slow convergence and
local extremum in the training process [42].

In this paper, the PSO-BPNN is employed to fit an artificial neural network model for estimating
or predicting the motor driving cable tension under free motion. PSO-BPNN [43] is a combination
of Particle Swarm Optimization and a BP neural network. Because the PSO algorithm is based on a
heuristic learning algorithm, it can search different regions of the solution space at the same time, avoid
falling into local minima and realize global optimization. In each iteration of the optimal solution, the
particle updates itself by tracking two extreme values. The first one is called individual extreme value,
which is the optimal solution found by the particle itself. The other one is called global extreme value,
which is the optimal solution found by the whole population. When the two optimal extreme values
are found, the particle updates its velocity and position according to the following formula [44]: vid = wvid + c1u1(pid − xid) + c2u2

(
pgd − xid

)
xid = xid + vid

(18)

where, xid and vid are the position and velocity of the i-th particle, respectively; pid is the optimal
position that the i-th particle searches for; pgd is the optimal position searched by the whole particle
swarm; c1 and c2 are learning factors; u1 and u2 are uniform random numbers within [−1,1]; w is the
inertia weight.

The PSO algorithm was used to train the BP neural network, and the weight and threshold of
each neuron were taken to be a particle’s iterative optimization of the solution space. The specific steps
for PSO of the BP neural network algorithm are introduced in [45,46]. The specific steps for PSO of the
BP neural network algorithm are as follows:

(a) Determine the topological structure of the BP neural network and set the number of neurons in
each layer of the BP neural network. The particle population is initialized, and the velocity and
position of each particle are randomly set. The main operating parameters of particle swarm
optimization are shown in Table 1.

(b) Calculate the fitness value Fit (i) of each particle;
(c) Compare the fitness value Fit (i) of each particle with the individual extreme value. If Fit (i) >

pbest (i), replace pbest (i) with Fit (i).
(d) Compare the fitness value Fit (i) of each particle with the global extreme value gbest (i). If Fit (i) >

gbest (i), replace gbest (i) with Fit (i).
(e) Update the position and velocity of each particle according to Equation (18);
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(f) If the condition is satisfied (the error is sufficiently small or the number of cycles has reached its
maximum), exit; otherwise, return to the second step (b);

(g) The global extreme value gbest (i) from the PSO algorithm is used as the weight and threshold for
the BP neural network and to train the neural network with training samples;

(h) The generalization ability of the PSO-BPNN can be tested by simulation with the test samples.

Table 1. The main parameters of PSO-BPNN.

Parameters Values

Swarm size 10
c1, c2 1.49445
Max iteration 30
w 1
Number of the input layer nodes 4
Number of the hidden layer nodes 10
Number of the output layer nodes 4
Number of neural network training 100
Learning rate of neural network 0.005
Percentage of training data 90%
Percentage of testing data 10%

To sum up, the PSO-BPNN plays an important role in the online estimation of motor cable tensions
under free motion. The estimated values are input into the joint torque disturbance observer as
contrasting values. The clamping force estimator can be established on this basis.

2.3.4. The Clamping Force Estimator

As shown in Figure 4 and described in Equations (15) and (16), the external forces
^
Fext of forceps

A and B can be estimated using the joint torque disturbance observer and the contact force arm.
Equation (17) shows the definition and an estimation of the comprehensive clamping force F̂CF of the
two forceps A and B. The clamping force estimator proposed in this paper essentially considers and
combines the system’s dynamic characteristics and an artificial neural network. Moreover, the general
accuracy of the trained PSO-BPNN model determines the accuracy of the method for estimating the
clamping force.

3. Results and Discussion

In order to validate and evaluate the comprehensive performance of the proposed method for
estimating clamping force based on a joint torque disturbance observer using PSO-BPNN, a series of
experiments were carried out. In this section, we provide the results from the cable tension estimation
model based on the PSO-BPNN under free motion, and the experimental results of clamping force
estimation considering collision detection and a clamping action.

3.1. Training and Testing Results from the Cable Tension Estimation Model Based on the PSO-BPNN under
Free Motion

A series of experiments were carried out to explore the potential relations between the motor’s
displacement and velocity and the measured cable tension value under free motion. The displacement
corresponding to one pulse of the linear stepping motor is 0.00127 mm. The acceleration and deceleration
modes are selected as “S” type in the motion control card. The acceleration and deceleration time are
set to 0.02s, and the constant motion velocity is set to be variable. Five kinds of motors’ velocities (0.5,
0.6, 0.7, 0.8 and 1.0 mm/s) with increasing ladder are planned for the joint motion with the forceps’
opening angle ranging from zero to maximum angle. The maximum opening angle of the forceps
A and B is 130 degrees. This means that forceps A and B are actuated with joint angle range [0,65]
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degrees on the opposite direction, respectively. The input data were the displacement and velocity of
the two linear stepping motors for pulling the driving cables of forceps A and B. The output data were
the cable tension values that were measured through four tension sensors. Table 1 shows the main
parameters of the PSO-BPNN.

The training data comprised 90% of the randomized input data and their related output data. The
remaining 10% of the randomized input and output data were used as the testing data for examining
the generalization ability and prediction accuracy of the PSO-BPNN. The number of training data was
4892, and the number of testing data was 544.

The training and testing outcome indicators of the PSO-BPNN model are shown as Figure 5. We
can see that the trained PSO-BPNN model has good comprehensive performance. Figure 6 shows the
estimation results when the testing data were input into the PSO-BPNN model. The mean square
errors of the testing data were 0.2171, 0.2918, 0.2459, and 0.2379 N with respect to the estimation ability

of
^
FE, which are the motor cable tensions for actuating forceps A and B under free motion.
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3.2. Experimental Results of Clamping Force Estimation

As shown in Figures 2a and 4, the two forceps A and B were actuated from an opening angle
of 120 degrees to the clamping position limited by the contact object. To test the comprehensive
performance of the proposed method for clamping force estimation, the continuous and stair- loading
types of clamping motion experiments were carried out, as shown in Figures 7–9. “No loading region”
means that the forceps perform the clamping motion without contacting the object. “Start loading”
means that the forceps come into contact with the object for the first time. “Stop loading” means
that the forceps come into contact with the object for the final time. “Loading region” means that the
clamping force increases the area between the start and stop loading moments. “Collision detection”
means that the clamping force can be estimated with a set threshold value, which is called the collision
detection resolution. “Constant loading region” means that the clamping motion had stopped due to
constant external forces and the clamping force of forceps A and B.

Figure 7 shows the experimental results of the continuous clamping force estimation with a
collision analysis. The collision detection threshold was 0.11 N for the estimated external forces of
forceps A and B. Over the whole region, the overall root mean square errors (RMSEs) of the estimated
external forces were 0.1010 N and 0.4035 N for forceps A and B, respectively; and the overall RMSE
of the clamping force was 0.2321 N. The overall average errors in the estimated external forces were
–0.0088 N and –0.3042 N for forceps A and B, respectively; the overall average error in the estimated
clamping force was –0.1751 N; and the errors in the estimated clamping force can be summarized
in the interval of [–0.3482, 0.1718] N. In the constant loading region, the estimation accuracies of the
external forces F̂A

ext and F̂B
ext and the clamping force F̂CF were 93.83%, 80.13%, and 86.91%, respectively.
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Figure 7. Experimental results of the continuous clamping force estimation with a collision analysis.
(a) Measured and estimated values of the external forces and clamping force of forceps A and B. The
superscripts m and e denote the measured and estimated values, respectively; (b) Errors in the estimated
external forces and clamping force; (c) Joint torque disturbances of forceps A and B; (d) Measured
and estimated values of the cable tensions of forceps A and B. The superscripts m and e denote the
measured and estimated values, respectively; (e) Displacements and velocities of the linear stepping
motors for pulling the driving cables of forceps A and B.

Figures 8 and 9 show the two groups of experimental results of the incremental clamping force
estimation. At the end of the no loading region, five stepwise incremental loading motions were
performed in the clamping force experiments. The first contact position was set at the opening angle
(65 degrees). The estimated cable tensions F̂1

A, F̂2
A, F̂1

B, and F̂2
B from the trained PSO-BPNN model were

14.8259 N, 6.7541 N, 17.1017 N, and 5.7025 N, respectively. The estimated external forces F̂A
ext and F̂B

ext
are compensated for with their overall average errors of –0.1395 N and –0.1404 N, respectively, from
the first group.
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Figure 8. Experimental results of the incremental clamping force estimation (first group). (a) Measured
and estimated values of the external forces and clamping force of forceps A and B. The superscripts
m and e denote the measured and estimated values; (b) Errors in the estimated external forces and
clamping force; (c) Joint torque disturbances of forceps A and B; (d) Measured values of the cable
tensions of forceps A and B. The superscript m denotes the measured values.

Over the whole region of the first group of experiments as shown in Figure 8, the overall RMSE of
the estimated external forces F̂A

ext and F̂B
ext were 0.0825 N and 0.0956 N, respectively; and the overall

RMSE of the clamping force F̂CF was 0.070 N. The overall average errors in the estimated external forces
were 0.00002 N and –0.00004 N, respectively. The overall average error in the estimated clamping force
was –0.013 N, and the errors in the estimated clamping force can be summarized in the interval of
[–0.1343, 0.2256] N.

Over the whole region of the second group of experiments as shown in Figure 9, the overall RMSE
of the estimated external forces F̂A

ext and F̂B
ext was 0.1316 N and 0.1087 N, respectively. The overall

RMSE of the clamping force F̂CF was 0.080 N. The overall average errors in the estimated external forces
were –0.1223 N and 0.0628 N, respectively; and the overall average error in the estimated clamping
force was 0.0736 N. The errors in the estimated clamping force can be summarized in the interval of
[–0.0100, 0.2794] N.
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Figure 9. Experimental results of the incremental clamping force estimation (second group).
(a) Measured and estimated values of the external forces and clamping force of forceps A and B.
The superscripts m and e denote the measured and estimated values, respectively; (b) Errors in
the estimated external forces and clamping force; (c) Joint torque disturbances of forceps A and
B; (d) Measured values of the cable tensions of forceps A and B. The superscript m denotes the
measured values.

3.3. Analysis and Discussion

When training a PSO-BPNN model, the estimation accuracy of the trained neural network can be
limited by multiple effects, including the model parameter settings and the training data size. Because
the five different velocities of the yaw joint motion were quantitative, the estimation accuracy of the
trained PSO-BPNN model was only affected by the training data size. So, the estimation accuracy of the
trained PSO-BPNN model could be increased by collecting more training data with a higher number
of velocity bands. However, our trained PSO-BPNN model showed sufficiently good comprehensive
performance to be employed in the estimation of the cable tension of forceps A and B.

Figures 7–9 show the results of the clamping force estimation in the continuous and stair-loading
types of clamping motion experiments. In the curves of the estimation errors and the joint torque
disturbance, some relatively large errors arise at the beginning of the start loading region and the end
of the stop loading region. The reasons for these errors include, on the one hand, the effects of ignoring
the nonlinear elasticity of and the creep and hysteresis in the wire cables. These nonlinear parameters
and factors cannot be totally included in the system dynamic model and PSO-BPNN model. On the
other hand, the measured errors in the two flexible pressure sensors cannot be ignored when they are
pressed at the beginning and at the end of the clamping action.

To sum up, the collision detection threshold was found to reach 0.11 N, and the clamping force
estimation resolution was found to be the same as the collision detection threshold. The estimation
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accuracy for the static clamping force was greater than 86%. In this study, the proposed method for
clamping force estimation was shown to perform well. The two groups of incremental clamping force
estimation experiments demonstrated the more complete comprehensive performance of the proposed
method, with average errors in the interval of [–0.0722, 0.2525] N. Meanwhile, the experiments showed
that this method can provide effectively detection range in the interval of [0,2] N. Moreover, the length
of forceps direct influences the arms of external force, this means that the effectively detection range
can be extended by reducing the overall length of the forceps within reasonable limits. Overall, the
experimental results mean that the proposed method for clamping force estimation has the potential to
be used in the cable-driven end-effector of a surgical robotic system for MIS.

4. Conclusions

In this study, we proposed a method for clamping force estimation based on a joint torque
disturbance observer using PSO-BPNN for a cable-driven surgical robot end-effector. This estimation
method considers both the cable-driven end-effector’s system dynamics and the estimated cable
tension using the PSO-BPNN under free motion. Moreover, the clamping force can be estimated
by only using known information about the motor’s displacement and velocity, and the measured
cable tension value, without the need for internal force sensors to be integrated into the wrist joints of
the surgical robot end-effector. The PSO-BPNN-based joint torque disturbance observer performed
well in the disturbance estimation. The experimental results showed that the proposed method for
clamping force estimation has good comprehensive performance. Our future work will focus on solving
the decoupling precision problem in multi-DoF wrist joints, and the engineering and application of
this method.
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