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Manganese (Mn), primarily acquired through diet, is required for brain function and
development. Epidemiological studies have found an association between both low and
high levels of Mn and impaired neurodevelopment in children. Recent genetic studies
have revealed that patients with congenital Mn deficiency display severe psychomotor
disability and cerebral and cerebellar atrophy. Although the impact of Mn on gene
expression is beginning to be appreciated, Mn-dependent gene expression remains
to be explored in vertebrate animals. The goal of this study was to use a mouse model
to define the impact of a low-Mn diet on brain metal levels and gene expression. We
interrogated gene expression changes in the Mn-deficient mouse brain at the genome-
wide scale by RNA-seq analysis of the cerebellum of mice fed low or normal Mn
diets. A total of 137 genes were differentially expressed in Mn-deficient cerebellums
compared with Mn-adequate cerebellums (Padj < 0.05). Mn-deficient mice displayed
downregulation of key pathways involved with “focal adhesion,” “neuroactive ligand-
receptor interaction,” and “cytokine-cytokine receptor interaction” and upregulation
of “herpes simplex virus 1 infection,” “spliceosome,” and “FoxO signaling pathway.”
Reactome pathway analysis identified upregulation of the splicing-related pathways
and transcription-related pathways, as well as downregulation of “metabolism of
carbohydrate,” and “extracellular matrix organization,” and “fatty acid metabolism”
reactomes. The recurrent identifications of splicing-related pathways suggest that Mn
deficiency leads to upregulation of splicing machineries and downregulation of diverse
biological pathways.

Keywords: manganese, cerebellum, transcriptome, neurodevelopment, spliceosome

INTRODUCTION

The micronutrient manganese (Mn) plays important roles in fundamental cell functions and
various physiological processes, such as protein glycosylation, detoxification of superoxide, bone
formation, immune responses, and carbohydrate metabolism (Horning et al., 2015). The critical
roles of Mn in these processes are due to its participation as a cofactor for numerous enzymes,
including arginase, xanthine oxidase, galactosyltransferase, pyruvate decarboxylase, glutamine
synthetase, and Mn superoxide dismutase (Horning et al., 2015). The human body contains ∼10–
20 mg Mn, with the highest concentrations found in bone, liver, pancreas, kidney, and brain tissues
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(Schroeder et al., 1966; Aschner and Aschner, 2005). Diet is a
major source of Mn intake in humans, and∼1–5% of the ingested
Mn is absorbed (Davis et al., 1993). The primary source of dietary
Mn is mostly plant-based foods, such as whole grains, legumes,
rice, nuts, and vegetables, whereas this nutrient is relatively
deficient in animal sources (Freeland-Graves et al., 2016).

Manganese is required for the functioning and development
of the brain, one of the most metabolically active organs in
the body. Mn levels in the brain increase after birth, and the
incorporation of Mn into the brain is most remarkable in young
rats (Markesbery et al., 1995), suggesting that this essential
metal plays a pivotal role in brain development (Zoni and
Lucchini, 2013). Mn deficiency is associated with epilepsy in
humans and rats (Carl et al., 1993). Epidemiological studies have
shown that low and high Mn levels are associated with impaired
neurodevelopment (Claus Henn et al., 2010; Bhang et al.,
2013; Haynes et al., 2015). Recent genetic studies have revealed
that patients with congenital Mn deficiency display severe
psychomotor disability, cerebral and cerebellar atrophy, seizures,
and vision and hearing impairment (Boycott et al., 2015; Park
et al., 2015; Riley et al., 2017). In addition to its developmental
roles, Mn has been associated with motor function in adults.
For example, exposure to high levels of Mn in occupational
settings (e.g., welding, mining, dry battery manufacturing, etc.)
can lead to Mn accumulation in the brain and a Parkinsonian-like
disorder known as manganism (Olanow, 2004; Perl and Olanow,
2007). Overall, most studies have associated altered Mn levels,
both excessive and insufficient, with altered brain function in
humans and model organisms.

Despite the critical roles of Mn in the brain, the underlying
mechanisms of Mn-dependent structural and functional changes
in the central nervous system (CNS) remain incompletely
characterized. Therefore, understanding the impact of Mn
on CNS gene regulation is an essential step in elucidating
the mechanisms underlying Mn-dependent brain dysfunction.
Previous RNA-seq analysis in Caenorhabditis elegans showed
that Mn exposure increases pathways related to endoplasmic
reticulum and lipocalin (Rudgalvyte et al., 2016). Another
transcriptomic analysis in human SH-SY5Y neuroblastoma cells
has revealed distinct responses to physiologic and toxic Mn
exposure (Fernandes et al., 2019). The impact of Mn on gene
expression is beginning to be appreciated, but Mn-dependent
gene expression remains poorly explored in vertebrate animals.
Given that Mn is primarily acquired through diet, the goal of
the present study was to define the impact of low levels of
dietary Mn on brain metal levels and to probe the molecular
dysfunction associated with low Mn levels in an unbiased manner
using a mouse model.

MATERIALS AND METHODS

Animals and Treatment Conditions
Four-week-old male wild-type (WT) C57BL/6 mice were
purchased from Jackson Laboratory and maintained on a metal-
basal diet containing 35 ppm Mn (TD120518, Harlan Teklad,
Indianapolis, IN, United States; Supplementary Table 1), as

FIGURE 1 | Dietary manganese (Mn) depletion reduces brain Mn levels.
(A) Experimental scheme to analyze the transcriptome in low-Mn or
normal-Mn diets fed mice. Mice were fed with either low-Mn or normal-Mn
diets (0 and 35 mg/kg Mn, respectively). (B–E) Levels of the trace elements
Mn, iron (Fe), zinc (Zn), and copper (Cu) were measured by inductively
coupled plasma mass spectrometry (ICP-MS) in the brain regions of mice
(n = 5 per group). Data represent means ± SEM. ** P < 0.01.

previously described (Seo and Wessling-Resnick, 2015; Seo et al.,
2016; Choi et al., 2020). The trace element levels in the diet
were as recommended by the American Institute of Nutrition

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 558725

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-558725 November 29, 2020 Time: 19:33 # 3

Seo et al. Transcriptomic Analysis Mn Deficient Brain

FIGURE 2 | RNA-Seq analysis of manganese (Mn)-deficient cerebellum in mice. (A) Principal component analysis (PCA) plot showing the clustering of each of the
samples with technical triplicates along two principle components (PC1 – 36% variance; PC2 – 21% variance). Each technical triplicate clusters with the other.
(B) DESeq reveals 137 altered genes (significantly altered genes defined as a Padj-value < 0.05). Volcano plot profiles –log10 Padj-value and log2-fold change of
gene expression between Mn-deficient vs. normal cerebellum samples. (C) 50 genes (36.5%) are downregulated and 87 genes (63.5%) are upregulated.

(Reeves et al., 1993). For dietary Mn alteration, the mice were
fed either low-Mn or normal-Mn diets (< 0.01 or 35 ppm Mn,
respectively; Harlan Teklad). The actual Mn concentrations of

the diets were 0–0.5 ppm Mn (low-Mn) and 35–35.5 ppm Mn
(normal-Mn), as determined by inductively coupled plasma mass
spectrometry (ICP-MS; Choi et al., 2018, 2020). This study was
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TABLE 1 | The 20 most downregulated genes in the manganese (Mn)-deficient mouse cerebellum.

Gene symbol Gene description log2 fold- change Padj Known function

Down-regulated

Kl Klotho −0.40 5.36E-07 Anti-aging (Kim et al., 2015)

Plp1 Proteolipid protein 1 −0.22 3.38E-06 CNS myelination (Garbern et al., 2002)

H3f3b H3.3 Histone B −0.22 6.62E-06 Genome integrity (Jang et al., 2015)

Fn1 Fibronectin 1 −0.31 7.13E-04 Cell adhesion and migration processes

Vat1l Vesicle amine transport 1 like −0.24 7.39E-04 Unknown function

Ace Angiotensin I converting enzyme −0.29 7.47E-04 Converts angiotensin I to angiotensin II

Tmem47 Transmembrane protein 47 −0.23 7.47E-04 Localized in ER and plasma membrane; unknown function

Slc4a4 Sodium bicarbonate co-transporter −0.17 7.47E-04 bicarbonate secretion and absorption (Burnham et al., 1997)

Zfp36l2 ZFP36 ring finger protein like 2 −0.32 9.93E-04 mRNA decay activator protein (Stumpo et al., 2009)

Gstm1 Glutathione S-transferase Mu 1 −0.19 2.25E-03 Detoxification of electrophilic compounds

Zbtb18 Zinc finger and BTB domain containing 18 −0.17 2.58E-03 Transcriptional repressor in myogenesis and brain development
(Aoki et al., 1998)

Fndc10 Fibronectin type III domain containing 10 −0.24 3.56E-03 Unknown function

Hsd17b12 Hydroxysteroid 17-beta dehydrogenase 12 −0.22 4.83E-03 Fatty acid elongation (Moon and Horton, 2003)

Aplp1 Amyloid beta precursor like protein 1 −0.15 5.50E-03 AD-associated gene; postsynaptic function

Trf Transferrin −0.15 5.50E-03 Iron storage protein

Igf2 Insulin like growth factor 2 −0.22 5.91E-03 Major fetal growth hormone in mammals (Livingstone and Borai,
2014)

Eef1a1 Eukaryotic translation elongation factor 1
alpha 1

−0.12 5.95E-03 Recruitment of aminoacyl-tRNA to ribosome during protein
synthesis (Maruyama et al., 2007)

Reep5 Receptor accessory protein 5 −0.15 7.18E-03 Signaling by GPCR and olfactory transduction

Ezr Ezrin (villin 2) −0.27 9.27E-03 Connections of cytoskeletal structures to the plasma
membrane (D’Angelo et al., 2007)

Apod Apolipoprotein D −0.19 1.12E-02 A component of high-density lipoprotein; mainly produced in
the brain and testes (Muffat and Walker, 2010)

performed in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health (Bethesda, MD, United States). The
protocol (protocol number: PRO00008963) was approved by the
University Committee on Use and Care of Animals (UCUCA) at
the University of Michigan.

RNA Isolation and Sequencing
Total RNA was isolated from one cerebellum per mouse using
the RNeasy mini kit (Qiagen, Valencia, CA, United States).
Three mice (n = 3 biological replicates) were used per
experimental group (total n = 6). The sample size was determined
based on previously described power calculations to optimize
detection of differentially expressed genes (Ching et al., 2014).
RNA concentrations were measured with an Epoch Microplate
Spectrophotometer (BioTek, Winooski, VT, United States). RNA
integrity was assessed with an Agilent Bioanalyzer 2100 using
a Nano 6000 assay kit (Agilent Technologies, Santa Clara, CA,
United States). An RNA integrity number (RIN) > 7.2 was
considered the minimum requirement for library preparation.
RNA was reverse transcribed into cDNA using oligo-dT, and
cDNA libraries were generated with a NEBNext Ultra II
RNA Library Prep Kit (NEB #E7775). An insert size of 250–
300 bp was used for cDNA library preparation. Libraries were
sequenced on the Illumina NovaSeq 6000 platform with a
150-bp paired-end mode. Reference genome and annotation
files were downloaded from Ensembl, and RNA-seq data

were aligned to the reference genome using the spliced
transcripts alignment to a reference (STAR) software (Dobin
et al., 2013). The DESeq2 package was used for differential
expression analysis. The ClusterProfiler, ReactomePA, and
KEGG databases were used for enrichment pathway analysis
(Ogata et al., 1999).

Quantitative PCR (qPCR)
Purified RNA (2 µg) was reverse-transcribed with SuperScript
III First-Strand Synthesis System (Invitrogen; Thermo Fisher
Scientific, Inc.). qPCR reactions were carried out using the Power
SYBR Green PCR master mix containing 0.5 µM of forward and
reverse primers and 2% of cDNA generated from 2 µg of RNA.
The conditions were 95◦C for 10 min, followed by 45 cycles of
95◦C for 15 s and 60◦C for 2 min. Specific primers were designed
using Primer 3 software (Untergasser et al., 2012). The efficiency
of the primers used for qPCR was validated by creating standard
curves using a gradient of diluted samples with r2 values larger
than 0.96. The specificity of the primers was verified by examining
the melting curve. 36B4 was used for normalization of the mRNA
because the 36B4 gene is highly conserved and encodes acidic
ribosomal phosphoprotein P0 (RPLP0) that is a component of
the 60S ribosomal subunit (Akamine et al., 2007). The relative
gene transcription levels were calculated using the 2−1 1 Ct

method (Pfaffl, 2001). The primers used for qPCR are listed in
Supplementary Table 2 and were all purchased from Integrated
Genomics Technologies.
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TABLE 2 | The 20 most upregulated genes in the manganese (Mn)-deficient mouse cerebellum.

Gene symbol Gene description log2
fold-change

Padj Known function

Up-regulated

Meg3 Maternally expressed 3 0.34 5.60E-27 long non-coding RNAs; apoptosis suppression (Chen
et al., 2011)

Ddit4 DNA-damage-inducible transcript 4 0.42 5.78E-08 Negative regulator of mTOR (Sofer et al., 2005)

Per1 Period circadian regulator 1 0.36 5.78E-08 Maintenance of circadian rhythms in cells (Angelousi
et al., 2018)

Tob2 Transducer of ERBB2, 2 0.39 3.79E-07 Anti-proliferative protein

Bcl6 B-cell lymphoma 6 protein 0.43 5.36E-07 Transcription repressor (Basso et al., 2010)

Slc38a2 Sodium-coupled neutral amino acid transporter 2 0.25 1.19E-06 Functions as a sodium-dependent amino acid
transporter (Hatanaka et al., 2000)

Sgk1 Serum/glucocorticoid regulated kinase 1 0.39 1.50E-06 Cellular stress response (Lang and Shumilina, 2013)

Prag1 PEAK1 related, kinase-activating pseudokinase 1 0.32 1.77E-05 Regulation of neurite outgrowth (Tanaka et al., 2006)

Car10 Carbonic anhydrase 10 0.31 3.51E-05 Brain development (Sterky et al., 2017)

Cnksr3 Connector enhancer of kinase suppressor of Ras 3 0.31 2.10E-04 Involved in transepithelial sodium transport
(Soundararajan et al., 2012)

Nrxn3 Neurexin-3-alpha 0.19 2.33E-04 CNS receptors and cell adhesion molecules
(Muskiewicz et al., 2018)

Cacna1c Calcium voltage-gated channel subunit alpha1 C 0.28 3.50E-04 Influx of Ca2 + into the cell upon membrane
polarization (Shaw and Colecraft, 2013)

Clk1 CDC like kinase 1; dual specificity protein kinase 0.24 7.47E-04 Phosphorylation of serine- and arginine-rich proteins of
the spliceosomal complex (Moeslein et al., 1999)

Zgpat Zinc finger CCCH-type and G-patch domain
containing

0.26 7.47E-04 Transcription repressor

Cntn6 Contactin 6 0.29 7.47E-04 Cell surface interactions during CNS development
(Zuko et al., 2016)

Btbd3 BTB domain containing 3 0.16 7.47E-04 A key regulator of dendritic field orientation during
development of sensory cortex (Matsui et al., 2013)

Rbm33 RNA binding motif protein 33 0.24 7.78E-04 unknown function

Cacna1e Calcium voltage-gated channel subunit alpha1 S 0.24 9.05E-04 Entry of calcium ions into excitable cells (Helbig et al.,
2019)

Malat1 Metastasis associated lung adenocarcinoma
transcript 1

0.15 1.10E-03 A large, infrequently spliced non-coding RNA (Amodio
et al., 2018)

Tnik TRAF2 And NCK interacting kinase 0.23 1.15E-03 Activator of the Wnt signaling pathway (Mahmoudi
et al., 2009)

Trace Element Analysis
Brain metal levels were measured by ICP-MS, as previously
described (Seo and Wessling-Resnick, 2015; Seo et al., 2016;
Choi et al., 2020). Briefly, brain samples taken from the mice
were digested with 2 mL/g total wet weight nitric acid (BDH
ARISTAR R© ULTRA) for 24 h and then digested with 1 mL/g
total wet weight hydrogen peroxide (BDH R© Aristar ULTRA) for
24 h at room temperature. Specimens were preserved at 4◦C
until quantification of metals. Ultrapure water was used for final
sample dilution.

Statistical Analysis
Results are presented as means ± SEM. Statistical
comparisons were determined with Student’s t-test
using Prism 7 software (GraphPad Software). Values
of P < 0.05 were considered statistically significant.
Asterisks in graphs, wherever present, denote statistically
significant differences.

RESULTS

Dietary Mn Alters Brain Mn
Concentrations in Mice
We determined the effect of low levels of dietary Mn on the
brain metal levels by measuring the distribution of metals in
various regions of the brain by ICP-MS. Mice were fed for
14 days with purified diets that contained either low or normal
concentrations of Mn (< 0.01 or 35 ppm Mn, respectively;
Figure 1A). The mice fed with a low-Mn diet showed significantly
reduced Mn levels in different brain regions, including the cortex
(∼13.1%; P < 0.01) and cerebellum (∼14.7%; P < 0.01), when
compared to the mice fed a normal-Mn diet (Figure 1B). The
same samples showed no alterations in the levels of other trace
elements, including iron, zinc, and copper, in the brain regions
(Figures 1C–E). No heavy metals, such as cadmium and lead,
were detected in these samples. No differences were found in
body weight changes (3.74 vs. 3.40 g; P = 0.4356) and food intake
(2.39 vs. 2.47 g/mouse/day; P = 0.7399) during the experimental
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FIGURE 3 | Pathway analysis of genes correlated with manganese (Mn)-deficient cerebellum. Gene sets and their associated enrichment plots generated by gene
set enrichment analysis (GSEA) of pre-ranked gene expression data (Padj < 0.05). Enrichment plot with enrichment scores (ES) and differentially expressed genes
are shown for (A) focal adhesion, (B) neuroactive ligand-receptor interaction, and (C) cytokine–cytokine receptor interaction, (D) herpes simplex virus 1 infection, (E)
spliceosome, and (F) FoxO signaling pathway. The X-axis denotes the position of the pathway genes in all analyzed genes, which are ranked in an order based on
fold changes (high to low) by Mn deficiency. The enrichment score is shown as a curve, and the vertical red bars in the plot indicate the position of the “leading edge”
of the enrichment. For downregulated pathways (A–C), the genes with higher rank orders than the red line, on the right side of the red line, contributed to the
downregulation of the three pathways. Conversely, for the upregulated pathways (D–F), the genes with lower rank orders, on the left side of the red line, contributed
to their upregulations.

period. These findings demonstrate that 2 weeks of low level of
Mn reduce the Mn levels in the cortex and cerebellum without
affecting other trace element levels.

Transcriptome Analysis of Cerebellum in
Mice Fed Diets Containing Low or
Normal Mn Levels
We interrogated gene expression changes in the Mn-deficient
mouse brain at a genome-wide scale by RNA-seq analysis of
the cerebellum from mice fed either low (0 ppm) or normal
(35 ppm) Mn diets. The cerebellum was chosen over other brain
regions for the following reasons. First, when compared with
mice fed a normal Mn diet, mice fed a low-Mn diet showed
the largest reduction in brain Mn levels in the cerebellum
(Figure 1B). Second, human patients with congenital Mn
deficiency display neurodevelopmental conditions associated
with cerebellum atrophy (Boycott et al., 2015; Park et al., 2015;
Riley et al., 2017). We harvested cerebellum tissues from three
mice per group. We then prepared cDNA libraries of poly
adenylated mRNAs and subjected them to high-throughput
sequencing using the Illumina NovaSeq platform. At least 17
million uniquely mapped reads were obtained per sample.
Principal component analysis (PCA) showed that the three
replicates clearly cluster together and segregated into the two
Mn treatment groups, indicating that Mn deficiency triggered
transcriptomic alterations (Figure 2A).

We next sought to identify altered genes in the cerebellum of
mice fed low or normal Mn diets. Differentially expressed (DE)
genes were determined by DESeq2 (Love et al., 2014) for mice
fed low or normal Mn diets. We found 137 genes (0.25% of
53807 total annotated genes) that were differentially regulated
with an adjusted p-value (Padj) < 0.05 in the cerebellum of
mice fed a low Mn diet (Supplementary Data 1). Of these,
87 genes were upregulated (63.5%), whereas 50 genes were
downregulated (36.5%; Figures 2B,C). The magnitude of the
changes was relatively moderate, as log2fold changes ranged from
−0.40 to 0.43. The genes with the 20 largest log2fold changes
(downregulated and upregulated) are presented in Tables 1,
2. Transcripts that decreased in the Mn-deficient cerebellum
included genes related to anti-aging, CNS myelination, genome
integrity, cell adhesion and migration processes, fatty acid
metabolism, and postsynaptic function. The results also showed
a number of genes that increased in the Mn-deficient cerebellum;
these included genes involved in apoptosis suppression, circadian
rhythms, regulation of neurite growth, and neurodevelopment.
Taken together, these results indicate that Mn deficiency leads to
misregulation of specific genes in the cerebellum.

RNA-Seq Pathway Analysis in the
Mn-Deficient Cerebellum
To obtain insights into the biological processes in the brain
that are influenced by the relatively moderate changes in a
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number of genes, we applied gene set enrichment analysis (GSEA;
Subramanian et al., 2005) to our RNA-Seq data. With the GSEA
algorithm, we tested the enrichment of biological pathways
annotated by the Kyoto Encyclopedia of Genes and Genomes
(KEGG), a database resource integrating genomic, chemical, and
systemic functional information (Kanehisa and Goto, 2000). We
identified three downregulated and three upregulated pathways
in the Mn-deficient cerebellum (Padj < 0.05; Figure 3). The
downregulated pathways are “focal adhesion,” “neuroactive
ligand-receptor interaction,” and “cytokine-cytokine receptor
interaction,” while upregulated pathways include “herpes simplex
virus 1 infection,” “spliceosome,” and ‘FoxO signaling pathway.”
In Table 3, we list the top-ranked genes from the GSEA
analysis that are also significantly altered in the DEseq2 analysis.
Notably, upregulation of the spliceosome pathway is represented
by the following six top-ranked, significantly altered genes:
Rbm25, Ddx5, Srsf5, Acin1, Tra2a, and Snrnp70. Other KEGG
pathways contain fewer highly altered genes, notably Srsf5 for
Herpes simplex virus 1 infection; Sgk1, Bcl6, and Ccng2 for
FoxO signaling; and Fn1 and Actg1 for the focal adhesion
pathway (Table 3).

Reactome Alterations in the
Mn-Deficient Cerebellum
We also applied GSEA analysis to test the enrichment of
the reactome, which encompasses physical protein-protein
interactions that may not be covered in KEGG (Yu and
He, 2016). In this analysis, we identified 62 reactomes that
are either upregulated or downregulated in the Mn-deficient
cerebellum (Padj < 0.05). Again, we identified the upregulation of
spliceosome-related reactomes, including “metabolism of RNA”
and “processing of capped intron-containing pre-mRNA.” We
visualized the top 15 reactomes and the genes contributing to the
enrichment in a network representation (Figure 4). The network
assembly revealed that upregulation of the splicing-related
and transcription-related reactomes, including “transcriptional
regulation of TP53” and “RNA polymerase II transcribes
snRNA genes,” and the two modules were linked by genes that
belonged to both splicing and transcription modules. Similarly,
downregulated reactomes, such as “metabolism of carbohydrate,”
and “extracellular matrix organization” were linked by a set of
genes. By contrast, “fatty acid metabolism” was isolated from
the other downregulated reactomes. Recurrent identifications of
splicing-related pathways strongly suggested that Mn deficiency
led to upregulation of the splicing machineries. At the same time,
downregulation of diverse biological pathways could occur when
Mn was insufficient.

qPCR Analysis of the Cerebellum in Mice
Fed a Low-Mn Diet for 2 or 4 Weeks
We used qPCR to validate several genes showing significant
alterations in the cerebellum of mice fed a Mn-deficient diet for
2 weeks. We found that dietary Mn deficiency for 2 weeks led to
the downregulation of Ki, Fn1, and Ace in the cerebellum. These
three genes were also shown to be downregulated in the RNA-seq
analysis (Figure 5A). We also found that three genes that were

upregulated in the RNA-seq analysis, namely Meg3, Tob2, and
Bcl6, showed similar changes in the qPCR analysis (Figure 5A).
We then examined whether the effects of Mn deficiency would
be more extreme if the mice were exposed to the low-Mn diet
for longer than 2 weeks. To test this, we performed additional
experiments in mice fed the low-Mn diet for 4 weeks. Our qPCR
data revealed similar changes in mice fed the low-Mn diet for
either 2 or 4 weeks (Figure 5B). This result indicated that an
additional 2 weeks of a low-Mn diet did not exacerbate the
Mn-related gene misregulation.

DISCUSSION

Our use of a mouse model of the Mn-deficient cerebellum
shows that Mn deficiency results in altered expression of
137 genes within the adult cerebellum. The present results
demonstrate upregulation of transcripts of the spliceosome-
related pathways in the Mn-deficient mouse cerebellum. These
genes include Rbm25, Ddx5, Srsf5, Acin1, Tra2a, and Snrnp70, all
of which play central roles in the spliceosome pathway (Table 3).
Most eukaryotic genes are transcribed to precursor mRNAs
(pre-mRNAs) that encompass both protein-coding exons and
non-coding introns. Pre-mRNA splicing removes the non-
coding intron sequences to produce the mature mRNA. This
sequential process is catalyzed by a macromolecular machine
called the spliceosome (Zaghlool et al., 2014). The spliceosome
plays critical roles in neurodevelopmental disorders, as splice-
disrupting genetic variants are known to contribute to these
disorders (Sanders et al., 2020). The mechanisms by which
Mn deficiency alters splicing machinery remain unknown;
however, our observations raise the intriguing possibility
that Mn may contribute to neurodevelopmental disorders by
altering gene splicing.

One example is RBM25 (also known as RED120), an RNA-
binding protein that contains an N-terminal RNA-binding motif
domain (RRM), a central glutamate/arginine-rich sequence (ER-
rich domain), and a C-terminal PWI domain (Fortes et al.,
2007). RBM25 functions in apoptotic cell death by regulating
the balance of expression of pro- and anti-apoptotic transcripts
of the BCL2L1 gene isoforms (Zhou et al., 2008). RBM25
also generates an abnormal and truncated splice form of the
cardiac voltage-gated Na channel encoded by SCN5A during
heart failure (Gao et al., 2011). Another example is DDX5, or
DEAD/H box polypeptide 5, also known as RNA helicase p68,
that is involved in the alternate regulation of pre-mRNA splicing.
DDX5/RNA helicase p68 is reported to regulate tau exon 10
splicing by modulating the stem-loop structure at the 5′ splice
site (Forman et al., 2004), and disruption of the regulation of
tau exon 10 splicing plays an important role in the pathogenesis
of tauopathy (Forman et al., 2004). Moreover, aberrant tau
exon 10 splicing has been implicated in a range of sporadic
tauopathies, including progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD), multiple system tauopathy
with dementia (MSTD), and argyrophilic grain disease (AGD),
as well as some forms of Alzheimer’s disease (Andreadis, 2006).
Our data showing an increase in RBM25 and DDX5 expression
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FIGURE 4 | Reactome analysis of genes correlated with manganese (Mn)-deficient cerebellum. Enrichment of reactome categories, as calculated with the gene set
enrichment analysis (GSEA) algorithm. Among the 62 reactomes (Padj < 0.05), the top 15 reactomes based on Padj values are represented. The size of the black
dots indicates the number of genes involved in the reactome. Genes involved in the reactome are colored based on the mRNA changes in the Mn-deficient
cerebellum. Reactomes can be interconnected via genes that belong to multiple reactomes.
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TABLE 3 | Pathway analysis of genes correlated with the manganese (Mn)-deficient mouse cerebellum.

KEGG pathway (ID) Gene
symbol

Gene description log2
fold-change

Padj Known function

Spliceosome
(mmu03040)

Rbm25 RNA binding motif protein 25 2.10E-01 1.62E-03 Alternative pre-mRNA splicing regulator; apoptosis
(Fortes et al., 2007)

Ddx5 DEAD-box helicase 5, p68 1.51E-01 2.43E-02 RNA helicase; interactions with other factors
(Fuller-Pace and Ali, 2008)

Srsf5 Serine and arginine rich splicing
factor 5

1.49E-01 4.59E-02 Splicing regulator; an insulin-induced gene (Diamond
et al., 1993)

Acin1 Apoptotic chromatin
condensation inducer 1

1.69E-01 2.08E-02 Apoptotic chromatin condensation after activation by
caspase-3, without inducing DNA fragmentation
(Sahara et al., 1999)

Tra2a Transformer 2 alpha homolog 2.31E-01 5.50E-03 Pre-mRNA splicing; Invasion and epithelial
mesenchymal transition of glioma cells (Tan et al., 2018)

Snrnp70 Small nuclear ribonucleoprotein
U1 subunit 70

1.59E-01 4.02E-02 Mixed connective tissue disease and systemic
scleroderma; Alzheimer’s disease brains-associated
gene (Hales et al., 2014)

Herpes simplex virus 1
infection (mmu05168)

Srsf5 Serine and arginine rich splicing
factor 5

1.49E-01 4.59E-02 A major regulator of human immunodeficiency virus
type 1 mRNA splicing (Hallay et al., 2006)

FoxO signaling pathway
(mmu04068)

Sgk1 Serum/glucocorticoid regulated
kinase 1

3.94E-01 1.50E-06 Cellular stress response and neuronal function (Lang
et al., 2010)

Bcl6 BCL6 transcription repressor 4.30E-01 5.36E-07 Neuronal function; schizophrenia, depression, and
Parkinson’s, and Alzheimer’s disease-associated gene
(Basso et al., 2010)

Ccng2 Cyclin G2 2.72E-01 8.90E-03 Eukaryotic cell cycle; cell proliferation as a tumor
suppressor gene (Zhang et al., 2018)

Focal adhesion
(mmu04510)

Fn1 Fibronectin 1 −3.12E-01 7.13E-04 Cell adhesion and migration processes including
embryogenesis, wound healing, blood coagulation,
host defense, and metastasis (Liao et al., 2018)

Actg1 Actin gamma 1 −1.32E-01 2.39E-02 Cell motility and maintenance of the cytoskeleton; Gene
mutations associated with sensorineural progressive
hearing loss and with Baraitser-Winter syndrome
(Verloes et al., 2015)

in the cerebellum in response to Mn deficiency therefore suggests
an involvement of the spliceosome in the Mn-dependent function
of the nervous system.

The spliceosome is found within the nucleus in eukaryotic
cells. Studies have also shown that Mn is primarily accumulated
in the nuclei of several types of cultured brain cells, including
blood–brain barrier endothelial RBE4 cells, blood–cerebrospinal
fluid barrier choroidal epithelial Z310 cells, mesencephalic
dopaminergic neuronal N27 cells, and pheochromocytoma
dopaminergic PC12 cells (Kalia et al., 2008). This localization of
Mn suggests that these nuclei may serve as the primary pools
of intracellular Mn. Currently, the specific roles of Mn in the
nucleus are not known. Given the ability of Mn to interact with
the nucleotides of DNA, RNA, and ribosomes (Jouve et al., 1975;
Vogtherr and Limmer, 1998), one plausible explanation is that
unidentified nuclear proteins are specifically targeted by Mn.
Further studies are warranted to test this intriguing possibility.

The present results show that Mn deficiency decreases the
expression of genes involved in multiple reactome pathways,
including carbohydrate metabolism, in the cerebellum. This
is consistent with previous findings that Mn deficiency in
mice impairs the metabolism of carbohydrates (Wedler,
1993; Keen et al., 1999). Mn acts as a cofactor for numerous

enzymes, including all six major enzyme families, and several
Mn metalloenzymes contain tightly bound Mn ions (Wedler,
1993). Mn metalloenzymes include pyruvate carboxylase,
which catalyzes the physiologically irreversible carboxylation of
pyruvate to form oxaloacetate in the citric acid cycle (Leach and
Lilburn, 1978). Glycosyltransferase is another Mn-dependent
enzyme that requires Mn for catalytic activity (Leach, 1971),
implicating Mn as a significant factor in glycosylation. Mn-
deficient animals exhibit skeletal abnormalities, including
shortened limbs caused by a diminished production of the
N-acetylgalactosamine-containing chondroitin sulfate (Leach,
1971). β-1,4-galactosyltransferase, which catalyzes the transfer
of galactose to the glycan moiety of a protein during protein
N-glycosylation, is another Mn-dependent glycosyltransferase
that requires Mn for substrate binding and catalytic activity
(Ramakrishnan et al., 2006). Mn-deficient cells have shown
impaired protein N-glycosylation, and especially galactosylation
(Potelle et al., 2016). Taken together, our results suggest that the
altered carbohydrate metabolism reported in the Mn-deficient
condition is likely involved in transcriptional alterations.

Previous transcriptome analyses related to Mn have revealed
that high levels of Mn alter gene expression in different cell
stress pathways and that these alterations may contribute to
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FIGURE 5 | qPCR analysis of the cerebellum of mice fed for 2 or 4 weeks with
a low-manganese (Mn) diet. (A) qPCR validation of Ki, Fn1, Ace, Meg3, Tob2,
and Bcl6, six genes shown to be dysregulated in the RNA-seq analysis of the
cerebellum of mice fed for 2 weeks with a low-Mn diet (n = 5 per group).
(B) qPCR quantification of Ki, Fn1, Ace, Meg3, Tob2, and Bcl6 in the
cerebellum of mice fed for 4 weeks with a low-Mn diet (n = 5 per group). Data
represent means ± SEM. *P < 0.05.

the toxic effects of Mn. One transcriptome analysis study in
Caenorhabditis elegans showed that acute Mn exposure increases
activity of pathways related to endoplasmic reticulum and
lipocalin (Rudgalvyte et al., 2016). Another transcriptome
analysis study in the SH-SY5Y human neuroblastoma cell
line showed different responses to physiologic versus toxic
Mn levels (Fernandes et al., 2019). This study indicated that
exposure to physiologic Mn levels increased the abundance
of differentially expressed genes (DEGs) in the protein
secretion pathway, which functions in protein trafficking
and cellular homeostasis. By contrast, exposure to toxic Mn
levels increased the abundance of DEGs for the mitochondrial
oxidative phosphorylation pathway. Our transcriptomic
analysis in the mouse cerebellum revealed vastly different
sets of DEGs when compared to these previous studies.
Specifically, low and high Mn levels did not result in opposite
changes in gene expression. These somewhat inconsistent
observations may be reflect the use of different experimental
systems. Alternatively, low or high Mn exposures have distinct
biological consequences. Further studies are required to
compare exposures to low or high Mn levels in a single
experimental system.

One important point to note is that dietary Mn deficiency
is rare in humans due to the broad Mn availability in diverse
dietary sources; therefore, the argument can be made that our

transcriptome study may not accurately apply to humans. Mn is
certainly abundant in plant-based foods, such as whole grains,
legumes, rice, nuts, and vegetables; however, it is deficient
in animal sources, including meat, fish, poultry, eggs, and
dairy products (Freeland-Graves et al., 2016). Interestingly,
epidemiological surveys have revealed a > 40% reduction in
dietary Mn consumption in the past 5 years in the United States
(Hallfrisch et al., 1987; Egan et al., 2002; Freeland-Graves et al.,
2016), and a similar substantial decline in Mn consumption in
China (Association, 2001; Jiang et al., 2015) and in South Korea
(Kim et al., 2008; Kang et al., 2014). These studies suggest
that, despite the supposed rarity of dietary Mn deficiency,
Mn inadequacy is actually prevalent in the animal-based diets
of today’s society. Furthermore, this Mn inadequacy coincides
with an increased incidence of neurodevelopmental conditions
associated with low levels of Mn (Claus Henn et al., 2010; Bhang
et al., 2013; Haynes et al., 2015). In contrast to the > 40%
chronic reduction of Mn in humans, in our study, mice fed with
a Mn-deficient diet for 2 weeks showed a moderate reduction
of Mn in the cortex (∼13.1%) and cerebellum (∼14.7%). We
speculate that the cell-type composition may influence the
sensitivity to dietary Mn levels. This is an important future
direction of investigation. Further studies should investigate
the consequences of longer durations of Mn deficiency on
other brain regions.

Importantly, the Mn reduction tested in the present
study was sufficient to cause detectable changes in gene
expression. The findings presented here will aid in the
assessment and management of the risks of low Mn levels
in association with human children’s neurodevelopmental
conditions. Our present study will also provide a foundation
for this type of research. In addition, our study used
only a single omics technology, so our results do not
reflect proteomics, metabolomics, or functional outcomes.
Further integrated omics and time-course studies in animal
models will be needed to improve our understanding of the
physiological mechanisms that control Mn availability and to
establish the pathogenic mechanisms by which low Mn levels
cause neuropathology.

CONCLUSION

To our knowledge, this is the first global transcriptomic study
to analyze the impact of dietary Mn deficiency on the mouse
brain. Our study highlights the transcriptional changes occurring
in the spliceosome pathway and in carbohydrate metabolism and
supports the current knowledge on the roles played by these
pathways in the molecular dysfunction associated with low Mn
levels. Our study also can serve as a unique data resource for
investigating Mn-dependent cellular functions in the brain.
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