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An increasing percentage of people have or are at risk to develop non-alcoholic fatty

liver disease (NAFLD) worldwide. NAFLD comprises different stadia going from isolated

steatosis to non-alcoholic steatohepatitis (NASH). NASH is a chronic state of liver

inflammation that leads to the transformation of hepatic stellate cells to myofibroblasts.

These cells produce extra-cellular matrix that results in liver fibrosis. In a normal situation,

fibrogenesis is a wound healing process that preserves tissue integrity. However,

sustained and progressive fibrosis can become pathogenic. This process takes many

years and is often asymptomatic. Therefore, patients usually present themselves with

end-stage liver disease e.g., liver cirrhosis, decompensated liver disease or even

hepatocellular carcinoma. Fibrosis has also been identified as the most important

predictor of prognosis in patients with NAFLD. Currently, only a minority of patients

with liver fibrosis are identified to be at risk and hence referred for treatment. This is

not only because the disease is largely asymptomatic, but also due to the fact that

currently liver biopsy is still the golden standard for accurate detection of liver fibrosis.

However, performing a liver biopsy harbors some risks and requires resources and

expertise, hence is not applicable in every clinical setting and is unsuitable for screening.

Consequently, different non-invasive diagnostic tools, mainly based on analysis of blood

or other specimens or based on imaging have been developed or are in development. In

this review, we will first give an overview of the pathogenic mechanisms of the evolution

from isolated steatosis to fibrosis. This serves as the basis for the subsequent discussion

of the current and future diagnostic biomarkers and anti-fibrotic drugs.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) refers to the presence
of liver steatosis in the absence of factors that are known
to induce lipid accumulation in hepatocytes, such as alcohol
consumption or the use of steatogenic drugs. The diagnosis
requires > 5% of the hepatocytes containing lipid droplets
on histology or the amount of fat in the liver to exceed 5%
of the total liver weight (1). Currently, NAFLD is the most
common chronic liver disease with an estimated prevalence of
25% worldwide (2). The prevalence of NAFLD parallels the
global increase in overweight and obesity which is the result
of an increase of caloric intake over expenditure that leads
to an increase in body mass index (BMI) (3). As a result,
NAFLD will become the most common cause of liver cirrhosis,
decompensated liver disease or hepatocellular carcinoma (HCC)
in the short term, and thus themost important indication for liver
transplantation (4).

NAFLD comprises a broad spectrum of liver lesions but
also has extra-hepatic consequences. These extra-hepatic
complications, including cardiovascular disease, diabetes,
and non-liver malignancies, are responsible for a significant
part of NAFLD-attributable morbidity and mortality (5, 6).
Furthermore, there is a considerable impact on the quality of life
(7, 8). With respect to the liver, the NAFLD spectrum consists
of the following entities: isolated fatty liver (non-alcoholic
fatty liver, NAFL); and non-alcoholic steatohepatitis (NASH),
i.e., steatosis accompanied by chronic inflammation and cell
damage, histologically characterized by lobular inflammation
and ballooning of hepatocytes, the latter being the driving
force of fibrosis that can evolve to cirrhosis and decompensated
cirrhosis (Figure 1). HCC can also develop, even in non-
cirrhotic NAFLD (9). The rate of disease progression is usually
slow. About 20% of patients with NAFLD will develop NASH
in three to seven years (10), which is considered the potentially
progressive form of the disease (11). About 9 to 25% of
individuals with NASH develop cirrhosis over a 10 to 20 year
period (12).

Unfortunately, it is very hard to know which NASH patient
will progress to cirrhosis due to the complex multifactorial
etiology of NASH determined by genetic, epigenetic, lifestyle, and
nutritional factors (13). However, the stage of liver fibrosis is the
strongest predictor for liver-related mortality and development
of other comorbidities (14–18), with an increase if fibrosis
(F) is ≥ 2 on a scale of 0–4 as proposed by the NASH
Clinical Research Network Scoring System (NASH CRN) (19).
Accordingly, NASH patients with ≥F2 are considered the target
population for pharmacological treatment and are most likely to
benefit from antifibrotic drugs. Regression of stage F1 fibrosis
is more likely with simple lifestyle changes and treatment of
the metabolic comorbidities (20). Therefore, it is important to
correctly diagnose the stage of liver fibrosis, preferably with non-
invasive methods. Additionally, regression of advanced fibrosis
should be the primary hepatic endpoint in clinical studies
for antifibrotic drugs (21). Therefore, this review will tackle
diagnostic methods to determine the stage of liver fibrosis and
antifibrotic drugs that can reduce advanced fibrosis.

PATHOGENESIS

As understanding the pathogenesis of NAFLD and NAFLD-
related fibrosis is vital in the development of biomarkers for its
diagnosis and in finding targets for its treatment, we first review
the most important aspects of NAFLD-related fibrogenesis.

From Liver Steatosis to NASH
Weight gain, often caused by an unhealthy lifestyle with a
high-calorie diet and decreased physical activity, is one of the
most important factors in the development of NAFLD. The
liver plays a critical role in maintaining the metabolic balance
that comes under pressure with a high caloric intake and
low energy expenditure. Lipid overload, as seen in NAFLD,
is a major contributor to the development of lipotoxicity
(Figure 1A). Lipotoxicity accelerates the development of
progressive inflammation, oxidative stress, and fibrosis (22).
The excess energy consumed is usually stored in the form of fat
in both subcutaneous and visceral depots. This capacity of the
adipose tissue to store fat is genetically determined. When this
capacity is exceeded, the adipose tissue experiences an overload
and becomes damaged. This results in adipose tissue insulin
resistance (IR) and inflammation of the tissue with imbalances
in the secretion of adipokines and other inflammatory mediators
(23), which causes a low-grade systemic inflammation (24).
Together with ectopic fat accumulation, this leads to IR in
the muscles and liver (25). The IR causes a disbalance in the
homeostasis of glucose and lipid metabolism. As a result, more
free fatty acids (FFA) that have to be processed by the liver,
enter the circulation (26). Another consequence is that dietary
carbohydrates (especially fructose) are absorbed by the liver and
converted to FFA by de novo lipogenesis. About 40% of the fat that
builds up in the liver comes from dietary carbohydrates and fat.
The other 60% is derived from the dysfunctional adipose tissue
(26). Thus, IR leads to an increase in FFA flux, leading to a toxic
effect on the liver (27). The FFA are normally broken down in the
mitochondria by beta-oxidation. Due to the FFA overload, the
mitochondria are overwhelmed, and this leads to mitochondrial
uncoupling. As a result, they produce reactive oxygen species
(ROS) (22, 26). Combined with the dysfunctional adipose tissue
and endotoxins from the gut, this leads to a pro-inflammatory
and apoptotic climate in the liver, causing NASH (26–28). The
Kupffer cells, the resident macrophages of the liver, as well as
infiltrating immune cells, contribute to the inflammatory state of
NASH. Kupffer cells absorb large amounts of FFA, which drives
them toward an inflammatory phenotype. This leads to the
secretion of inflammatory cytokines such as interleukin (IL)-6,
tumor necrosis factor (TNF)-α and IL-10. Both IL-6 and TNF-α
are associated with NASH progression (29, 30).

Taken together, NASH is the result of a complex interplay
between different factors like genetic variation and obesity, which
leads to a profibrotic climate in the liver (31).

From NASH to Liver Fibrosis
Immune responses in chronic liver diseases like NAFLD, not
only lead to the restoration of tissue function but also to tissue
injury. An overactive or exaggerated immune response can result
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FIGURE 1 | Overview of evolution of NAFLD related fibrogenesis on clinical, cellular, and histological level. On the clinical level NAFLD starts of as simple steatosis

(NAFL). The abnormal amount of liver fat triggers inflammation by infiltrating immune cells and secretion of cytokines. This is called non-alcoholic steatohepatitis or

NASH which can cause liver fibrosis. On cellular level, quiescent hepatic stellate cells (HSCs) are activated by immune cell infiltration and hepatocyte injury due to

inflammation. The activated HSC transdifferentiates into collagen producing myofibroblasts furthermore the myofibroblasts trigger HSC progenitor proliferation and

activation. Another consequence of the immune cell infiltration and hepatocyte injury is apoptosis of hepatocytes, leading to the release of damage-associated

patterns (DAMPs). DAMPs also activate hepatic progenitor cells. Both the myofibroblasts and HSCs will start producing collagen. On a histological level, first fat

accumulates in the liver (A). This leads to the infiltration of immune cells (B) and ballooning and eventually liver fibrosis occurs (C). Histological pictures courtesy of Dr.

P. Van Eyken, pathologist, Ziekenhuis Oost-Limburg, Genk, Belgium.

in organ dysfunction and leads to the deposition of fibrotic tissue
in parallel to the cell loss (31). These immune responses comprise
both innate and adaptive responses (32). For example, neutrophil

infiltration is often seen in histologic samples of NASH patients
(Figure 1B). Additionally, patients with NASH and advanced
fibrosis related to NASH have a higher neutrophil/lymphocyte
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ratio than patients without NASH (33, 34). Likewise, CD8+
lymphocytes have also been seen in the inflammatory infiltrate
in NASH (35).

The inflammation caused by NASH causes hepatocyte death
and apoptosis. The dying hepatocytes release damage-associated
molecular patterns (DAMPs). The DAMPs, including nucleic
acids, intracellular proteins, and adenosine triphosphate (ATP),
send a danger signal to the surrounding cells (36). The danger
signal activates the hepatic progenitor cells (HPCs). Apoptosis,
on the other hand, produces low levels of DAMPs since most
of the cell content will be retained in an apoptotic body. These
apoptotic bodies will be phagocytosed by hepatic stellate cells
(HSCs) and Kupffer cells. This induces a pro-fibrogenic response.
Additionally, the DNA from the apoptotic hepatocytes triggers
the activation of Toll-Like-Receptor (TLR)-9 on HSCs and
collagen production (37).

Infiltration of the immune cells activates the trans-
differentiation of HSCs into collagen-producing myofibroblasts
(28). Usually, this process is involved in tissue repair upon short-
term injury. When liver injury occurs, the HSCs are activated
and differentiate from the quiescent phenotype to proliferative
and contractile myofibroblasts (38). In their quiescent stage,
HSCs store retinoids and synthesize glial fibrillary acidic
protein (GFAP). When activated, a gradual loss of retinoids and
GFAP coincides with their development into myofibroblasts
with the synthesis of extracellular matrix (ECM) products
like type I, type III, and type IV collagen but also hyaluronic
acid (HA) (39). Levels of the glycosaminoglycan polymer HA
increase with the amount of liver fibrosis (40). The collagen
accumulation is accompanied by a rise in metalloproteinases
(MMPs) such as MMP-9, which break down ECM products
(41, 42). The combination of active and overexpressed MMP-9
and build-up of type III collagen leads to an abundance of
cleaved type III collagen products like plasma N-terminal
propeptide of type III procollagen (PIIIPN) or neo-epitope
PRO-C3 (43, 44). Normally the MMPs are kept in check by
tissue inhibitors of metalloproteinase (TIMPs). There are four
TIMPs of which TIMP-1 is secreted by macrophages and
fibroblasts (45). In murine fibrotic livers, likewise to the increase
in MMPs, high concentrations of TIMP-1 were found (46).
This creates a disturbance in the MMP/TIMP balance and,
therefore a shift toward ECM synthesis and thus fibrogenesis
(47). Alpha-2 macroglobulin (A2M) causes the balance to tip
even further toward fibrogenesis by also inhibiting the MMPs
(48). In addition to the ECM products, myofibroblasts also
synthesize α-smooth muscle actin (α-SMA) (49). Ramzy et al.
indicated that an increase in α-SMA marks the activation of
HSCs (50).

During differentiation, the characteristic star-like shape of
the HSCs changes to a more droplet form. The process is
then balanced by the counteracting anti-fibrotic mechanisms
resulting in the inactivation or apoptosis of the myofibroblasts
and scar resolution. In chronic diseases, like NAFLD, there
is an imbalance in these processes. The imbalance will
cause persistent activation of proliferating, contractile, and
migrating fibroblasts. This leads to the excessive production of
ECM. The abundance of ECM will destroy the physiological

architecture of the liver (51). The regulators of this balance
are non-parenchymal cells (NPCs) like Kupffer cells and
other immune cells, which are, as mentioned above, recruited
to the site by the death and apoptosis of hepatocytes
(52). NPCs will start producing pro-fibrogenic cytokines.
On a molecular basis, a complex network of cytokine-
induced pathways arises to coordinate the pro-fibrogenic cell
interactions. The proposed signaling pathways associated with
HSC activation and fibrosis progression are the transforming
growth factor beta (TGF-β), platelet-derived growth factor
(PDGF), inflammasome (NLRP3)-caspase 1, and the WNT/β-
catenin (28).

From Liver Fibrosis to Liver Cirrhosis
Progression of liver fibrosis to liver cirrhosis varies between
people depending on environmental and host factors (53).
Cirrhosis is a consequence of long-standing fibrogenesis that
results in the encapsulation of injured liver parenchyma by
a collagenous scar. Histologically, cirrhosis is characterized by
fibrotic septa that connect the portal tracts with each other and
with the central veins (Figure 1C). This leads to a disconnection
of the hepatocytes from the central vein, creating islands of
hepatocytes. Vascular changes also occur, including loss of
sinusoidal fenestrae and appearance of a basal membrane, or so-
called capillarisation of the liver sinusoids, another hallmark of
cirrhosis (54). The changes in liver structure ultimately lead to
an increase of intravascular resistance within the portal system
and decreased hepatic perfusion (55). The consequence is a loss
of liver function (56).

Molecular Signaling Pathways Involved in
Liver Fibrogenesis
TGF-β Signaling
TGF-β, together with PDGF, is themost potent inducer of hepatic
fibrosis (57). The TGF-β superfamily consists of 33 members, of
which TGF-β1 plays an essential role in liver fibrogenesis (58).
The consequences of TGF-β1 signaling are inhibition of HSC
apoptosis and induction of HSCs to produce excessive amounts
of ECM proteins like fibronectin and collagen types I, II, and IV
(59). Additionally, the production of matrix-degrading proteins
is inhibited by TGF-β1 (60). In patients with hepatic fibrosis,
increased concentrations of TGF-β1 correlate with the severity
of fibrosis (61, 62).

TGF-β1 mainly exerts its effects via small Mothers Against
Decapentaplegic (SMAD)-dependent pathways. The SMAD
family is divided into three groups based on their functions.
First, there are the receptor-regulated SMADs (R-SMADs),
which include SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8.
Secondly, SMAD4 is the only member of the common SMAD
(co-SMAD). The third group consists of the inhibitory SMADs
(i-SMADs) and includes SMAD6 and SMAD7. The R-SMADs
bind to membrane bound serine/threonine receptors and are
activated by their kinase activity. Co-SMADs act as co-factors and
attach to the R-SMADs to form a complex that will translocate to
the nucleus of the cell. i-SMADs, on the other hand, counteract
the effect of the R-SMADs (63). SMAD3 and SMAD4 have
been found to be pro-fibrotic, whereas SMAD2 and SMAD7
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are protective (64). SMAD3 induces hepatocyte death and lipid
accumulation, especially in NASH (65). SMAD4 even enhances
fibrogenesis by promoting SMAD3 activity. SMAD7, on the other
hand, downregulates SMAD3 (66, 67). On their turn, SMADs also
act as signal integrators and interact with the mitogen-activated
protein kinases (MAPK) and nuclear factor kappa beta (NFκB)
pathway (68).

PDGF Signaling
PDGF is a growth factor that promotes HSCs division and
proliferation (28). The PDGF family consists of four members:
PDGF-A, -B, -C, and -D (69). In healthy circumstances,
PDGF is produced by platelets. When liver injury occurs,
Kupffer cells recruited to the site of inflammation secrete
PDGF (70). All PDGF members and its receptors (PDGF-
R) are overexpressed in the case of liver fibrosis, and the
activity increases with the degree of liver fibrosis (71–74). For
example, PDGF-C activates the TGF-β/SMAD3 pathway in mice,
leading toHSC proliferation, collagen production, and eventually
fibrosis (72). However, of the four members, PDGF-B and -
D are the most potent in activating the downstream pathways
extracellular signal-regulated protein kinase/mitogen-activated
protein kinase (Erk/MAPK) and protein kinase B (Akt/PKB).
The activation leads to HSC proliferation (71, 75). PDGF-A
expression was increased in hepatocytes from fibrotic livers
compared to normal livers (76). In HSCs, on the other hand,
although they express both receptors, only PDGF-BR expression
was upregulated during HSC activation both in vitro as in
vivo (77, 78).

The NLRP3 Inflammasome Caspase-1 Pathway
Inflammasomes are multiprotein complexes that sense danger
signals like DAMPs and pathogen-associated molecular patterns
(PAMPs) from damaged cells and pathogens (79). There are
multiple inflammasomes implicated in liver disorders, but
the nucleotide-binding oligomerization domain (NOD)-like
receptor protein 3 (NLRP3) inflammasome has been studied
most extensively (80–82). The NLRP3 inflammasome is activated
in a two-step process. First, a bacterial signal, for example
lipopolysaccharide (LPS), upregulates Nlrp3 expression via the
NFκB-pathway (83). This, in turn, will enable a second signal,
e.g., a DAMP, to activate the NLRP3 inflammasome. Once
activated, the inflammasome binds with the adaptor molecule
ASC tomediate caspase-1 cleavage, thereby activating the enzyme
(79, 84). Caspase-1 activates pro-inflammatory cytokines IL-1β
and IL-18 by proteolysis, though also activates the cytosolic
protein gasdermin D (GSDMD) (85). GSDMD in a cleaved form
will create pores in the plasma membrane of cells (86). This
induces pyroptotic cell death and, consequently, the release of
IL-1β and IL-18 (86–88).

In NAFLD, the NLRP3 inflammasome has been found to
negatively regulate disease progression (89). In early NAFLD
models, mRNA upregulation of the NLRP3 inflammasome
components, like Nlrp3, Asc, and Casp1, was found. However, no
active inflammasomes were found, indicating that not enough
signals were present in a fatty liver to properly activate the
inflammasome (90, 91). In NASH, on the other hand, IL-1

β will stimulate the production of inflammatory cytokines,
thus aggravating the already existing inflammation (92).
In a mouse knock-in model of the NLRP3 inflammasome,
inflammation was increased, and simultaneously a high
neutrophil infiltration was found. In addition, NLRP3 also
induced HSC activation and collagen deposition, thereby causing
liver fibrosis (80). Blockage of NLRP3 resulted in a reduction
of liver inflammation and fibrosis in an experimental mouse
model of NASH (93). It is clear that NLRP3 is involved in
the pathogenesis of liver fibrosis with NAFLD. Nevertheless,
additional studies are necessary to provide a better insight into
these mechanisms.

Wnt/β-Catenin Signaling
The Wnt signaling pathway consists of canonical and non-
canonical arms and regulates a large number of cellular functions
(94). The canonical pathway exerts anti-lipid formation and anti-
inflammatory effects, while the non-canonical pathway promotes
fat formation, lipid accumulation, and inflammation (95). An
imbalance between these two pathways has been associated with
NAFLD by triggering lipotoxicity and fibrogenesis (96, 97). More
specifically, the Wnt signaling pathway promotes hepatic fibrosis
by enhancing HSC activation and survival, and upregulation of
TGF-β/SMAD pathways (49).

Other Mechanisms That Contribute to
Liver Fibrogenesis
Gut Liver Axis
About 70% of the liver’s blood supply comes from the intestines.
This blood circulation enables the liver to interact with products
derived from the intestines, like bacterial DNA, LPS, or intact
bacteria due to an increased intestinal barrier permeability
(98). Normally, the Kupffer cells will clear the endotoxins,
maintaining the immune tolerance and homeostasis. Alteration
of the gut microbiome, gut permeability, and Kupffer cell
responsivity can alter this balance (31). Moreover, fructose, a
compound frequently found in sugar beverages, has been shown
to promote a leaky gut and liver fibrosis. Fructose induces the
ethanol-inducible cytochrome P450-2E1-mediated oxidative and
nitrative stress (99). In addition, the bacterial products can bind
to the TLRs in the liver, thereby inducing liver inflammation.
This causes the progression of liver disease due to the fact
that the TLRs will activate the NFκβ and the c-Jun N-terminal
kinase (JNK) pathways (100). Most of the studies are, however,
performed in mice, and more research in humans is necessary
(101). A study conducted by Kapil et al. in humans indicated
that small intestinal bacterial overgrowth and TLR signaling are
involved with liver histology in NAFLD (102). In a study by
Boursier et al. it was shown that NAFLD severity was associated
with gut microbiome alterations and shifts in the metabolic
function of the microbiome (103). More specifically, they found
that the Ruminococcus bacteria were independently associated
with fibrosis (103). These first results in human trials concerning
the microbial environment are leading to further investigations
of the influence of the gut microbiome in people with metabolic
disorders like NAFLD (104).
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Genetic Mechanisms
In addition to environmental factors, genes play a role
in NAFLD (1). Several genes have been identified through
genome-wide association studies (105–107). Amongst those,
Patatin-like phospholipase domain containing 3 (PNPLA3) and
transmembrane 6 superfamily member 2 (TM6SF2) seem to
have the biggest impact (108). The PNPLA3 gene has been most
extensively studied. It is located on chromosome 22 and encodes
a 481 amino acid protein that mediates triacylglycerol hydrolysis.
The I148M variant of PNPLA3 (rs738409) is strongly associated
with NAFLD in adults but also in obese children and adolescents
(109, 110). In a mouse model of NAFLD, overexpression of
the I148M variant of the PNPLA3 gene caused hepatic steatosis
(111). However, the exact mechanism is not yet known (105).
The TM6SF2 gene, located on chromosome 19, plays a role in
the progression of NAFLD. A single nucleotide polymorphism
(rs58542926) replacing a cytosine by a thymine in position 167
has been linked to an increased hepatic triglyceride content (112).
This specific gene variant has also been associated with fibrosis
progression (113). Both PNLPA3 and TM6SF2 thus exert an
additive effect on NASH and significant fibrosis (114).

DIAGNOSIS OF LIVER FIBROSIS

As previously stated, the stage of fibrosis is the most essential
determinant of liver-related progression and mortality, and a key
indicator for the development of other comorbidities like type 2
diabetes (T2DM) and cardiovascular disease, indicating the need
to correctly diagnose fibrosis (115).

Liver Biopsy
Liver biopsy is currently considered as the gold standard
for the diagnosis and histological assessment of NAFLD (1).
Unfortunately, due to its invasive nature, a biopsy is not suited
for screening purposes and cannot be implemented early in the
diagnostic path of potential patients (116). It is mostly reserved
for patients with a high risk of advanced liver disease during
long-term follow-up, to distinguish NASH from NAFL and to
determine the extent of liver fibrosis (117, 118). Additionally,
a biopsy is still required in more advanced stages of drug
development for NASH to assess treatment efficacy (119, 120).

Histological Scoring Systems for Liver Biopsy

Samples
There are different histological scoring systems for classifying
liver biopsy samples (121). However, the most widely used scores
are the NASH CRN including the NAFLD Activity Score (NAS)
and the Steatosis-Activity-Fibrosis (SAF) score (Table 1) (19,
122). The NAS scoring system is initially developed for use in
clinical studies, and a definition of NASH has been based on this
score. The score ranges from 0 to 8 (Table 1) and is composed
of the unweighted sum of steatosis, ballooning, and lobular
inflammation. A score between 0 and 2 corresponds to no NASH,
3–4 is borderline NASH, and definite NASH has a score between
5 and 8. Yet, there are several remarks concerning this scoring
system. Firstly, this definition of activity does not distinguish
steatosis separately from necroinflammation. Secondly, lobular

inflammation outweighs ballooning, while ballooning is an
essential feature of the NASH definition. Thirdly, the grading
of the ballooning is based on the number of ballooned cells,
without a clear definition of how to assess ballooning. This causes
a greater opportunity for interobserver variability in NASH
diagnosis. The SAF score, on the other hand, assesses steatosis
(S) separately from activity (A), and of course, also fibrosis (F).
This scoring system was developed by the Fatty Liver: Inhibition
of Progression (FLIP) consortium. The activity score is, in this
case, a combination of lobular inflammation and ballooning
both scored from 0 to 2, overcoming the problem of one
criterium outweighing the other. Additionally, a clear definition
of ballooning is given. If the size of the hepatocyte is twice as
big as usual, it is considered as severe ballooning (123). Although
both the NAS and SAF score have a comparable fibrosis grading
system, the SAF score may potentially be more appropriate for
routine diagnosis and clinical trials as it comes with an easy to
use diagnostic algorithm and better-defined criteria leading to
less interobserver variability (117). However, future comparative
studies are needed to determine which scoring system is the
most potent in scoring NAFLD related fibrosis. In contrast to
differences in the concepts of activity and the scoring of the
features of ballooning and lobular inflammation, the scoring of
fibrosis is the same in both NASH CRN and FLIP SAF (except
for the subclassification of F1 in NASH CRN). Stage one (F1)
of NASH CRN system is composed of three subclasses, namely:
F1a stands for mild perisinusoidal/pericellular fibrosis, F2a is
moderate perisinusoidal/pericellular, and F1c is portal/periportal
fibrosis. For the FLIP SAF system, the subclasses of F1 were
pooled into one stage of mild perisinusoidal/pericellular fibrosis.
Stage two (F2) correlates with perisinusoidal/pericellular and
portal/periportal fibrosis. Next, stage three (F3) corresponds to
bridging fibrosis. Lastly, stage four (F4) stands for liver cirrhosis.
In a clinical situation, people speak of significant and advanced
fibrosis; in this case significant fibrosis stands for ≥F2 and
advanced for ≥F3. It is thus different from the MetaVir score
designed for the staging of liver fibrosis caused by viral hepatitis
where F1 does not have subclassifications, and for the other
stage’s fibrosis expansion should be located in the portal zones
(124, 125). Consequently, when reviewing literature, one should
pay attention to the scoring system used as a reference golden
standard when studying non-invasive biomarkers.

Outside these commonly used scoring systems, there are
also other more granular scoring systems though they are not
used as the golden reference standard in studies with non-
invasive biomarkers. For instance, the Ishak staging system
ranging from 0 to 6 with 6 being cirrhosis, was previously
one of the most frequently used fibrosis scoring systems in
clinical trials for different etiologies of liver disease. The Ishak
fibrosis stages reflect more scarring than each preceding stage.
Succession from one stage to the next represents progressively
more advanced liver disease (126). Another scoring system is the
EPoS staging system developed by the Elucidating (E) Pathways
(P) of (o) Steatohepatitis (S) consortium. This system is based
on e-slides, histological glass slide images that have been turned
into electronic files. It includes, similarly to the Ishak system,
seven stages ranging from 0 to 6. In a first study presented
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TABLE 1 | Comparison between the histologic scoring of NAFLD according to NASH CRN system and SAF system (18, 120).

Score NASH-CRN SAF Score

Steatosis 0 <5% <5% 0

1 5–33% 5–33% 1

2 >33–67% >33–67% 2

3 >67% >67% 3

Lobular inflammation 0 No foci No foci 0

1 <2 foci/20X <2 foci/20X 1

2 2–4 foci/20X >2 foci/20X 2

3 >4 foci/20X

Ballooning 0 No ballooning Normal hepatocytes 0

1 Few ballooned cells Clusters of rounded, pale

hepatocytes

1

2 Many ballooned cells Many enlarged (2X normal size)

hepatocytes

2

Fibrosis 0 No fibrosis No fibrosis 0

1 1a Mild, zone 3

perisinusoidal/pericellular fibrosis

1b Moderate, zone 3

perisinusoidal/pericellular fibrosis

1c Portal/periportal fibrosis

Mild fibrosis perisinusoidal/pericellular 1

2 Perisinusoidal/pericellular and

portal/periportal fibrosis

Perisinusoidal/pericellular and

portal/periportal fibrosis

2

3 Bridging fibrosis Bridging fibrosis 3

4 Cirrhosis Cirrhosis 4

Composite score for activity 0–8 NAS = NAFLD Activity Score =

steatosis + ballooning + lobular

inflammation

A = ballooning + lobular inflammation 0-4

NAS, NAFLD Activity Score; NASH CRN, Non-Alcoholic steatohepatitis clinical research network scoring system; SAF, Steatosis-Activity-Fibrosis.

at the International Liver Congress of 2018, the EPoS scoring
system showed promising results in terms of interobserver
reproducibility (127).

Limitations of a Liver Biopsy
Although being the golden standard, a liver biopsy also has
several limitations. The procedure comes with some discomfort
and risks. As for the incidence of pain, this was reported to be
20%, thoughwhen amildly unpleasant feeling was included in the
assessment, the incidence increased to 84% (128). The incidence
of severe complications and mortality was found to be between
0.3 and 0.57% and 0.01, respectively (129–131). Furthermore, the
interpretation of the biopsy requires a high level of expertise and
training; hence experienced physicians need to perform it. Liver
biopsies are also prone to sampling error with discordance of
one stage or more of 41% in a study with paired biopsies (132).
This is due to the fact that a biopsy sample is only 1:50.000 of
the liver mass. Fibrosis is not spread uniformly throughout the
liver, which leads to this sampling error (132). Another problem
in the assessment of histological liver biopsy samples is inter- and
intra-observer variability (128). Evaluation of fibrosis is mostly
consistent among observers. The evaluation of inflammatory
activity, on the other hand, was inconsistent at a high rate in a
study performed by Younossi et al. (133). Moreover, NASH can
mimic other liver diseases, therefore the possibility of another
etiology needs to be kept in mind (117).

Non-invasive Tests for the Detection of
Liver Fibrosis
Non-invasive assessment of liver fibrosis can overcome some of
the limitations of the biopsy and can be implemented and used
for screening of NAFLD. There is currently an intensive search
for biomarkers in NAFLD. Although stand-alone biomarkers
are unlikely to provide the complex set of information that a
liver biopsy offers, they can, if accurate and validated, provide
an alternative to the biopsy to assess specific aspects of the
disease. As outlined before, liver fibrosis is one of these crucial
features, and non-invasive assessment of liver fibrosis has made
significant advances in the last two decades. Currently, non-
invasive assessment of liver fibrosis is composed of two different
approaches: a biological approach based on the quantification of
biomarkers (mostly in serum) and a physical approach based on
the measurement of liver stiffness (117). A combination of the
biological and physical approach results in a greater accuracy
compared to the individual strategies to identify liver fibrosis,
without the necessity of doing a liver biopsy (134, 135).

Methodological Aspects of Non-invasive Tests
As outlined previously, for a correct interpretation of the data,
one should first of all look at the fibrosis scoring system that has
been used in the design and validation of the non-invasive test.
Hence, the non-invasive tests for NAFLD should be tested against
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the NASH CRN or SAF grading systems and not the MetaVir.
Though, one should keep in mind the differences between the
NASH CRN or SAF score. Moreover, as the non-invasive tests
are validated against a liver biopsy, they cannot outperform
the golden standard. Second, the values of non-invasive scores
mostly show substantial overlap between histological fibrosis
stages. Therefore, although often proposed for that purpose, non-
invasive scores are not very accurate in predicting a precise
corresponding histological fibrosis stage and hence cannot be
used to diagnose the histological fibrosis stage of a given patient.
According to the cut-off chosen, based on a given combination
of specificity and sensitivity, non-invasive scores are useful to
rule-in or rule-out significant or advanced fibrosis or cirrhosis, or
conversely, the absence thereof, with NPV and PPV depending
on the prevalence of the condition in the population that is
studied. So, the result of a non-invasive test informs you about
the likelihood of finding e.g., significant fibrosis, or the absence
thereof, in a given patient, but does not tell you the patient has F2.

Liver Stiffness Measurement

Vibration Controlled Transient Elastography
The physical approach to assess fibrosis consists of measuring
liver stiffness, which is a physical characteristic of the liver tissue,
influenced by (but not equalling) the stage of liver fibrosis.
Liver stiffness can be assessed by VCTETM, as measured by the
FibroScan R© device, was shown to correlate with liver fibrosis in a
cross-sectional analysis of patients with viral hepatitis and is now
widely used as a technique to non-invasively assess liver fibrosis
in various liver diseases and different circumstances, including
not only screening and baseline assessment but also follow-
up and assessment of treatment response (136, 137). VCTETM

measures liver fibrosis via the velocity of a low-frequency (50Hz)
elastic shear wave (induced by a mechanical pulse) propagating
through the liver (117). The probe uses pulse-echo ultrasound
(US) to follow the propagation of the shear wave and measures
its velocity. The velocity of the wave depends, amongst others, on
the amount of liver fibrosis. It is a straightforward, non-invasive,
and easy to use technique. The area covered by the VCTETM

measurement has a volume that is 100 times bigger than an
average liver biopsy sample (138). Choosing the cut-off value for
the VCTETM has to be done with care and depends on the clinical
situation. Low cut-off values for the VCTETM, for example 7.9
kPa, have higher negative predictive values (NPV) than positive
predictive values (PPV), meaning it can more precisely rule out
more severe stages of fibrosis and rule in the absence of fibrosis.
In contrast, higher cut-offs have an increase in the PPV and can,
therefore, be more reliably used to rule-in more severe stages
of fibrosis (139). A recent meta-analysis by Hsu et al. using the
following thresholds 6.2, 7.6, 8.8, and 11.8 kPa, showed a pooled
area under the receiving operating curve (AUROC) of 0.82, 0.87,
0.84, and 0.83 (with 95% CI) for diagnosing ≥F1, ≥F2, ≥F3, and
F4, respectively (Table 2) (140).

VCTETM has been found to be a cost-effective surveillance
strategy to evaluate the presence of fibrosis (138). However,
there are some limitations when using VCTETM measurements.
Factors influencing the results of the FibroScan R© measurements
are ascites, elevated central venous pressure, and obesity. Gross

ascites prevents an accurate measurement of liver stiffness by
VCTETM. Fluid and adipose tissue attenuate the elastic wave
(149–151). To overcome the latter problem, the extra-large (XL)
probe was developed. It is able to assess the degree of fibrosis
more accurately, though it may not be superior to the standard
medium probe in obese patients (152, 153). The XL probe has a
more sensitive US transducer, larger vibration amplitude, deeper
focal length, and deeper signal penetration (tissue depth >35–
75mm) (154).

Liver inflammation may also reduce the accuracy of the
test, as it can increase the VCTETM value by 1.3 to 3 times.
This is illustrated by the rapid decline of liver stiffness after
successful eradication of viral hepatitis C in a time frame that is
too short to allow for substantial fibrosis regression (155). The
pattern of fibrosis also differs between diseases, and the staging
systems differ accordingly, as outlined previously. Accuracy and
cut-offs need hence to be defined in a disease-specific way.
Operator experience, sex, and metabolic syndrome can influence
the FibroScan R© measurements too (156, 157). A study performed
by Vuppalanchi et al. demonstrated a failure rate of 5.5% because
of excess skin to liver capsule distance, machine error, and invalid
readings. Another study performed by the same research group
indicated that fasting of at least 3 h in necessary (158). Without
fasting, a significant increase (26 ± 25%, p = 0.02) in VCTETM

was seen (159). Nonetheless, with sufficient operator experience,
the failure rate and unreliability can be minimized (117, 160).

An extra feature recently added to the FibroScan R© device
is the possibility to measure the amount of liver fat. Since this
an important characteristic of NAFLD, assessment of steatosis
is therefore crucial. The fat content can be measured via the
Controlled Attenuation Parameter (CAPTM). The CAPTM can
be determined by the ultrasonic attenuation on the FibroScan R©

device at a frequency of 3.5 MHz on a go-and-return path
(161, 162).

Other Ultrasound-Based Elastography Methods
There are several other ultrasound (US)-based methods available
to determine liver elasticity (163). US elastography makes use of
two different techniques, namely strain imaging or shear wave
imaging. Strain imaging is used with strain elastography (SE)
and acoustic radiation force impulse (ARFI) (164). Shear-wave
imaging is the same technique as in the FibroScan R© device (165).
They have been less extensively studied in the context of NAFLD,
but data on their accuracy are increasingly reported along with
their use in clinical practice (166).

Point shear wave elastography (pSWE) is an ARFI-based
technique that uses a short-duration, high-intensity acoustic
pulse to displace tissue perpendicular to the longitudinal waves
of the tissue surface (167). Next, the transducer detects the
tissue displacement within a focal point along the radiation
force resulting in the measurement of tissue stiffness. The big
advantage of pSWE is that additional equipment is not necessary.
pSWE can be incorporated in an US machine with brightness-
mode. Next, direct anatomical visualization is possible, avoiding
the areas with large blood vessels or parts of the biliary system
(168). This implies, however, that a radiologist or sonographer
is usually needed to perform the pSWE as a specific anatomical
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TABLE 2 | Overview of the accuracy indices of the different non-invasive diagnostic tools for NAFLD-related liver fibrosis.

Non-invasive test References Meta-analysis Fibrosis stage Cut-off AUROC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

VCTETM Hsu et al. (140) Yes ≥F1 6.2 kPa 0.82 (0.76–0.88) 66 67. 81 48

≥F2 7.6 kPa 0.87 (0.81–0.91) 76 80 72 83

≥F3 8.8 kPa 0.84 (0.78–0.90) 77 78. 54 91

≥F4 11.8 kPa 0.83 (0.74–0.94) 80 81. 34 97

MRE Liang and Li (141) Yes ≥F1 Optimal values

could not be

determined

0.89 (0.86–0.92) 77 90 N.A.

≥F2 0.93 (0.90–0.95) 87 86

≥F3 0.93 (0.90–0.95) 89 84

≥F4 0.95 (0.93–0.97) 94 75

pSWE Jiang et al. (142) Yes ≥F2 Optimal values

could not be

determined

0.86 70 84 N.A.

≥F3 0.94 89 88

≥F4 0.95 89 91

APRI Peleg et al. (143) No ≥F3 1 0.83 78 82 N.A.

NFS Xiao et al. (144) Yes ≥F2 −1.1 0.72* (0.65–0.79) 66* 83* 82* 74*

≥F3 −1.455 0.78* (0.75–0.81) 73* 74* 50* 92*

≥F4 −0.014 0.83* (0.76–0.89) 80 81 43 96

FIB-4 Xiao et al. (144) Yes ≥F2 0.37–3.25 0.75* (0.70–0.79) 64* 70* 73* 61

≥F3 1.51–2.24 0.80* (0.77–0.84) 77* 79* 66* 84*

≥F4 1.92–2.48 0.85* (0.81–0.89) 76* 82* 39* 96*

ELF Vali et al. (145) Yes ≥F2 7.7 0.81 (0.66–0.89) 93 34 N.A.

FibroMeterNAFLD Boursier et al. (146) No ≥F2 N.A. 0.76 Not available

≥F3 0.311 0.76 80 62 65 83

≥F4 N.A. 0.78 Not available

FIBC3 Boyle et al. (147) No ≥F3 >-0.4 0.89 83 80 74 88

NIS-4 Harrison et al. (148) No Exclude

NAS≥4 and

≥F2

0.36

0.80 (0.77–0.84)

81 63 N.A. 78

Include NAS≥4

and ≥F2

0.63 87 51 79 N.A.

*Mean values.

Table based on the most recent meta-analyses if available, or otherwise on the most robust studies.

VCTETM, vibration controlled transient elastography; MRE, magnetic resonance elastography; pSWE, point shear wave elastography; NFS, NAFLD fibrosis score; FIB-4, fibrosis-4 score;

ELF, enhanced liver fibrosis score; FIBC3, fibrosis C3 panel; kPa, kilopascal; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; N.A., not available.

and technical expertise is necessary to interpret the visual
images (169). Furthermore, in contrast to VCTETM, pSWE has
a lower failure rate of 1–2% due to the fact that it is not
limited by the presence of ascites (142, 170). A meta-analysis
that compared VCTETM and pSWE showed that both provide
excellent diagnostic accuracies for the diagnosis of advanced
fibrosis and cirrhosis (Table 2) (142). However, a recent study
conducted by Leong et al. comparing VCTETM with pSWE for
diagnosis of fibrosis stage in a biopsy-proven cohort found that
VCTETM outperformed pSWE. (171). Especially for the diagnosis
of≥F2 and≥F3, the AUROC for VCTETM, respectively, 0.83 and
0.83, was higher than that of pSWE (0.72 and 0.69) (171).

Magnetic Resonance Elastography
Magnetic resonance elastography (MRE) is a magnetic resonance
imaging-based method for quantitatively imaging tissue stiffness.
These measurements can be taken rapidly during breath-
hold acquisition mode. Even in the early stages, MRE can
be used to detect NAFLD. The diagnostic accuracy of MRE
for liver fibrosis and steatosis is higher than VCTETM

and CAPTM (172). The pooled summary receiver operating
characteristics (SROC) curve of MRE in 12 studies, including
910 patients with biopsy-proven NAFLD, was 0.89 for ≥F1,
0.93 for ≥F2, 0.93 for ≥F3, and 0.95 for F4, respectively
(Table 2) (141). Nonetheless, due to high-performance costs,
MRE is usually not performed routinely to screen patients for
NAFLD (172).

Non-invasive Score Calculations to Detect Liver

Fibrosis
The biological approach via non-invasive score calculation
is composed of routinely measured clinical and laboratory
variables that can aid in predicting liver fibrosis. Different
scores have been proposed to calculate the risk of fibrosis. The
aspartate aminotransferase (AST)-to-platelet ratio index (APRI),
developed initially for hepatitis C infection, has been suggested
for predicting significant fibrosis in NASH (117, 143). The
NAFLD Fibrosis Score (NFS) has been demonstrated to be useful
as a prognostic marker for fibrosis. Advanced fibrosis can be
excluded with an NPV of 93% when using a low cut-off value
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and having a high PPV 90% (117). A meta-analysis conducted
by Xiao et al. found an AUROC value of 0.78 for the exclusion
of advanced fibrosis (Table 2) (144). The Fibrosis-4 (FIB-4) score
was also designed as a parameter of fibrosis detection in patients
with hepatitis C infection. This index is not influenced by BMI
and is composed of routinely available laboratory data (AST,
alanine aminotransferase (ALT) and platelets) (117). The FIB-
4 had an AUROC of 0.80 for diagnosing advanced fibrosis, a
sensitivity of 77%, a specificity of 79%, a PPV of 66%, and
an NPV of 84% (Table 2) (144). The Enhanced Liver Fibrosis
(ELF) score developed for the detection of liver fibrosis has good
accuracy for the non-invasive diagnosis of advanced fibrosis in
NAFLD (145). The ELF test is a panel consisting of the following
markers: PIIINP, HA, and TIMP1 (173, 174). One side note,
although it still has the same name, the test components and
formula have been altered throughout the years. Nevertheless,
not all studies reflect the accuracy of the current ELF test (145).
A recent meta-analysis by Vali et al. in biopsy-proven NAFLD
patients examined the accuracy of the ELF test for the diagnosis
of advanced and significant liver fibrosis and NASH (145). At the
recommended cut-off of 7.7, a high sensitivity (93%) was found,
though specificity was limited. When the high cut-off was used
(9.8), a higher specificity of 86% was reached. The cut-off value
should thus be decided based on the purpose of the test in a
specific clinical situation (the so-called context of use) (145).

FibroMeters, a family of blood tests specifically designed
for each cause of chronic liver disease, were commercialized
by Echosens (175). Although a FibroMeterNAFLD is available,
the FibroMeterV2G, developed for hepatitis C is more accurate
in NAFLD with an AUROC of respectively 0.76 and 0.8 for
the detection of F≥3 (Table 2) (146). This is probably due to
the fact that the FibroMeterNAFLD only contains AST, ALT,
platelets, glucose, and ferritin, whereas the FibroMeterV2G uses
AST, urea, platelets, prothrombin time, HA, and A2M. These
last two are direct markers of liver fibrosis, while the others
are indirect markers (146). In a biopsy-proven NAFLD cohort,
the FibroMeterVCTE was tested for accuracy. FibroMeterVCTE

combines the results of the VCTETM and FibroMeterV2G markers
in one test. In this cohort, the FibroMeterVCTE was significantly
more accurate than the FibroMeter or VCTETM alone (AUROC:
0.87± 0.012, p ≤ 0.005) (135).

Other parameters or scores that have been proposed for the
detection of NAFLD related liver fibrosis are PRO-C3 and NIS4.
Measurement of type III collagen neo-epitopes (PRO-C3) as a
single diagnostic marker or as part of a panel has shown to
have reasonable accuracy in assessing NAFLD disease stage and
activity (147). When used as a single marker, PRO-C3 performed
equally to simple panels like the FIB-4 (176). This might be due
to the fact that PRO-C3 is more a product of active fibrogenesis
instead of static collagen accumulation. PRO-C3 might therefore
be helpful to detect patients with active liver fibrogenesis (177,
178). When on the other hand, used in the FIBC3 panel in
combination with age, BMI, T2DM, platelets, it was able to
distinguish advanced fibrosis (≥F3) with an AUROC of 0.89, a
specificity of 80%, sensitivity of 83%, PPV of 74% and an NPV
of 88%, respectively, for a cut-off value of >-0.4 (147). In three
independent cohorts with suspected NASH, the non-invasive

blood-based diagnostic test NIS-4 was developed and validated
to detect patients with NAS≥4 and ≥F2 (148). The NIS4 panel
comprised of the following NASH-associated biomarkers: miR-
34a-5p, A2M, YKL-40, and glycated hemoglobin (HbA1c) (179,
180). The exact functions of miR-34a-5p and YKL-40 in the
development of fibrosis are not yet fully understood, though
their levels are elevated in patients with liver fibrosis (181–
183). In the pooled validation cohort, NAS≥4 ≥F2 patients were
excluded with a cut-off of 0.36 and this with a sensitivity and
specificity of 81.5 and 63%, respectively. To include NAS≥4 and
≥F2 patients, a NIS4 value of 0.63 was used. This resulted in a
sensitivity of 87.1% and a specificity of 50.7%. Furthermore, the
NIS4 algorithm experiences no influence of age, sex, BMI, or liver
enzyme concentrations (148).

Nonetheless, scoring systems have their limits. There is no
single threshold for non-invasive tests that has the perfect balance
between sensitivity and specificity. Up to now, the scores are
more used as a first-line risk determination, without the necessity
of doing a liver biopsy. For example, the NFS works best in
distinguishing advanced vs. non-advanced or any with no fibrosis
(172). In 25 to 30% of the patients, however, the NFS score is
intermediate (117). A recent study indicated that the NFS and
FIB-4 scores were better compared to the other scores (BARD,
APRI, and AST/ALT ratio) to determine fibrosis, and as good as
MRE in predicting the presence of advanced fibrosis in patients
with biopsy-proven NAFLD (172).

Future Biomarkers for Liver Fibrosis
Up to now, no accurate serum biomarkers are available to detect
a precise stage of fibrosis. Fortunately, a lot of research is carried
out on this topic. For example, Mac 2-binding protein glycan
isomer (M2BPGi) is secreted by HSCs to act as a messenger
for Kupffer cells during fibrosis progression (184). M2BPGi can
therefore act as biomarker for detection of liver fibrosis (185).
A study by Nah and colleagues indicated that M2BPGi can
exclude advanced fibrosis with a sensitivity of 80% and specificity
of 77.9% and a NPV of 98.9% with an AUROC of 0.85 when
compared to MRE (186). Serum autotaxin (ATX) may also be a
potential serum biomarker for liver fibrosis with NAFLDADDIN
EN.CITE (187, 188). ATX is responsible for the transformation
of lysophosphatidylcholine to lysophosphatidate (189). The latter
is involved in the process of cell migration, neurogenesis,
angiogenesis, smooth muscle contraction, platelet aggregation,
and wound healing (190, 191). Sinusoidal endothelial liver cells
process ATX, therefore, it is thought that in the case of chronic
liver injury, ATX metabolism is impaired. First results within
a cohort of NAFLD patients with fibrosis show that ATX can
select patients who require further evaluation. The diagnostic
accuracy was, however, lower than that of MRE (187). More
recently a study was published by Kimura et al. on the possible
biomarker thrombospondin 2 (TSP2) for the detection of liver
fibrosis with NAFLD. TSP2 is involved inmultiple processes such
as collagen/fibrin formation. TSP2 had an AUROC of 0.82 for
prediction of≥F3 (192). Lastly, the serummarker type IV collage
7s can be used to diagnose significant fibrosis with an AUROC of
0.832, a sensitivity of 91.4%, and a NPV of 87.9% with a cut-off
value of ≥5.2 ng/mL (193).
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A recent study by Caussy et al. demonstrated that a
combination of 10 metabolites consisting of eight lipids
(5α-androstan-3β monosulfate, pregnanediol-3-glucuronide,
androsterone sulfate, epiandrosterone sulfate, palmitoleate,
dehydroisoandrosterone sulfate, 5α-androstan-3β disulfate, and
glycocholate), one amino acid (taurine), and one carbohydrate
(fructose) could detect advanced fibrosis. With an AUROC
of the metabolite combination of 0.94 and a sensitivity
and specificity of, respectively, 90 and 79%, the metabolites
performed better than the FIB-4 (0.78) and NFS (0.84) for
the detection of advanced liver fibrosis (194). However, they
used mass spectrometry to analyse the metabolites, which is
not easily accessible and expensive and therefore not (yet)
applicable in a routine clinical situation (195). However, this
type of biomarkers, requiring more sophisticated techniques
and all kinds of omics approaches, might show the way ahead
to increase the accuracy over the currently available tools.
To support biomarker development for the detection of liver
fibrosis, two large projects, one in the United States of Amerika
called Non-Invasive Biomarkers of Metabolic Liver Disease
(NIMBLE), and one in Europe called the Liver Investigation:
Testing Marker Utility in Steatohepatitis (LITMUS), have been
set-up (196).

The Use of Non-invasive Biomarkers in a Clinical

Situation and in Trials
A non-invasive test alone has a certain accuracy depending
on the context of use (147). Notwithstanding, when used in
a sequential way or at the same time, the accuracy of the
non-invasive tests increases significantly. The most appropriate
combination is probably one with a biological test in combination
with liver stiffness measurements. In a recent study by Boursier
et al. different stepwise combinations were tested. The sequential
combinations of the FIB-4 followed by FibroMeterVCTE and the
VCTETM followed by the FibroMeterVCTE provided a diagnostic
accuracy of 90%. A liver biopsy to confirm the results was only
needed in 20% of the cases (135). Another study conducted
by Srivastava et al. in a primary care cohort tested a 2-step
algorithm that combined the FIB-4, followed by, if needed, the
ELF test (197). Use the 2-step algorithm improved detection
of advanced fibrosis and cirrhosis by 4.9-fold (197). Davyduke
et al. piloted a FIB-4 first strategy, followed by a VCTETM when
classified as high risk (198). When using this strategy, only 15%
of the patients needed to be referred for further assessment
(198). With a probabilistic decision model of a cohort of 1000
NAFLD patients, different sequential combinations of the non-
invasive tests were simulated, and costs were compared. The
price per case of advanced fibrosis was significantly lower when
using a sequential combination (£8,932 for FIB-4/ELF, £9,083
for FIB-4/VCTETM) compared to the standard of care (£25,543)
(199). Proving that the sequential combinations of non-invasive
tests are cost-effective, reduce unnecessary referral and detect
advanced fibrosis without the necessity of doing a liver biopsy,
which can be useful for inclusion in clinical trials (199–201).

Currently, efficacy assessment in clinical trials requires
histology hence biopsy in phase II trials that need to provide data
to go into phase III, and for the interim analysis for conditional

approval in phase III, with regression of fibrosis of 1 stage without
worsening of fibrosis as one of the endpoints for regulatory
approval in non-cirrhotic NASH (119, 120). Efficacy assessment
in earlier phase II trials, on the other hand, can be based on non-
invasive biomarkers, and trial sponsors are encouraged to collect
data on biomarker response in late phase II and in phase III
trials to inform future trial design. Several non-invasive markers
of fibrosis have been used in several trials and mostly serve to
support the data on histology. For example, in the pirfenidone
(PFD) study, they evaluated the antifibrotic effects with, similarly,
for the cenicriviroc (CVC) study where they used the NFS, FIB-4,
APRI, and ELF scores (196, 202).

Much more data and analyses are needed to couple responses
in histology to responses in biomarkers and to define criteria of
response in terms of biomarkers, i.e., what magnitude of change,
absolute and or relative, is clinically meaningful and correlates
with a histological response or with another endpoint concerned
clinically relevant and resulting in clinically significant benefit.

ANTI-FIBROTIC DRUGS

NAFLD management is centered on lifestyle modifications,
weight loss, and habitual physical activity. Weight loss promotes
fat reduction and NAFLD remission. A bodyweight reduction
of 3 to 5% improves steatosis, and a decrease of 10% improves
necroinflammation and fibrosis (1). However, dietary and
lifestyle changes are hard to maintain. As a result, there is a need
for appropriate drugs to treat NAFLD. The target of treatment
is still a matter of debate. Fibrosis regression (mostly defined by
at least one stage improvement according to NASH CRN), as a
highly potential surrogate marker for clinical benefit, is one of
the endpoints approved by the regulatory authorities for phase
III trials in NASH (119, 120). Unfortunately, there are currently
no drugs approved specifically for the treatment of liver fibrosis
by the United States of America Food and Drug Administration
(FDA) or European Medicines Agency (EMA) (203), despite the
increased insight into the molecular and cellular mechanisms of
liver fibrosis.

Current Options for NAFLD Treatment
Besides vitamin E, the only drugs that can be recommended for
the treatment of NAFLD, are drugs already used for the treatment
of T2DM treatment and/or obesity. Most of these drugs have a
direct effect on NASH, and via this, an indirect effect on fibrosis
regression (although direct antifibrotic effects might even so be
present) since NASH and fibrosis are strongly intertwined.

Drugs used to treat T2DM with effects on NAFLD histology
are thiazolidinediones (TZDs), glucagon-like peptide-1 receptor
agonist (GLP-1 RA) and sodium-glucose cotransporter- (SGLT)-
2 inhibitors (117, 203–205). TZDs like pioglitazone act on
peroxisome proliferator-activated receptors (PPARs), mainly on
the PPARγ isoform. If PPARγ binds to the retinoid X receptor,
it has powerful insulin-sensitizing properties in adipose tissue.
Although PPARγ is poorly expressed in the hepatocytes, it still
exerts anti-steatogenic effects (206). In rat livers, depletion of
PPARγ led to a decrease in fibrogenesis (207). However, the effect
was not so strong in human trials with TZDs. TZDs cause a
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reduction in liver fat, despite some overall weight gain, which is
reflective of an improvement in adipose tissue function and goes
along with a redistribution of fat from visceral to subcutaneous
fat storage (208). PPARγ is also implicated in the activation state
of HSC, so TZDs can also have direct effects on fibrogenesis.
Based on the histological improvements seen with pioglitazone,
several guidelines recommend the use of TZDs in patients with
liver biopsy-proven NASH and T2DM (209). In the PIVENS trial,
after 96 weeks of pioglitazone treatment, no improvement in
fibrosis stage was seen when compared to placebo (210).

GLP-1 RAs improve glycaemic control via a decreased
glucagon secretion, slowed gastric emptying, glucose-dependent
insulin secretion, enhanced satiety, reduction in body weight,
and BMI (204, 211–213). They also lead to the improvement of
the hepatic markers ALT, AST, and gamma-glutamyl transferase
(GGT). Presently, GLP-1 RA use is only recommended in case
of a high BMI (>27 kg/m²) and comorbidities like diabetes and
arterial hypertension (AHT). However, NASH should be added
to the list of comorbidities associated with obesity (117). In
the LEAN trial, the efficacy of 48 weeks of liraglutide, a GLP-1
RA, was investigated with NASH regression without worsening
of fibrosis as the primary endpoint. Despite the significant
difference in the resolution of NASH between liraglutide and
placebo, no significant difference in fibrosis score was detected
(214). Another GLP-1 RA, semaglutide, was tested in patients
at risk for NAFLD development for 104 weeks. Semaglutide
significantly reduced ALT after 28 to 20 weeks of treatment (215).
In a recent study by Legry et al. the effect of semaglutide in mice
with induced NASH was researched. This showed a reduction in
NAS though it did not reduce fibrosis (216). These results were
confirmed in human trials, semaglutide was significant on the
resolution of NASH, though not on the fibrosis endpoint after 72
weeks of treatment (217). Despite having an efficacy on NASH
resolution, the TZD pioglitazone and GLP-1 RA semaglutide
were not able to reach significance on the ≥1 point fibrosis
reduction endpoint. Notwithstanding, a decrease in the mean
fibrosis score has been reported (218, 219).

SGLT-2 is a class of oral antidiabetics that reduces
hyperglycaemia by promoting urinary excretion of glucose
without affecting insulin secretion (220). In rodent models
of T2DM, the SGLT-2 inhibitor ipragliflozin prevented the
development of NASH (221). Not only in rodent models SGLT-2
inhibitors proved their effect of NAFLD development, in patients
with T2DM who received dapagliflozin or empagliflozin a
decrease in hepatic steatosis was seen. However, in these studies,
no effects on liver fibrosis were detected (205, 222). A recent
meta-analysis by Mantovani et al. also confirmed the significant
effect on hepatic steatosis, though up to now, no results on the
histological response of SGLT-2 inhibitors are available, at least
not from randomized placebo-controlled trials (223, 224).

Therapy in Development
As mentioned above, there are currently no approved drugs for
NAFDL treatment, yet potent drugs are coming. The first drugs
are already in phase III trials and are expected to be on themarket
by the end of 2020 (117). As mentioned, fibrosis regression of at
least one point without worsening of NASH, as a likely reasonable

surrogate for a clinically meaningful benefit, is one of the two
regulatory endpoints for conditional approval in non-cirrhotic
NASH. Obeticholic acid (OCA) is so far the only drug that
demonstrated efficacy on this endpoint in phase III. OCA is a
first-in-class selective farnesoid X receptor (FXR) agonist with
anti-cholestatic and hepato-protective properties (225). The FXR
is a bile acid nuclear receptor that plays a role in lipoprotein
and glucose metabolism, hepatic regeneration, and regulation of
hepatic inflammation. Activation of the FXR receptor in mice
has been shown to inhibit NLRP3 inflammasome activation
in hepatocytes, thereby preventing disease progression (226).
OCA was FDA approved in 2016 for the treatment of primary
biliary cholangitis, though it is currently in a phase III trial to
test the effects and safety in NAFLD (Regenerate Study) (209).
In a first interim analysis of the Regenerate study, OCA thus
demonstrated statistically significant fibrosis regression of at least
one point with an effect size of 11% in phase III after 72 weeks
on 25mg. OCA did, however, not meet the endpoint of NASH
resolution (227).

Other drugs that are currently being tested for the treatment of
fibrosis are lanifibranor, PFD, and CVC. Lanifibranor (IVA337)
is a drug that activates each of the three PPAR isoforms (228).
These isoforms play an essential role in the regulation of cellular
differentiation, development, and tumorigenesis throughout the
body. The drug has both anti-fibrotic and anti-inflammatory
effects and is also beneficial for metabolic changes. Currently,
lanifibranor is going into phase III, based on the significant
results the drug demonstrated on both resolution of NASH and
improvement of fibrosis and the combination of both (229–
231). PFD is an oral antifibrotic drug approved for the treatment
of idiopathic pulmonary fibrosis. In a recent study by Poo
et al. the effect of prolonged-release formulation (PR-PFD) plus
standard of care was tested in patients with advanced liver
fibrosis (PROMETEO Study). In 35% of the patients, a significant
reduction of fibrosis was seen, leading to the conclusion that PR-
PFD is efficacious and safe in patients with advanced liver disease.
Moreover, it showed promising antifibrotic effects (196). CVC, a
drug that targets macrophages in the liver by inhibiting the C-C
chemokine receptors CCR2 and CCR5 (232), met this endpoint
as a key secondary endpoint in phase II after 1 year of treatment
with an effect size of 9.6% (p= 0.023) but was not significant at 2
years and showed no efficacy on NASH resolution (202, 233). A
phase III trial (AURORA) is still ongoing evaluating the effect of
CVC in NASH patients with F2 or F3 (234).

Different molecules failed, despite pre-clinical studies being
positive. For instance, selonsertib is an apoptosis signal-
regulating kinase 1 inhibitor that has been demonstrated in
patients with moderate-to-severe NASH to reduce fibrosis,
steatosis, and progression to cirrhosis (235). However, in
several phase III clinical trials, selonsertib did not achieve the
endpoints for the reduction of fibrosis (236). This also applies
to simtuzumab, a monoclonal antibody against lysyl oxidase-
like 2 that is involved in fibrogenesis. In the phase IIb trials,
simtuzumab was unable to reduce fibrosis (237). Likewise, for
the galactin-3 inhibitor GR-MD-02, phase II trials failed to
show efficacy in NASH and reduction of liver fibrosis (238,
239). Correspondingly also elafibranor, a dual PPAR agonist
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that showed promising results in the reduction of NASH and
liver fibrosis in a phase II trial, failed to replicate these results
in a phase III trial. Therefore, the trial has been ended (240).
Recent suggestions made by Ratziu et al. stated that these failed
trials were caused by the rush to move compounds into clinical
development without thoroughly being investigated in the pre-
clinical trials (241). More attention should be paid to optimize
treatment dose and regimen correctly, but most importantly, the
results of small studies should be interpreted with care (241).

Future Therapeutic Targets
Although recent clinical trials have been promising in treating
NAFLD-related liver fibrosis, the overall efficacy of these drugs
has been modest. Only a minority of patients achieved treatment
response (242). Possible new targets can be found in the
gut microbiome. As stated, it plays an important role in
fibrogenesis. Therefore, targeting the GLA by modulating the
gut-microbiome can be a promising therapeutic approach in
NAFLD (243). In mice, whole-body deletion of nucleotide-
binding oligomerization domain-containing (NOD)2 caused an
increase in liver steatosis and fibrosis. NOD2 can therefore
potentially engage the GLA to protect against steatosis, fibrosis,
and gut dysbiosis (244). Another possible treatment option is
the blocking of PDGF. Blocking of PDGF signaling ameliorates
experimental liver fibrogenesis. PDGF signaling can be blocked
by regulation of the isoforms, regulation of the receptor binding,
and finally, by inhibiting the signaling pathways (245). PDGFR
kinase activity blocking is one of the most efficient ways to block
the signaling pathway of PDGF. Several kinase inhibitors have
been developed, though they are not entirely specific. Imatinib
mesylate (Gleevec R©) effectively inhibits PDGFR signaling in
CCl4-treated mice leading to improved liver regeneration in vivo
and induced apoptosis of HSCs both in vivo and in vitro (246).
In a pig serum-induced rat model of liver fibrosis, characterized
by a slow progression of fibrosis, like in a human situation,
imatinib had an effect in the early stages of liver fibrosis
(247). Finally, Wnt3a, a canonical Wnt ligand, could be used
as a future therapeutic target. In a study conducted by Wang
et al. where LRP6 mutant mice were treated with Wnt3a, liver
inflammation was reduced, indicating the ant-inflammatory role
of Wnt3a (97).

CONCLUSION

Progressive liver fibrosis in NAFLD can lead to cirrhosis and
liver-related morbidity and mortality and is also the strongest
predictor of overall mortality. Halting fibrosis progression and
regression of existing fibrosis are hence essential goals for
treatment. Liver biopsy is still the gold standard for the staging
of liver fibrosis. Accurate non-invasive diagnosis of liver fibrosis
that can replace liver biopsy in most of the circumstances is
obviously needed, both for initial diagnosis and monitoring of
evolution over time and response to treatment. Non-invasive
biological markers and liver stiffness measurement, alone or in
combination, are extensively studied and further developed and
validated. Currently, anti-fibrotic drugs are in development, and
some have promising results that can lead to the prevention of
liver fibrosis and delaying or even halting the development of
cirrhosis. Moreover, based on the available data and international
guidelines, a multi-disciplinary approach to treat and guide
NAFLD patients is recommended due to the association with
other metabolic features. These developments will potentially
have an extensive impact on global health and on the healthcare
costs that accompanies the rising incidence of NAFLD-related
fibrosis. Furthermore, it has the possibility to lower the increasing
incidence of HCC. Nonetheless, a better understanding of the
complex pathology of NAFLD-related fibrogenesis is necessary
to identify new targets for treatment and to find markers that will
lead to new diagnostic methods that can accurately detect disease
severity and fibrosis stages and its evolution over time.
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