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Emergent cooperation in microbial metabolism
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Mixed microbial communities exhibit emergent biochemical properties not found in clonal
monocultures. We report a new type of synthetic genetic interaction, synthetic mutualism in trans
(SMIT), in which certain pairs of auxotrophic Escherichia coli mutants complement one another’s
growth by cross-feeding essential metabolites. We find significant metabolic synergy in 17% of 1035
such pairs tested, with SMIT partners identified throughout the metabolic network. Cooperative
phenotypes show more growth on average by aiding the proliferation of their conjugate partner,
thereby expanding the source of their own essential metabolites. We construct a quantitative,
predictive, framework for describing SMIT interactions as governed by stoichiometric models of the
metabolic networks of the interacting strains.
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Introduction

Microbes in nature usually do not exist in isolation. The mixed
microbial concourse is rich with opportunities for interaction.
Metabolic interactions in particular can radically alter the
biochemical phenotypes of the participating strains. Microbial
communities differ from monocultures in terms of the toxins
they degrade (Pelz et al, 1999), the natural products they
produce (Pettit, 2009), and even their capacity to grow at all in
certain environments (Schink, 2006). A complete understanding
of microbial metabolism must extend from the properties of
individual strains in pure culture to the combinatorial interac-
tions supported by complex communities.

Recent studies have characterized the behavior of microbes
in co-culture. Such strains may exhibit naturally complemen-
tary metabolism (Kim et al, 2008; Rozen et al, 2009; Hillesland
and Stahl, 2010), or may be genetically engineered to interact
(Shou et al, 2007; Balagaddé et al, 2008; Gore et al, 2009).
Interacting partners share metabolites, such as hydrogen
(Hillesland and Stahl, 2010), acetate (Rozen et al, 2009),
amino acids (Shou et al, 2007), fixed nitrogen (Kim et al, 2008)
or glucose (Kim et al, 2008; Gore et al, 2009). In each case, it
has been possible to extrapolate interactive dynamics from the
individual characteristics of the participating strains.

A general model of metabolic interaction would account for
the variety of metabolites that can be exchanged and the
genotypic diversity of the strains that exchange them. Ideally,

such a model would not require detailed biochemical
characterization of each individual participant to be predic-
tive. Optimization-based techniques of flux balance analysis
have been successful in describing metabolic systems (Feist
et al, 2007). These approaches draw on the well-characterized
biochemical reaction network of organisms such as Escher-
ichia coli (Kanehisa and Goto, 2000), and can be easily
generalized to more exotic species (Feist et al, 2009).

Using a model set of E. coli auxotrophs, we extend these
approaches to the higher-order system of two strains in
concourse. We find that certain pairs of auxotrophs will
complement one-another’s growth in minimal media by cross-
feeding essential metabolites, a relationship we refer to as
synthetic mutualism in trans (SMIT). The SMIT interactions
constitute a class of synthetic genetic interactions because,
similar to other synthetic interactions, they reflect and
elucidate the genetic and metabolic network from which they
derive. We develop a quantitative and predictive theoretical
model that reveals the extent to which complex metabolic
interactions emerge from the relatively simple topology of the
biochemical reaction network.

Results and discussion

We selected 46 conditionally lethal auxotrophic E. coli from
the Keio collection (Baba et al, 2006). Each deletion blocks
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the biosynthesis of an essential metabolite, imparting a strict
dependency on an external supply of that metabolite for
growth. The selected mutations cover a significant portion of
metabolic diversity and include genes required for the
biosynthesis of amino acids, nucleotides, and cofactors, as
well as genes involved in glycolysis and respiration. Each
deletion strain exhibits robust growth in rich (LB) medium
but no measurable growth in minimal (M9) medium. Strains
were labeled individually with plasmids expressing either
Venus or mCherry fluorescent proteins and co-cultured in
minimal media in all pairwise combinations (Box 1). Growth
was measured each day over 4 days by optical density. Flow
cytometry allowed determination of the relative abundance of
each strain in each pairing. Theoretical and empirical
precedents have established that metabolic cooperation is
enhanced at intermediate cell densities when the concentra-
tion of cross-fed metabolites is sufficiently high to improve
cooperative fitness (Shou et al, 2007; Bull and Harcombe,
2009). Strains were therefore each inoculated at 107 cells per
ml, roughly 1/200th saturation density, and fold growth is
reported relative to this initial inoculation level.

A subset of mixed pairs showed improved growth relative to
either corresponding monoculture (Figure 1). In control
cultures of self-same pairs, no strain was observed to grow
more than eight-fold. However, 17% of dissimilar pairings
showed greater than 50-fold growth, indicating metabolic
synergy. Growth phenotypes were variable, with alternately
one strain, both, or neither benefiting from the interaction. For
each strain, we were able to identify at least one partner with
which synergistic growth was evident. Conversely, no strain
exhibited a universally cooperative phenotype, either in the
role of nutrient donor or recipient.

We first explored how the growth of a given strain relates to
its level of cooperation, as inferred from the growth of its
partner strain. Cooperating strains in this system may show
enhanced proliferation through the mechanism of invested

benefits (Connor, 1995; West et al, 2007). Cooperation on the
part of strain A will augment A’s growth only if B cooperates in
turn. By increasing B’s abundance, A then cultivates the source
of A’s own metabolites and therefore A’s own growth. Given
the relatively low growth rates of the co-cultured strains and
the excess availability of nutrients, we do not expect a
significant metabolic burden to be associated with the
production of shared metabolites. However, we do expect a
limit to the invested benefits of cooperative growth. Specifi-
cally, this should arise when oversharing on the part of A
results in B monopolizing the batch culture and therefore
necessarily limiting A.

The data reflect a significant growth benefit for cooperating
strains. We record an overall positive correlation between the
growth of strains A and B (Spearman’s r¼0.2, P-value:
o10�10). This correlation was highest when the total growth
of A and B was low to moderate. We could also observe a
characteristic anti-correlation between the growth of A and B
in cultures that approach saturation, when more growth of one
strain tended to impede the other (Figure 2A).

A simple dynamic model captures the essential features of
this relationship.

dA
dt ¼ CB � B

AþB

� �
� 1� AþB

K

� �
dB
dt ¼ CA � A

AþB

� �
� 1� AþB

K

� � ð1Þ

A and B above represent the strain abundances. We assign
cooperation levels, CA and CB, to quantify cooperation on the
part of strain A and B, respectively. K is the logistic carrying
capacity of the batch culture. Growth was allowed to proceed
for a fixed and finite amount of time, so our system does not
necessarily approach a steady state.

Although analytical solutions to (1) are not available,
numerically solving the system of two equations for the two
variables CA and CB transforms the growth data into
biologically relevant parameters that reflect the level of
cooperation evidenced by each strain. The measured growth
of A increases monotonically with respect to the derived value
of CB, indicating that it is always beneficial to be partnered
with a cooperating strain. A characteristically also increases
with CA for low CA, as strain A reaps the invested benefits of
cultivating strain B. However, A declines for high CA, when
excess cooperation allows B to dominate the available carrying
capacity (Figure 2B).

We sought to relate the various observed cooperation pheno-
types to the properties of individual mutations in the global
context of E. coli metabolism. Synthetic genetic interactions, the
synergistic growth effects of multiple gene deletions, are known
to identify epistatic or modular relationships among genes
(Segrè et al, 2005; Ooi et al, 2006; Motter et al, 2008). Previous
studies emphasize the phenotypic consequences of multiple
genetic deletions within the genome of a single strain. We define
a new synthetic relationship, the synergistic growth between
two otherwise lethal mutants, as SMIT.

Similar to other synthetic interactions, SMIT interactions
can be applied to infer properties of the E. coli metabolic
network. Pairings of strains with metabolic blocks in the
same biosynthetic pathway grew less than pairings of strains
blocked in distinct pathways. Approximately 3.6% of path-
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We selected 46 conditionally lethal metabolic mutants from the Keio
collection and labeled them with plasmids expressing Venus or mCherry
fluorescent protein. Strains were co-cultured in all pairwise combinations in
minimal medium in which no strain could grow independently.

Box 1 Cocultures identify synergistic growth
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way-matched pairs showed growth above 50-fold against 18%
of pathway-distinct pairs (n¼55, n¼980, respectively, P-value:
2�10�6). However, mutants sharing pathways showed consis-
tency in their set of cooperating partners (Supplementary
Figure 1). We constructed for each strain a cooperation
profile vector consisting of the measured growth of that strain
and that of its partner strain in each of the 46 co-cultures.
Correlations of the cooperation profiles therefore indicate
the overall similarity of the cooperative behavior between
two strains.

We applied an unsupervised hierarchical clustering algo-
rithm to the set of cooperation profiles, using the Spearman
rank correlation between vectors as a distance metric and
a complete linkage function. Mutants in the biosynthetic
pathways of tryptophan, guanine, histidine, purine, pyrami-
dine, arginine, cysteine, leucine, and pantothenate were
recovered as distinct branches in the resulting dendrogram.
Analysis of SMIT interactions is therefore capable of identify-
ing biosynthetic modules (Figure 3A).

More distal correspondence in the metabolic network can
also be detected in the analysis of SMIT interactions. For each
pair of interacting mutants, we define a shortest path through
the metabolic network connecting the two reactions. Reactions
are considered connected if they share a common metabolite.
The correlation between the cooperation profiles characteriz-
ing any two strains declines with the distance spanning their
mutations (r¼�0.34, P-value: o10�10). This suggests that, to
a significant extent, the complex emergent phenotype of SMIT

growth is governed by the relatively simple stoichiometries of
the metabolic reaction network (Figure 3B).

Metabolic network stoichiometries can be applied to infer
biochemical reaction rates through the method of flux balance
analysis (FBA; Palsson, 2006). We extend FBA modeling from a
single E. coli to a system of two interacting strains. Beginning
with the standard iAF1260 reconstruction (Feist et al, 2007),
the stoichiometric matrices and flux bounds for the two strains
are concatenated appropriately to produce the joint model,
allowing the free exchange of metabolites between the two
mutants (see Materials and methods).

We derived solutions to the joint model by applying the
minimization of metabolic adjustment (MOMA) objective
function (Segrè et al, 2002). The MOMA methods hypothesize
that mutant systems will tend to approximate the wild-type
flux distribution, even as mutation precludes an exact match.
This objective function is conservative; it identifies solutions
in the joint vector closest, in the Euclidean sense, to the wild-
type fluxes.

Total growth of the co-cultures was correlated with
predicted growth derived from the joint flux model. We
calculated a rank correlation of 0.42 across predictions for all
pairs (P-value: o10�10). This model performed less well in
comparisons of the subset of pairs with mutations in the
nucleotide biosynthesis pathway (r¼0.17, P-value: 0.13,
n¼78), and better when both mutants were involved in
amino-acid production (r¼0.4, P-value: o10�10, n¼378), or
in neither of those classes (r¼0.72, P-value: 0.02, n¼10).
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Figure 1 Synergistic growth in Escherichia coli metabolic mutants. Red and blue heat map intensity represents the fold growth of strain A and B, respectively, in each
co-culture. Fold growth is expressed relative to the initial inoculation density. Self-same pairings, represented in the matrix diagonal, showed less than eight-fold growth in
all cases. Symmetry of the matrix along the diagonal reflects reproducible growth of strains in label-switched pairs (r¼0.9). The expanded pixel illustrates the OD and
flow cytometric data used to measure the growth of each strain in each pairing. The negative control lane was loaded with sterile media instead of a partner strain. The
positive control strain carries a deletion at the pfs locus, and is viable in M9 medium.
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The joint flux model was effective in reproducing our observa-
tion that mutants in shared pathways generally do not
supplement one another’s growth (Supplementary Figure 2).

In general, growth predictions from the joint flux model
were higher than those measured. This might be explained by
the relatively high levels of cooperation implicit in the
objective function. In selecting an optimal joint flux vector,
fluxes are weighted equally in their contribution to minimizing
the metabolic adjustment of their own strain and of the partner
strain. This is theoretically unlike the situation in vivo, in
which any flux optimality is expected only within a given
strain, and any benefits to the partner strain are only as a
byproduct. Indeed, our system has no co-evolutionary history
and has not been optimized by natural selection in any sense.
We therefore sought a predictive framework independent of
optimality assumptions.

We reasoned that the likelihood of a given metabolite
being shared should depend on the growth value of that
metabolite to both the donor and recipient strain. Metabolites
less valuable to the donor might be more readily shared, and
metabolites more valuable to the recipient should effect more

growth. In an efficient cooperative interaction, each strain
would exchange growth-cheap metabolites for growth-dear
metabolites (Boucher, 1988).

We can derive explicit predictions for the value of each
exchanged metabolite for each mutant strain in our system as
shadow prices. A shadow price, in a linear programming
model, is defined as the marginal change in the objective
function associated with the strengthening or loosening of a
particular model constraint. As in standard flux balance
models, calculating shadow prices requires only the reaction
network stoichiometries and the measured composition of
biomass. We solved the iAF1260 model for shadow prices
representing the fitness benefit, bA, to each strain A in taking
up a unit of its required metabolite. For example, a tryptophan
auxotroph is associated with a high benefit term because a
unit of the rare amino acid tryptophan is sufficient to produce a
relatively high amount of biomass. Similarly, we derive a cost
term, pB, representing the loss in growth rate for each strain, B,
in secreting a given metabolite.

The calculated costs and benefits produced the expected
correlation with measured growth. The benefit associated with
a metabolite bA was positively correlated with the growth of
strain A (r¼0.11, P-value: 10�3), but showed no correlation
with the growth of the partner strain. Conversely, the
production cost of metabolites pB, incurred by strain B,
was negatively correlated with A’s growth (r¼�0.26,
P-value:o10�10) but was uncorrelated with B’s growth. Thus,
strains tended to show the most growth when predicted to
require only small quantities of metabolites that were cheap
for their partner to produce.

We define the predicted efficiency of cooperation, eB, as the
ratio bA/pB. We observed that eB was more predictive than
either bA or pB alone in determining the growth of strain A
(r: 0.31, P-value: o10�10). We also determined an overall
positive correlation between the growth of strain A and eA,
the efficiency term as calculated for the partner strain,
consistent with the invested benefits A receives from the
growth of B (r: 0.14, P-value: 10�5). Indeed, in the regime
of low A growth, eA was more strongly correlated with A’s
growth than eB, emphasizing the strong fitness advantage for
efficient cooperators.

The cooperation efficiency terms reproduce the character-
istic pattern in their correlation with strain growth, predicted
in our invested benefits model of cooperation (Figure 3C).
The term eB is positively correlated with A’s growth across
all growth levels, as it is always beneficial to be paired with
an efficient cooperator. The eA correlates positively to A’s
growth for low growth, then negatively as the strains approach
saturation. Only in this narrow range would the less generous
show more growth.

Cooperation efficiencies derive purely from stoichiometric
information, and so can be calculated for strains without
detailed biochemical characterization. They are independent
of the specific physiological mechanisms that effect metabolite
production, secretion, and exchange, which in the case of this
system remain to be described.

Intracellular metabolites represent valuable resources, and
should therefore be retained by cell membranes in the absence
of a specific mechanism for secreting them. Such reasoning
can explain the behavior of most co-cultures, in which
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Figure 2 Cooperation improves growth and is quantified by the cooperation
level. (A) The mean growth of strain B is presented for sets of co-cultures binned
by the measured growth of strain A. The growth of strain B initially increases with
that of A as B reaps the invested benefits of cross-feeding. B declines for high
A as an excess of cooperation allows A to dominate the available carrying
capacity. (B) Cooperation levels, derived from the growth data by equations (1)
show characteristic relationships with growth. A always benefits from increases in
B’s cooperation level, CB, whereas A’s own cooperation, CA, is optimal for A at an
intermediate level. Error bars are 95% bootstrap confidence intervals.
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essential metabolites are retained and no cross-feeding occurs.
E. coli are known to secrete a number of amino acids,
particularly when starved or otherwise stressed (Burkovski
et al, 1995; Kaderbhai et al, 2003; Valle et al, 2008). Alternately,
the intracellular metabolite pool also undergoes significant
changes during starvation (Tweeddale et al, 1998). Cell lysis
may then be required for accumulated metabolites to be
released and scavenged.

The results presented here reflect only cooperation before
co-evolution, and do not reveal the evolutionarily stable

steady state that may arise for cross-feeding organisms.
To persist in natural systems, cooperative behavior must be
robust to variations of environment, and to the emergence of
exploitative mutants. Many natural syntrophic systems seem
to be cases of byproduct cooperation, in which one strain feeds
on the waste products of another (Marx, 2009; Rozen et al,
2009). We find that the metabolites most readily exchanged are
those of little value to the secreting strain. This is consistent
with proposals that byproduct cooperation evolves more
readily than other forms, because it requires no active
investment of one partner in the other (Connor, 1995).

The fitness costs and benefits of biological interactions
are often difficult or impossible to quantify (Boucher, 1988),
but are required for the application of population dynamic
models (Nowak, 2006). The a priori prediction of such
parameters in an experimentally tractable model organism
brings a new degree of quantitative resolution to theories of
metabolic interaction.

Materials and methods

Co-culture experiments

Deletion strains from the Keio collection were grown to saturation in
rich (LB) medium with appropriate antibiotics, washed twice in PBS,
and re-suspended in M9 minimal medium at a 1:100 dilution (6.8 g/l
Na2HPO4, 3 g/l KH2PO4, 0.5 g/l NaCl, 1 g/l NH4Cl, 20 g/l glucose,
100 mM CaCl2, 1 mM MgSO4, 50mg/l ampicillin, and 100 mg/l kanamy-
cin). Strains were cultured overnight in minimal medium to allow
depletion of residual nutrients, then re-diluted to the initial 1:100 level.
Residual growth was generally less than 10%. Viable cell counts were
determined by plating for all strains both before and after starvation,
and were observed to be linear with OD and similar for all strains. This
indicated that total cell density could be accurately measured by OD,
despite the unique genetic background and metabolic conditions of
each co-culture. Incubation was carried out in sealed microplates
at 371C under continuous shaking. Growth was measured by optical
density at 600 nm using a Perkin Elmer EnVision plate reader.
Ratios were assessed with a BD LSR-II flow cytometer. Cell density
for a strain A was calculated as d � (ODM�ODBKG) �Afrac, where ODM is
the measured OD, ODBKG was the background absorbance of blank
medium, d is the linear scaling factor from OD to cell density,
calculated by plating standard curves, and Afrac is the proportion of
strain A as measured by flow cytometry.

Growth experiments were conducted in duplicate and with label-
switched pairs, a total of four replicates for each of 1035 possible
experimental pairs. Growth measurements were reproducible in both
biological replicates (r¼0.92) and label-switched replicates (r¼0.9).
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Following data acquisition, a random sample of 50 growing mixed
cultures were struck out on rich medium and minimal medium. In no
case were single colonies observed to grow on minimal plates,
indicating that observed growth was not due to the restoration of
prototrophy in a single lineage from any genetic event.

Data analysis

Calculations and simulations were performed in MATLAB. Convex
programming was performed using MOSEK Optimization Software.
Correlation coefficients are Spearman’s rank correlation unless
otherwise noted. Metabolic network distances were calculated
excluding metabolites with very high connectivities (420 reactions),
because of their effect of radically shrinking the network radius.

The joint stoichiometric model

A standard metabolic optimization problem with a MOMA-type
objective function identifies a flux vector J in the mutant flux space,
which minimizes the Euclidean distance to the wild-type flux vector.
Thus, it satisfies the following:

Minimize : J� JWT
�� ��

Subjectto :
sLpJSpsU

bLpJXpbU

S jX½ � �
JS

JX

� �
¼ 0½ �

ð2Þ

where JWT denotes a wild-type flux vector, derived from a standard
FBA formulation (Segrè et al, 2002). Upper and lower bounds on the
internal fluxes are set to sL and sU. Bounds on the exchange fluxes,
corresponding to the media conditions, are set to sU and sL.
S represents the internal reaction stoichiometries and X the exchange
stoichiometries. Finally, JS and JX are the subsets of internal and
exchange fluxes of J.

For the joint problem, we concatenate the flux vectors, bounds,
and stoichiometric matrices appropriately to define a joint flux space,
thus solving:

Minimize :
JA

JB

" #
� JWT

JWT

" #�����
�����

Subjectto :
sA

LpJA
S psA

U

bLpJA
Xpb0U

sB
LpJB

SpsB
U

bLpJB
Xpb0U

SA X

SA X

X X

2
64

3
75 �

JA
S

JA
X

JB
S

JB
X

2
6664

3
7775 p ½ 0 j0 2 � X � bU �

X ½ 0 j0 �1 �

Superscripts A and B denote fluxes, matrices and bounds associated
with strain A or B. The exchange matrix, X, is identical for all mutants.
The third row of the joint stoichiometric matrix allows the exchange
of metabolites between strains. The upper bounds of the exchange
reactions, b0U, are modified to allow the uptake of all shared
metabolites. The term 2Xb0U transposes the unmodified bounds from
the individual fluxes on problem 2 to apply to the sum of the joint
fluxes, maintaining conservation of mass between the two strains.

Mean marginal cost and benefit

The mean marginal production cost of a metabolite m, pm, we define as
the reciprocal of the solution to a linear programming problem:

Minimize : Jm

Subject to :

sLpJSps

bLpJXpbU S X½ � �
JS

JX

� �
¼ 0½ �

JGrowthX0:9 � JWT
Growth

ð3Þ

This represents the minimum flux value, that is, the maximum
secretion level, which can be attained consistent with a growth rate
of at least 90% wild type. The reciprocal of this solution, 1/Jm, is

proportional to the mean shadow price associated with the bound on
the exchange flux of metabolite m, Jm, taken over the interval 100–
90% of wild-type growth rate. We allow pm to take the value of infinity
for those cases when Jm¼0, meaning a given metabolite is
stoichiometrically blocked from being secreted and is therefore not
available at any cost.

The mean marginal benefit, bm
s , which a given strain, s, receives

from a metabolite, m, is the reciprocal of the solution to a similar
problem:

Minimize : Jsm

Subject to :

ssLpJsSpssU

bLpJXpbU S jX½ � �
JsS
JX

� �
¼ 0½ �

JGrowthX0:1 � JWT
Growth

ð4Þ

Note that although secretion costs are calculated with respect to the
wild-type strain background, uptake benefits are defined with respect
to a specific mutant strain that can not grow without supplemented
metabolites. Problem 4 identifies the minimum supplemental flux
consistent with growth of at least 10% of the wild-type level. Most
metabolites are not capable of rescuing growth of most mutant strains,
therefore the solution to problem 4 is undefined and we allow bm

s¼0.
Otherwise bs

m ¼ Jsm
� ��1

. As above, the benefit is proportional to the
mean shadow price for the uptake bound on metabolite m over the
interval 0–10% of wild-type growth rate.

In cases, in which pm
B and bm

A are defined for more than one m,
because strain A can be rescued by more than one metabolite, we take
the values pB and bA to be the mean values over all m for which they
are defined.

The efficiency of cooperation for a strain B, eB, for a strain B as the
ratio bA/pB. In cases, in which A can be rescued by more than one
metabolite, we take eB to be the mean ratio for all such metabolites.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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Burkovski A, Weil B, Krämer R (1995) Glutamate excretion in
Escherichia coli: dependency on the relA and spoT genotype. Arch
Microbiol 164: 24–28

Emergent metabolic cooperation
EH Wintermute and PA Silver

6 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited

http://www.nature.com/msb


Connor RC (1995) The benefits of mutualism: a conceptual framework.
Biol Rev 70: 427–457

Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD,
Broadbelt LJ, Hatzimanikatis V, Palsson B (2007) A genome-scale
metabolic reconstruction for Escherichia coli K-12 MG1655 that
accounts for 1260 ORFs and thermodynamic information. Mol Syst
Biol 3: 121
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