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,e New Caledonian crow learning algorithm (NCCLA) is a novel metaheuristic algorithm inspired by the learning behavior of
New Caledonian crows learning to make tools to obtain food. However, it suffers from the problems of easily falling into local
optima and insufficient convergence accuracy and convergence precision. To further improve the convergence performance of
NCCLA, an improved New Caledonian crow learning algorithm (INCCLA) is proposed in this paper. By determining the parent
individuals based on the cosine similarity, the juveniles are guided to search toward different ranges to maintain the population
diversity; a novel hybrid mechanism of complete and incomplete learning is proposed to balance the exploration and exploitation
capabilities of the algorithm; the update strategy of juveniles and parent individuals is improved to enhance the convergence speed
and precision of the algorithm. ,e test results of the CEC2013 and CEC2020 test suites show that, compared with the original
NCCLA algorithm and four of the best metaheuristics to date, INCCLA has significant advantages in terms of convergence speed,
convergence precision, and stability.

1. Introduction

A large number of optimization problems exist in real life,
engineering design, computer technology and other fields,
such as minimum cost, optimal parameters, minimum time,
pipeline route design, welded beam design, etc. In order to
obtain higher economic efficiency and social value, scholars
strive to obtain the optimal solution to optimization
problems, thus making the research of optimization
methods widely concerned.

Optimization methods usually include traditional opti-
mization methods such as the fastest descent method and
metaheuristic methods. Among them, traditional optimi-
zation methods usually require the optimization problem to
be derivable, and the convergence speed and convergence
precision are difficult to meet the practical needs when the
optimization problem has multiple extrema. And the met-
aheuristic algorithms proposed by simulating biological
habits in nature, etc., have good exploration and exploitation
performance through information exchange among

individuals in the population. Compared with traditional
optimization algorithms, metaheuristic algorithms are better
in convergence speed, convergence precision, robustness,
and stability, with no strict requirements on the form of
optimization problems. ,is makes the metaheuristic al-
gorithm the most effective and widely used optimization
method. Researchers have focused on two main aspects of
metaheuristics to obtain the best optimization results: im-
proving existing metaheuristics and proposing new ones.

Various metaheuristic algorithms have been proposed,
and the more representative methods are as follows: the
artificial bee colony algorithm (ABC) was proposed to
simulate the behavior of bee colonies to find the optimal
nectar source according to different internal divisions of
labor [1]; the crow search algorithm (CSA) was proposed to
simulate the behavior of crows to hide and search for food
[2]; particle swarm optimization (PSO) algorithm was
proposed to simulate the foraging behavior of a flock of birds
[3]; the firefly algorithm (FA) was proposed to simulate the
behavior of fireflies to attract each other [4]; the Marine
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Predator Algorithm (MPA) was proposed to simulate the
behavior of biological interactions between marine preda-
tors and prey [5]; the Manta Ray Foraging Optimization
Algorithm (MRFO) was proposed to simulate three unique
foraging modes of manta rays: chain foraging, cyclone
foraging, and somersault foraging [6]; the dolphin swarm
optimization algorithm (DSA) was proposed to simulate the
habits of dolphins such as echolocation and information
exchange [7]; and the gray wolf optimization algorithm
(GWO) was proposed to simulate the hunting behavior of
gray wolves [8] and so on. Some of the algorithms men-
tioned above have been applied to many research articles,
such as applying particle swarm optimization to solve the
UCP problem with deterministic and stochastic load de-
mands [9], the ocean predator algorithm to solve the optimal
reactive power dispatch (ORPD) problem [10], and the
manta ray foraging optimization algorithm to solve the
economic load dispatch and advance dispatches problems of
microgrids [11].

Researchers have done a lot of work on the improvement
of existing metaheuristic algorithms, and the more repre-
sentative research results are given below. Many improve-
ment methods for particle swarm algorithms have been
proposed in recent years, and the representative results are
as follows: In 2016, Samma et al. proposed the RLMPSO
algorithm [12], where each particle performs five operations
under the control of the RL algorithm to improve the search
performance of the particle swarm algorithm. In 2018,
Zhang et al. proposed the DLPSO algorithm [13] to address
the shortcomings of the PSO algorithm in multimodal in-
divisible problems that tend to fall into local optima, which
extracts good vectors from the vectors distributed in the
search space to form a new vector with a greater possibility of
jumping out of local optima. In 2021, Lu et al. proposed the
EMCPSO algorithm [14], which takes advantage of the
technology of multiple populations in order to overcome the
problem of premature convergence of PSO, which divides
the population into four identical subpopulations, and the
optimal individual in each subpopulation is used to rep-
resent the evolutionary state of that subpopulation, and by
sharing information among the four populations, the evo-
lutionarily stagnant subpopulations search for the optimal
solution again, while introducing an exclusion mechanism
to prevent premature convergence of particles further. In
2022, Wang et al. proposed the RLLPSO algorithm for large-
scale optimization problems [15], which constructs a level-
based population structure to improve population diversity,
a reinforcement learning strategy as well as a level com-
petition strategy to improve the search efficiency of the
algorithm in order to overcome the complexity of large-scale
optimization problems.

Many improvement methods have been proposed for the
artificial bee colony algorithm, and the representative results
are as follows: In 2018, Cui et al. proposed the DPABC
algorithm [16], which uses a dual population framework to
divide the population into a convergence population and a
diversity population, responsible for developing promising
regions as well as maintaining population diversity, re-
spectively, to improve the overall performance of the

algorithm. In 2019, Awadallah et al. improved the onlooker
bee stage [17], combining four selection methods, including
global optimum, tournament, linear ranking, and expo-
nential ranking, to guide the search process of the onlooker
bee in order to determine the impact of the selection scheme
on the onlooker bee stage. In 2021, Zhou et al. proposed the
ABC-MNT algorithm [18], which applies three different
neighborhoods to different individuals, helping the algo-
rithm to achieve a better balance between exploration and
exploitation, in addition to employing a global neighbor-
hood search strategy and opposition-based learning that
preserves the search experience of the scout bee phase. In
2022, Ye et al. proposed the RNSABC algorithm [19], which
uses a random neighborhood structure so that each solution
has a random neighborhood, in addition to a depth-first
search method to enhance the search capability of the fol-
lowing bee to improve the algorithm’s ability to search for
the optimal solution.

Representative results of the improvement of other
mainstreammetaheuristic algorithms are as follows: In 2017,
Wang et al. proposed a firefly algorithm with neighborhood
attractiveness (NaFA) [20], where each firefly selects at-
tractive individuals from a predefined region instead of the
whole population, and the proposed strategy can effectively
improve the solution accuracy and reduce the time com-
plexity. In 2018, Sun et al. proposed an improved whale
optimization algorithm (MWOA) for solving large-scale
optimization problems [21], which uses a nonlinear dynamic
strategy based on the cosine function to update the control
parameters, balances the exploration and exploitation ca-
pabilities of the algorithm, uses a Levy flight strategy to make
the algorithm jump out of the local optimum, and uses
quadratic interpolation for the optimal individuals of the
population to enhance the local exploitation capabilities of
the algorithm. In 2019, Zamani et al. proposed a conscious
neighborhood-based crow search algorithm (CCSA) [22],
which introduces three search strategies, neighborhood-
based local search strategy, non-neighborhood global search
strategy, and roaming-based search strategy, to enhance the
balance between local and global search. In 2020, Gupta et al.
proposed a memory-based gray wolf optimization algorithm
(mGWO) [23], which modified crossover and greedy se-
lection based on the historical optimum of individuals,
enhancing the algorithm’s ability to perform the global
search, local exploitation, and the balance between the two.
In 2022, Long et al. proposed a velocity-based butterfly
optimization algorithm (VBOA) [24], which introduced
velocity and memory to guide individuals in the local search
phase and introduced a refraction-based learning strategy,
effectively enhancing the diversity of populations and the
exploration ability of the algorithm.

Many excellent metaheuristic algorithms have been
proposed in recent years. In 2018, Wang proposed the moth
search algorithm (MSA) [25] inspired by the phototropism
of moths and Levy flight, which treats moths as individuals.
Moths with smaller distances from the optimal individual
perform Levy flight, while moths with more considerable
distances approach the optimal individual in a straight line.
,e above two stages optimize the algorithm. In 2019,
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Heidari et al. proposed the Harris Hawk optimization al-
gorithm (HHO) [26] based on the inspiration of the col-
laborative group behavior of Harris hawks during predation,
which uses Harris hawks as individuals, and the search
process includes three stages: exploration, exploration to
exploitation conversion, and exploitation, and the algorithm
is characterized by few control parameters and excellent
global search capability. In 2020, Li et al. proposed the slime
mold algorithm (SMA) [27], inspired by the behavioral and
morphological changes in Physarum polycephalum during
foraging, which creates three different forms to optimize the
problem by using weights to simulate the positive and
negative feedback generated by slime molds during foraging.
In the same year, Al-Sorori and Mohsen proposed the New
Caledonian crow learning algorithm (NCCLA) [28] based
on the behavior of New Caledonian crows to obtain food by
learning to make tools. ,e advantage of this algorithm is its
stochastic nature, which guarantees that the algorithm does
not get trapped at the local optimum. In the same year,
Mohamed et al. proposed a gaining-sharing knowledge-
based algorithm (GSK) [29] inspired by the process of ac-
quiring and sharing knowledge in the human life cycle,
which treats people as individuals and improves their
knowledge by using junior gaining and sharing phase and
senior gaining and sharing phase, i.e., solving optimization
problems on continuous space. In 2021, Tu et al. proposed
the colony predation algorithm (CPA) [30], inspired by the
supportive behavior of herd animals and the behavior of
selective hunting, which is based on the coexistence of social
animals and focuses on optimizing the problem through five
stages: communicating and collaborating, dispersing food,
surrounding food, supporting the closest individual, and
finding food. In 2022, Hashim et al. proposed the snake
optimizer (SO) [31], based on the behavior of snakes to
forage or breed under different temperature and food
availability conditions, in which individuals explore and
exploit the conditions of temperature as well as food.

,e various metaheuristic algorithms mentioned above
provide new ideas for solving optimization problems and
further advance the development of optimization tech-
niques. Compared with the more classical PSO and DE, they
have significantly improved in terms of convergence speed
and convergence precision. However, unfortunately, for the
highly nonlinear and complex optimization problems that
emerge one after another in practical engineering, the
convergence speed and convergence precision of the existing
metaheuristic algorithms are obviously insufficient and even
fall into local optimum, making it difficult to obtain highly
satisfactory economic and social values. ,erefore, im-
proving the optimization performance of each new meta-
heuristic algorithm has been one of the main research
contents in the field of evolution.

In this context, given the literature [28] and a large
number of experimental studies, the NCCLA algorithm is a
very excellent metaheuristic algorithm because of its simple
operation and significantly better convergence capability
than optimization algorithms such as GWO, CSA, and
WOA, and is highly promising in fields such as engineering
optimization. In this paper, we only study NCCLA. In order

to further improve the problems of insufficient convergence
precision and convergence speed and easy falling into local
optimum when NCCLA deals with very complex optimi-
zation problems, we propose an improved New Caledonian
Crow Learning Algorithm (INCCLA) in this paper.

,e main innovations and contributions of INCCLA are
as follows: (1) A cosine similarity-based parent individual
selection approach is proposed. ,e globally optimal indi-
vidual and another excellent individual with a significant
difference in similarity are selected as the parent, and the
juvenile crow individuals are guided to search toward dif-
ferent ranges to maintain the population diversity while
maintaining the convergence speed of the algorithm. (2)
Improving the learning phase of juvenile crows. A new
hybrid learning mechanism of complete learning and in-
complete learning is set up, in which the individual juvenile
crows in the complete learning stage can select learning
objects according to their own conditions, which effectively
improves the convergence speed of the algorithm while
maintaining the population diversity to a certain extent;
while the juvenile crows in the incomplete learning stage
learn the behavioral attributes of different individuals in
order to maintain the population diversity of the algorithm.
(3) Improving the reinforcement phase. For the juvenile
reinforcement stage, a weighting factor is introduced to
enable the algorithm to have a strong exploration ability in
the early evolutionary stage and a strong exploitation ability
in the late evolutionary stage, and at the same time, a small
range of random perturbations is added to increase the
possibility of convergence of the algorithm to the global
optimum; for the parents’ reinforcement stage, the update
methods of the two parents’ individuals are improved fur-
ther to respectively balance the exploration and exploitation
ability of the algorithm. ,e results of testing on the
CEC2013 and CEC2020 test suites show that the INCCLA
proposed in this paper has significant advantages in terms of
convergence speed, convergence precision, and stability
compared with four other more representative optimization
algorithms.

,e rest of the paper is organized as follows: Section 2
describes the working principle and flow of the NCCLA
algorithm. Section 3 analyzes the defects of the original
NCCLA algorithm and further proposes an improved
INCCLA algorithm. Section 4 shows the simulation results
and analysis of the INCCLA algorithm with the original
NCCLA algorithm and other more mainstream improved
algorithms on the CEC2013 and CEC2020 test function
suites. Section 5 concludes the proposed algorithm in this
paper.

2. New Caledonian Crow Learning Algorithm

In nature, New Caledonian crows are divided into the
juvenile and the parent crows, which enhance their tool-
design skills through learning and their own experience and
knowledge, respectively, to obtain food from the pandanus
tree. Inspired by the above behavior, Wedad and Abdul-
qader proposed the New Caledonian crow learning algo-
rithm (NCCLA). In NCCLA, individuals represent the
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manufacturing behavior of New Caledonian crows and
fitness values represent the behavioral advantage of each
crow. ,e algorithm has three main phases: initialization,
learning phase, and reinforcement phase. ,e pseudo-code
of NCCLA is shown in Algorithm 1, and the key steps are
briefly described as follows.

2.1. Population Initialization. Suppose the number of in-
dividuals in population X is N. Each individual Xi (i� 1, 2,
. . ., N) represents the behavior of a crow, which can be
expressed as Xi � [Xi,1, Xi,2, Xi,3, . . ., Xi,D], where D is the
dimension of the optimization problem, and Xi,j denotes the
j-th behavioral attribute of the i-th crow. At the beginning of
the algorithm, the initial behavior of each crow is generated
randomly according to Equation.

Xi,j(0) � XL + U(0, 1) × XU − XL( 􏼁, (1)

where XU and XL correspond to the upper and lower bounds
of the j-th dimensional search space in the optimization
problem, respectively, and U (0,1) is a uniformly distributed
random number in the range [0,1].

2.2. Learning Phase. In NCCLA, only juveniles enter the
learning phase, and each behavioral attribute Xi,j of juveniles
will be socially or asocially learned according to the prob-
ability SLprob or 1-SLprob, respectively. SLprob is recom-
mended to be set to 0.95, but can be set to other values.

2.2.1. Social Learning. After the j-th behavioral attribute of
juvenile crow i, Xi,j, is determined to require social learning
according to the probability SLprob, it is then decided to
perform vertical learning or horizontal learning according to
the predetermined probability VSLprob or 1−VSLprob. ,e
details are shown in Equation.

Xi,j(t) �
Xk1 ,j(t − 1), if rand≤VSLprob,

Xk2 ,j(t − 1), else,
⎧⎨

⎩ (2)

where Xi,j(t) is the j-th new behavioral attribute acquired by
juvenile crow i after social learning in iteration t, VSLprob is
recommended to be set to 0.99, and can also be set to other
values.

In (2), when rand≤VSLprob, the juvenile crow Xi per-
forms vertical learning to its parent, i.e., it copies the cor-
responding behavioral attributes of its parent Xp1 or Xp2 with
probability P1prob, obviously k1 = 1 or 2; Otherwise, the
juvenile crow Xi performs horizontal learning, i.e., it ran-
domly selects a sibling k2 that is more experienced and
copies its corresponding behavioral attributes, and the ex-
pression formula for k2 is shown in equation (3). It should be
noted that for the juvenile crow with the best fitness value,
only vertical learning is performed, not horizontal learning.

k2 � 3 + [rand ×(i − 3)], (3)

where rand is a random number uniformly distributed in the
range [0, 1], [·] means rounding is performed.

2.2.2. Asocial Learning. When a crow Xi performs asocial
learning, its behavioral attributes are randomly updated
using (1) according to the probability TaEprob, or retained the
previous behavioral attributes according to 1−TaEprob. ,is
is shown in Equation .

Xi,j(t) �
XL + U(0, 1) × XU − XL( 􏼁, rand≤TaEprob,

Xi,j(t − 1), else,

⎧⎨

⎩

(4)

where TaEprob is recommended to be set to 0.99, but can also
be set to other values.

2.3. Reinforcement Phase. After completion of the learning
phase, certain attributes of the learned juvenile crow be-
havior and parent behavior are reinforced according to the
reinforcement probability RPprob. RPprob is recommended to
be set to 0.99, and can be set to other values.

2.3.1. Juvenile Reinforcement. Each behavioral attribute of
juvenile crows was reinforced according to Equation.

Xi,j(t) � Xi,j(t) ± RW, (5)

where RW is shown in Equation.

RW �
β − α, i<N,

r1 ×((r2 × β) − α), otherwise,
􏼨 (6)

where r1 and r2 are random numbers between 0 and 1, α
represents the difference between their behavioral attributes
before and after learning, as shown in (7), and β represents
the social learning effect developed over time, as shown in
Equation (8).

α � Xi,j(t) − Xi,j(t − 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (7)

β � Xi,j(t − 1) × e
− lf×r×t×mean(j)

, (8)

where t represents the number of current iterations, Xi,j
(t− 1) is the j-th behavioral attribute of crow i before the
current generation of learning, r is a normally distributed
random number in the range [0,1], mean (j) is the average of
the j-th behavioral attribute of all individuals in the pop-
ulation, and lf is a learning factor, as shown in Equation .

lf � lfmin +
lfmax − lfmin( 􏼁

max t
􏼠 􏼡 × t, (9)

where max_t represents the maximum number of iterations,
lfmax and lfmin represent the maximum and minimum values
of the learning factor, respectively, and are recommended to
be set to 0.02 and 0.0005, respectively, or can be set by oneself.

2.3.2. Parents Reinforcement. ,e parents Xp1 and Xp2 up-
date certain attributes according to the reinforcement
probability RPprob. When rand≤RPprob, the j-th dimensional
behavioral attribute of crow i is reinforced, as shown in (10);
otherwise, it retains the original behavioral attribute.
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Xi,j(t) �

Xi,j(t − 1) − X1,j(t − 1) + e
r1× mean(j)− Xi,j(t− 1)( 􏼁

􏼒 􏼓, i � p1,

Xi,j(t − 1) − r2 × X1,j(t − 1) − e
r1× mean(j)− Xi,j(t− 1)( 􏼁

􏼒 􏼓􏼒 􏼓, i � p2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where r1 is a normally distributed random number, r2 is a
uniformly distributed random number in the range [0, 1],
andmean (j) is the mean of the j-th behavioral attribute of all
individuals in the current population.

3. Proposed Algorithm

To further improve the convergence performance of
NCCLA, this section proposes an improvedNewCaledonian
Crow Learning Algorithm (INCCLA), whose pseudo-code is
shown in Algorithm 2.

3.1. Determination of Parent Individuals Based on Cosine
Similarity. In NCCLA, VSLprob and P1prob are set to 0.99
and 0.95, respectively, meaning that each juvenile crow will
perform vertical learning with a probability of 0.99× 0.95
toward the parent individual during the learning phase. ,e
parent individuals are always the two individuals with the
best fitness in the population. As evolution proceeds, the
two-parent individuals will rapidly approach each other,
showing a high degree of similarity, which will lead most of

the juvenile crows to approach them through vertical
learning rapidly, and can only search around the parent
individuals, lacking exploration of other ranges. Although
rapid convergence can be achieved in the early stage of
evolution, the loss of population diversity is apparent, and
the algorithm is straightforward to fall into the local
optimum.

In order to solve the above problem, the following cosine
similarity-based parent individual selection method is
proposed in this section. First, the best individual in the
population is determined as the parent individual Xp1; then,
the cosine similarity of the remaining individuals in the
population to Xp1 is calculated according to (11), and they
are arranged in order from smallest to largest and evenly
divided into two groups; finally, the individual with the best
fitness value is selected as the parent individual Xp2 from the
other group different from the group in which Xp1 is located.
It is important to note that the parent individuals are se-
lected for every P generation above. Generally, P� 50 is
sufficient to achieve good results, but it can also be set
according to the optimization problem.

Input: N, D, RPprob, SLprob, VSLprob, P1prob, TaEprob, MaxIter
Output: best solution and its fitness

(1) Initialization of variables (N, D, RPprob, SLprob, VSLprob, P1prob, TaEprob, MaxIter)
(2) Generate the initial population X according to Section 2.1
(3) Calculate the fitness value Fi of each individual Xi
(4) While t≤MaxIter do
(5) Rank all individuals and select the two best individuals, X1 and X2, as parents, noted as Xp1 and Xp2, and the rest as juvenile

crows
(6) For Each juvenile crow Xi in population X do
(7) For Each behavior attribute j in Xido

//Learning phase
(8) If rand≤ SLprobthen
(9) Decide to perform vertical or horizontal learning according to probability VSLprob in Section 2.2.1//Social learning
(10) else
(11) Random update of behavior attributes or retention of previous behavior attributes using (1) as decided in Section 2.2.2

based on the probability TaEprob//Asocial learning
(12) end If
(13) Based on the probability RPprob, reinforce the attributes of Xi after learning using (4)//Juvenile reinforcement
(14) end For
(15) end For
(16) Based on the probability RPprob, reinforce the attributes of the parents Xp1 and Xp2 using (9)//Parents reinforcement
(17) t� t+ 1
(18) end While
(19) Output the global optimal solution

ALGORITHM 1: NCCLA.
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simi,p1(t − 1) �
􏽐

D
j�1 Xp1,j(t − 1) × Xi,j(t − 1)

�����������������

􏽐
D
j�1 Xp1,j(t − 1)􏼐 􏼑

2
􏽱

×

����������������

􏽐
D
j�1 Xi,j(t − 1)􏼐 􏼑

2
􏽱 , i � 1, 2, ..., N, (11)

where Xp1,j (t− 1) denotes the j-th dimension of the globally
optimal individual Xp1 (t− 1) determined by relying on the
previous iteration of the population, and simi,p1 (t− 1) de-
notes the cosine similarity of the i-th individual Xi (t− 1)
without any evolutionary operation to Xp1 (t− 1) in the
current generation.

To further illustrate the above method of determining
parent individuals based on cosine similarity, taking the
optimized 2-dimensional Rotated High Conditioned Elliptic
function as an example, the specific determination process is
given in Figure 1. It can be seen that, according to the
original parent individual determination method, X1 and X2,
which are close to each other, will be selected as parent
individuals, while according to the proposed method in this
section, X1 and X4, which are farther apart, will be selected as
parent individuals. ,e fitness value of X4 is not much worse
than X2.

In summary, compared with the original approach of
selecting two more similar optimal individuals as parents,
this section retains the optimal individual of the population
as a parent individual, which does not affect the convergence
speed too much. In contrast, the other parent individual is
selected to be less similar to the optimal individual of the
population but with better fitness value. ,is way can guide
juveniles in their search across a range and ensure that they
learn from more experienced individuals, maintaining good
population diversity while not reducing the convergence
speed too much.

3.2. Improving Juvenile Crow Learning Phase. As seen in
Algorithm 1, the learning phase generates its own
learning objects for juvenile crows intending to provide
excellent evolutionary directions for the reinforcement
phase. In-depth analysis can be found that the various
behavioral attributes of the learning objects generated in
the learning phase are not almost wholly derived from
the same individual. Although the population diversity
can be better maintained, it is difficult to ensure the
superiority of the learning objects composed of them
due to the complete separation of each behavioral at-
tribute. ,erefore, it is difficult to guarantee the con-
vergence speed of the reinforcement phase. ,e excellent
individuals themselves are already better integrated with
each behavioral attribute, which has a vital role in the
rapid convergence of the algorithm but is not conducive
to the maintenance of population diversity. Given this,
this section proposes a novel juvenile learning approach
as shown in Figure 2. R juveniles are randomly selected
to perform complete learning, i.e., each behavioral at-
tribute of the corresponding learning object originates
from the same individual completely, which promotes
fast convergence of the algorithm; while the remaining
juveniles perform incomplete learning, i.e., each be-
havioral attribute of the learning object originates from
different individuals, which ensures population
diversity.

Input: N, D, RPprob, SLprob, MaxIter
Output: best solution and its fitness

(1) Initialization of variables (N, D, RPprob, SLprob, MaxIter)
(2) Generate the initial population X according to Section 2.1
(3) Calculate the fitness value Fi of each individual Xi
(4) While t≤MaxIter do
(5) Rank all individuals and select the parents according to Section 3.1, noted as Xp1 and Xp2, and the rest as juvenile crows
(6) Randomly select R individual juvenile crows to form a subpop
(7) For Each juvenile crow Xi in population X do
(8) ifXi ∈ subpopdo
(9) Perform complete learning of the juvenile crow Xi according to Section 3.2.1
(10) else
(11) Perform incomplete learning of the juvenile crow Xi according to Section 3.2.2
(12) end if
(13) operations on juvenile crows Xi according to Section 3.3.1
(14) end for
(15) Perform parent reinforcement operations on parents Xp1 and Xp2 according to Section 3.3.2
(16) t� t+ 1
(17) end While
(18) Output the global optimal solution

ALGORITHM 2: INCCLA.
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3.2.1. Complete Learning. As mentioned above, the com-
plete learning phase aims to enhance the convergence speed
of the algorithm by copying all the behavioral attributes of a
particular outstanding individual. In contrast to social
learning, asocial learning focuses on maintaining population
diversity; therefore, in the complete learning phase, asocial
learning is eliminated, and only social learning is used.

Social learning in NCCLA includes vertical and hori-
zontal learning, where vertical learning is learning from the
two best parent individuals in the population, while hori-
zontal learning is learning from other individuals who are

better than oneself. Obviously, compared with vertical
learning, horizontal learning is more capable of maintaining
population diversity. In NCCLA, vertical or horizontal
learning is chosen according to the fixed probability VSLprob.
If VSLprob is high, the population will quickly approach the
parent individuals, accelerating the algorithm’s convergence.
However, the rapid loss of population diversity can easily
cause the algorithm to fall into local optimum. If VSLprob is
low, each individual may have different learning objects, and
introducing multiple learning objects makes the evolu-
tionary direction of each individual more diffuse, which is
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not conducive to the rapid convergence of the population.
,e NCCLA recommends that VSLprob be set to 0.95,
allowing all juveniles to primarily use vertical learning as
their social learning method. In vertical learning, individuals
need to choose to learn from the best parent Xp1 or the
second-best parent Xp2 according to the fixed probability
SLprob. If SLprob is large or small, all juvenile crows will search
around a parent almost exclusively, which is not conducive
to the maintenance of population diversity and increases the
possibility of the algorithm falling into local optimum; If
SLprob is set to about 0.5, it will learn from the parent

individuals with equal chances, which is similar to random
selection and has certain blindness, slowing down the
convergence of the algorithm to some extent. In short, the
selection methods of vertical learning or social learning by
fixed probability and the selection of a certain parent in-
dividual for learning by fixed probability in vertical learning
are not very reasonable.

Given this, to effectively improve the convergence speed
of the algorithm and not destroy the population diversity too
much, we propose the complete social learning method as
shown in Equation.

Xi(t) �
Xk1

(t − 1), if Fi(t − 1)≤Fi(t − 1)&simi,p1(t − 1)≥ simi,p1(t − 1)

Xk2
(t − 1), else

⎧⎨

⎩ , (12)

where Fi (t− 1) denotes the fitness value of juvenile Xi,
Fi(t − 1) denotes the mean of the fitness values of all in-
dividuals in the population, simi,p1 (t− 1) denotes the cosine
similarity of juvenile Xi to the best individual Xp1 in the
population. simi,p1(t − 1) denotes the mean of the cosine
similarity of all individuals in the population to Xp1. When
both Fi(t − 1)≤Fi(t − 1) and simi,p1(t − 1)≥ simi,p1(t − 1)

are satisfied, the juvenile Xi performs vertical learning from
the parent Xp1 or Xp2 according to (13); otherwise, the
juvenile Xi will perform horizontal learning in the original
way of NCCLA, i.e., it randomly selects a juvenile with a
better adaptation value than itself as the learning object.

Xi(t − 1) �

Xp1(t − 1), if
e

− simi,p1(t−1)

1 + e
−5×NFp1
≥

e
− simi,p2(t−1)

1 + e
−5×NFp2

,

Xp2(t − 1), else,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where simi,p1 and simi,p2 denote the cosine similarity of
juvenile Xi to the parent individuals Xp1 and Xp2, respec-
tively, and NFi denotes the normalization ability of juvenile
Xi as shown in equation (14).,e better the individual fitness
value, the stronger its normalization ability.

NFi �

max(F) − Fi

􏽐
N
i�1 Fi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, if 􏽘

N

i�1
Fi ≠ 0,

1
N

, else.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

In summary, this section proposes the complete social
learning approach with the following advantages. First,
compared with the original fixed-probability selection of
vertical or horizontal learning, the new selection approach
proposed in this section, as shown in (12), can rely on in-
dividuals’ conditions to adaptively select the learning mode.
Only juvenile individuals with convergence potential, i.e.,
those who are more similar to the optimal individuals and
have better fitness values, will perform vertical learning. In

contrast, the rest of the individuals will perform horizontal
learning. Obviously, this approach makes a small number of
dominant individuals, who are not far from the optimal parent
and are more excellent, focus on mining in the region with
more convergence prospects and then quickly determine the
more excellent evolutionary direction, driving the rapid con-
vergence of the rest individuals. In turn, most of the remaining
individuals learn from other better juvenile crows, which can
develop other search areas, facilitating the maintenance of
population diversity and reducing the risk of the algorithm
falling into a local optimum. Second, the new vertical learning
approach as shown in (13)proposed in this section, which relies
on a comprehensive judgment of individual fitness values and
the degree of similarity with individuals of the two parents,
selects individuals learning from the parent with less similarity
and excellent performance, and enables the juvenile crows to
explore different promising areas as much as possible, which
can better maintain the population diversity while ensuring the
convergence speed. In short, the complete learning approach
proposed in this section selects the learning mode and learning
objects in a targeted way according to the juvenile crows’
conditions, which effectively improves the convergence speed
of the algorithm and maintains the population diversity to a
certain extent. In addition, the above process no longer uses the
parameters VSLprob and SLprob, which avoids the trouble of
parameter debugging.

3.2.2. Incomplete Learning. As mentioned above, the in-
complete learning phase will generate new learning objects by
copying and absorbing the behavioral attributes of different
individuals. To further ensure that the algorithm maintains
population diversity and avoids falling into local optimum
while improving the convergence speed, this section improves
the asocial learning behavior and social learning behavior in
the original NCCLA separately and proposes a new incom-
plete learning approach. ,e details are as follows.

(1) Improvement of social learning behavior
,is section improves the conditions of vertical and
horizontal learning in the social learning approach in
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NCCLA, as well as the horizontal learning approach,
and proposes a new incomplete social learning ap-
proach as follows. First, the adaptive selection factor
δi(t) is calculated for the i-th juvenile crow individual
Xi as shown in (15); then, a random number rand
between [0,1], and if rand≤ δi(t) is generated, vertical
learning is performed, i.e., the behavioral attributes
corresponding to the j-th dimension of the parent
individual Xp1 or Xp2 as shown in equation (13) are
copied, otherwise, horizontal learning is performed,
i.e., the behavioral attributes of the j-th dimension of
the individual shown in equation (16) are copied.

δi(t) � 1 − e
− Fi(t− 1)− Fgbest(t−1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (15)

where Fgbest(t − 1) and Fi(t − 1) represent the fitness
values of the globally optimal individual and the
juvenile Xi before the current generation’s juvenile
crow learning operation, respectively.

Xi,j(t) �

Xs,j(t − 1), if rand≤ 0.5,

Xp1,j(t − 1) + Xr1,j(t − 1) + Xr2,j(t − 1)

3
, else,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where Xp1 is the optimal parent individual, Xr1 is a
randomly selected individual with a better fitness
value than the juvenile crow Xi, Xr2 is a randomly
selected individual in the population, and Xs is the
individual selected among all juvenile crow indi-
viduals using roulette selection according to the
probability corresponding to equation (17).

Pk(t) �
e

− simi,k(t− 1)

1 + e
−5×NFk

, (17)

where simi,k denotes the cosine similarity between
the juvenile crow Xi and the juvenile crow Xk before
learning was performed, and NFk denotes the nor-
malization ability of the juvenile crow Xk.

(2) Improvement of asocial learning behavior
In NCCLA, the probability of asocial learning behavior
occurring is only 1-VSLprob× P1prob, which is only
1− 0.99× 0.95 by its proposed parameter setting. In
essence, such a small probability of asocial learning
behavior occurring is intended to provide new evolu-
tionary genes and reduce the possibility of the algorithm
falling into a local optimum.Obviously, there is no need
to keep certain properties unchanged with a certain
probability. For this reason, the asocial learning in the
incomplete learning phase only randomly updates each
behavioral attribute according to equation (1).
,e analysis shows that the incomplete learning
approach proposed in this section has the following
advantages. First, each behavioral attribute of new
juvenile individuals after incomplete learning may

originate from different individuals, including par-
ent individuals Xp1 and Xp2, any other individual in
the population, and new genes generated by asocial
learning, forming various combinations that can ensure
excellent population diversity. Second, the incomplete
learning phase mainly uses incomplete social learning
and rarely uses asocial learning. Compared with the
original social learning approach, the new social in-
complete learning proposed in this section better adapts
to the needs of the algorithm performance at different
stages of the algorithm, as follows: at the early stage of
evolution, the individuals in the population are more
distributed, with better population diversity, and the
difference between individuals and optimal individuals
is large. According to the adaptive selection factor, most
of the dimensions of the new individuals come from the
parent individuals, and a few dimensions come from
other juvenile individuals, which further promotes the
rapid convergence of the population; while in the late
evolutionary stage, all individuals gradually approach
the globally optimal individuals, the population shows a
certain aggregation, and the population diversity de-
creases, at this time, most of the dimensions of the new
individuals are derived from other more experienced
juvenile individuals, which maintains the population
diversity without slowing down the convergence of the
algorithm. ,ird, when individuals perform horizontal
learning in a certain dimension, they can no longer
learn and communicate only with other juveniles who
are better than themselves but have the opportunity to
exchange information with any individual in the
population, which further enhances population diver-
sity, and learning from individuals who are less similar
to and better than themselves based on roulette se-
lection does not reduce the convergence speed while
maintaining population diversity. In summary, the
incomplete learning approach proposed in this section
can indeed achieve the goal of maintaining population
diversity and maximizing convergence speed.

3.3. Improvement in Reinforcement Phase

3.3.1. Improvements of Juvenile Crows Reinforcement Phase.
In fact, the juvenile crow reinforcement phase inNCCLA is an
offset search of RW near the learning objectives identified in
the juvenile crow learning phase. ,e offset range RW is a
combination of α and β, where α represents self-perception
and β represents social perception, which aims to enhance the
exchange of evolutionary information with other individuals
and thus explore more search space. ,e experimental study
shows that the unreasonable settings of RW and β make the
quality of the reinforced individuals still have much room for
improvement, for which they are improved separately.

(1) Improvement of β calculation method
An in-depth analysis of (8) reveals that β is actually a
reference to the information of other individuals and
scales the individual itself by exp (−lf× r× t×mean
(j)) times. As the number of iterations t increases, if
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mean (j)< 0, exp (−lf× r× t×mean (j)) will be huge,
even tending to infinity.,e corresponding β and RW
are also extremely large, making it extremely easy for
the reinforced individuals to exceed the search range,
resulting in ineffective reinforcement and making it
difficult to provide new individuals with more ex-
cellence, leading to slow convergence of the algorithm
or even failure to converge to the global optimum.
Given this, a new calculation of the social perception
factor β is proposed, as shown in equation (18).

β � Xi,j(t − 1) − Xk,j(t − 1)􏼐 􏼑 × w(t), (18)

where k is a randomly selected individual different
from Xi in the unlearned juvenile crow population,
i.e., i≠ k, and w(t) is a weighting factor, as shown in
equation.

w(t) � wmax −
wmax − wmin

1 + e
−0.1×r×lf

, (19)

where wmax and wmin are denoted as the maximum
and minimum values of the weighting factors, re-
spectively, generally, when wmax and wmin are 2 and
0, better results can be obtained.
,e change process of the weight factor with itera-
tion is shown in Figure 3. At the early stage of
evolution, the weight factor maintains a large value,
which disguisedly increases the social learning phase
in the reinforcement phase. ,e communication
between individuals is more extensive, which makes
individuals search extensively in different regions,
further enhancing the global search ability of indi-
viduals and reducing the risk of the algorithm falling
into the local optimum; as the evolution proceeds,
the weight factor gradually decreases, especially at
the late stage of evolution, the weight factor main-
tains a small value for a long time, which weakens the
communication between individuals and other in-
dividuals, and enhances the local exploration ability
of individuals in their neighborhood, which is more
conducive to finding the global optimum.

(2) Improvement of RW calculation method
An in-depth analysis of RW calculation, as shown in
(6), reveals that when α and β are zero simulta-
neously, the reinforcement phase is ineffective and
fails to provide new individuals. In practical opti-
mization, the possibility of this situation is not low.
For example, in the late stage of algorithm evolution,
almost all individuals in the population will gather
around the optimal individual, and the vast majority
of them have similar behavioral attributes, or even
some behavioral attributes of some individuals are
entirely identical when α and β are likely to be zero at
the same time. Obviously, in order to enable indi-
viduals to perform a refined search around the ob-
tained optimal value and thus converge to the
globally optimal position, when both α and β are zero
at the same time, a new stochastic reinforcement

strategy is proposed to calculate RW as shown in
equation (20). Here, it should be noted that when α
and β are not zero simultaneously, RW is still cal-
culated according to the original way shown in
equation (6).

RW � r × Xs1,j(t − 1) − Xs2,j(t − 1)􏼐 􏼑, (20)

where s1 and s2 are two different individuals ran-
domly selected in the unlearned juvenile crow
population, i.e., s1≠ s2≠ i, and r is a random number
uniformly distributed in the range [0, 1].

As seen in (20), when the individuals within the pop-
ulation are more similar, the above random reinforcement
strategy makes the individuals perform a small random
perturbation near themselves, increasing the possibility of
convergence of the algorithm to the global optimum.

3.3.2. Improvements of Parent Crows Reinforcement Phase.
In NCCLA, the parent individuals in this iteration are the
two relatively better individuals identified in the previous
iteration of the population, which directly guide the evo-
lution of the current generation of juveniles play an im-
portant role in the exploration and exploitation of the
algorithm. As seen from the parent reinforcement phase in
Section 2.3, the two-parent individuals each self-update in
their independent reinforcement according to the proba-
bilistic RPprob. Further simplification reveals that the parent
individuals Xp1 and Xp2 perform the reinforcement opera-
tion according to Equations 21 and 22.

Xp1,j(t) � e
r1× mean(j)− Xp1,j(t− 1)( 􏼁

, (21)

Xp2,j(t) � X2,j(t − 1) − r2 × X1,j(t − 1)

+ e
r1× mean(j)− Xp2,j(t− 1)( 􏼁

.
(22)
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Figure 3: Schematic diagram of the variation of weighting factors
with iterations.
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Both of these reinforcement methods include
er1×(mean(j)− Xpi,j(t− 1)). From the properties of the e expo-
nential function, we can find that the effect of
er1×(mean(j)− Xpi,j(t− 1)) is to amplify the gap between mean (j)
and the two-parent individuals, especially when
mean(j) − Xi,j(t − 1)> 0, the gap amplification is more
pronounced. In general, early in evolution, individual dis-
tribution is extremely dispersed, and the gap between in-
dividuals is not small, which is easily exceeded by the search
space of the optimization problem after exponential am-
plification, resulting in ineffective reinforcement and waste
of computational resources. Moreover, in the late stage of
evolution, although the gap between individuals is not large,
the further amplification of the gap by er1×(mean(j)− Xi,j(t− 1))

will cause the parent individuals to produce a not small offset
in this dimension, which is also very easy to deviate from the
excellent evolutionary direction and will likewise cause
ineffective reinforcement. Obviously, the reinforcement
mentioned above of the two-parent individuals cannot ef-
fectively meet the needs of algorithm evolution. Given the
different roles of the two-parent individuals in the algorithm,

the reinforcement methods of these two-parent individuals
are improved separately further to balance the exploration
and exploitation capabilities of the algorithm.

(1) Novel reinforcement of parent individual Xp1

,e parent individual Xp1 is the optimal individual
determined by relying on the previous iteration of
the population, which plays a vital role in guiding the
algorithm's convergence. However, if its evolution-
ary direction points directly to the optimum local
peak, it will increase the possibility of the algorithm
falling into the local optimum. In view of the fact that
the juvenile individuals of this generation have al-
ready achieved self-improvement based on the two
more excellent parent individuals, carrying more
excellent evolutionary information, which can pro-
vide more excellent reference information for the
parent individuals to determine the evolutionary
direction, a novel reinforcement was designed for the
first parent individual Xp1 as shown in Equation .

Xp1,j(t) �

Xp1,j(t − 1) + G1 × mean(j) − Xp1,j(t − 1)􏼐 􏼑, if Xp1,j(t − 1)≠Xk,j(t)

Xp1,j(t − 1) + r1 × e

− 16t2

max t2 × Xp1,j(t − 1) − Xk,j(t)􏼐 􏼑, else

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (23)

where r1 is a random number uniformly distributed
in the range [−1.5, 1.5], Xk,j (t) is the j-th behavioral
attribute of a randomly selected individual different
from Xp1 (t− 1) in the current population, andG1 is a
number conforming to the Gaussian distribution
N∼(Xp1,j (t− 1),1), as shown in Equation

G1 �
1
���
2π

√ × e

− mean(j) − Xp1,j(t − 1)􏼐 􏼑
2

2 .
(24)

From the above novel reinforcement approach for
the parent individual Xp1, it can be seen that if for
the j-th dimension of Xp1 relying on the probability
RPprob determines that reinforcement is needed, an
individual Xk (t) needs to be randomly selected
from the current population. By comparing
whether Xk,j (t) is equal to Xp1,j (t − 1), it is de-
termined that learning toward the mean (j) or Xk,j
(t) is performed. At the early stage of evolution, Xk,j
(t) is almost not equal to Xp1,j (t − 1). ,e j-th di-
mension of Xp1 is reinforced by learning from Xk,j
(t). Since the individuals in the current population
already carry more excellent evolutionary infor-
mation, the optimal evolutionary direction can be
determined as soon as possible with reference to

their evolutionary direction. As evolution pro-
ceeds, the range r1 × e− 16t2/max t2 of Xp1 tries to
explore a more optimal region gradually decreases,
and gradually locks in a smaller range near the
optimal individual to exploit a more optimal in-
dividual. ,is is in accordance with the process and
law of evolutionary algorithms that gradually ap-
proach the region where the global optimal solu-
tion is located, avoiding the phenomenon of
missing the optimal solution due to too large a
search range. In addition, because the individuals
of Xp1 reinforcement learning are not the same on
each behavioral attribute, it further enriches the
range of dominant regions that can be explored by
Xp1, increasing the possibility of the algorithm
locking the actual optimal region and reducing the
risk of the algorithm falling into a local optimum
due to a single evolutionary direction. Moreover, as
evolution proceeds, individuals are more similar by
the late stage of evolution, and the j-th dimension
of Xp1 will be reinforced with a high probability by
learning from mean (j). Compared with Xk,j (t), the
j-th dimension of Xp1 is more likely to be different
from mean (j), and the difference between mean (j)
and the j-th dimension of Xp1 is smaller, making the
optimal individual Xp1 able to perform a more
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refined search within the current range, making it
easier for the individual to find the optimal value of
the current dimension, thus speeding up the
convergence of the algorithm.

(2) Novel reinforcement of parent individual Xp2

Unlike the parent individual Xp1, which focuses on
determining the evolutionary direction of the al-
gorithm and improving the overall convergence
speed, the parent individual Xp2 focuses on pro-
viding excellent evolutionary information to guide
the evolution of juveniles while maintaining pop-
ulation diversity. Given this, for the parent indi-
vidual Xp2, let it learn from the optimal individual
Xp1 and other individuals in the population to-
gether and propose a novel reinforcement ap-
proach as shown in Equation .

Xp2,j(t) � Xp2,j(t − 1)

+ r1 × Xp1,j(t − 1) − Xp2,j(t − 1)􏼐 􏼑

+ G2 × Xp2,j(t − 1) − Xq,j(t)􏼐 􏼑,

(25)

where individual Xq is a juvenile randomly selected
from the population of juvenile crows after rein-
forcement learning, and G2 is a number that fits the
Gaussian distribution N∼(Xp2,j (t− 1),0.5), as shown
in Equation .

G2 �
1

�������
2π × 0.5

√ × e
− mean(j)− Xp1,j(t− 1)( 􏼁

2
/2×0.5

. (26)

Compared with the parent individual Xp1 rein-
forcement method, the parent individual Xp2 learns
from the optimal individual Xp1 when performing
reinforcement to ensure that it does not deviate
from the optimal evolutionary direction, but when
referring to the evolutionary information of other
individuals, it can explore in a more extensive
search range, potentially providing information on
other excellent locations that are not in the same
region as the parent individual, making it possible
for the juvenile individuals learning from it to
explore in other regions that are not the same as
Xp1, further balancing the exploration and ex-
ploitation capabilities of the algorithm. In addition,
the parent individual Xp2 controls the scope of
learning from the optimal individual Xp1 and in-
dividual Xqwith r1 andG2, respectively. In the early
evolutionary stage, G2 is greater than r1 with a
greater probability, i.e., compared with learning
from the optimal individual, the parent individual
Xp2 learns more from the remaining individuals,
which can better maintain population diversity,
ensure the global search of the algorithm, and
increase the possibility of convergence of the al-
gorithm to the global optimum. In the late evo-
lutionary stage, G2 is smaller than r1 with a greater

probability, i.e., the parent individual Xp2 learns
mainly from the optimal individual, and learns
supplementally from the rest of the individuals,
further ensuring that individuals perform a refined
search near the optimal individual, thus locking the
global optimal position.

3.4. Algorithm Complexity Analysis. Assuming that the
population size is N, the maximum number of iterations
is T, the problem dimension is D, and the numbers of
parent and juvenile jays are NP and NJ, respectively. ,e
INCCLA algorithm mainly consists of the juvenile crow
learning phase (TJL), the juvenile crow reinforcement
phase (TJR), and the parent reinforcement phase (TPR).
,e worst time complexity of each stage of the INCCLA
algorithm in a single run is analyzed as follows: in the
juvenile crow learning stage (TJL), at most (NJ −R) ×N
times (1) needs to be computed, then the worst time
complexity of this stage is O ((NJ −R) ×N); in the juvenile
crow reinforcement stage (TJR), at most NJ ×D times (5)
needs to be computed, then the worst time complexity of
this stage is O (NJ ×D); in the parent reinforcement stage
(TPR), at most NP ×D times (23) or (25) needs to be
computed, then the worst time complexity of this stage is
O (NP ×D).

,erefore, the worst time complexity required for a
single run of INCCLA is O ((NJ −R)×N) +O (NJ ×D) +O
(NP ×D)≈O (T×N× (NJ −R+D)).

4. Experimental Results and Discussion

In this section, to verify the performance of the INCCLA
algorithm, the following four parts of experiments will be
conducted in this paper: (1) ,e parameter sensitivity
analysis; (2) Verification of the effectiveness of the proposed
three improvement strategies; (3) Compare the performance
of the improved INCCLA algorithm with the original
NCCLA algorithm and four other representative and ex-
cellent performance evolutionary algorithms; (4) Compar-
ison of the effectiveness of each algorithm in engineering
applications.

,is section uses the CEC2013 and CEC2020 test suites
for experimental simulation. ,e CEC2013 test suite con-
tains a total of 28 test functions, among which F1∼F5 are
unimodal functions, which have only one optimal value and
are used to verify the convergence performance of the al-
gorithm; F6∼F20 are multimodal functions, which have
multiple locally optimal solutions and are used to verify the
ability of the algorithm to escape from the local optimum;
F21∼F28 are composition functions. ,e CEC2020 test suite
contains a total of 10 test functions, of which F1 is a uni-
modal function, F2∼F4 are multimodal shifted and rotated
functions, F5∼F7 are hybrid functions, and F8∼F10 are
composition functions. ,e relevant functions for the
CEC2013 and CEC2020 test suites can be found in the
literature [32, 33], respectively.
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In this section, to ensure the fairness of the algorithm
comparison, all algorithms were run on a computer with
Windows 11 operating system, i5-11400H CPU, and pro-
grammed with MATLAB R2021a.

4.1. Sensitivity Analysis of Parameters. ,e INCCLA algo-
rithm proposed in this paper involves five parameters:
RPprob, SLprob, R, lfmin, and lfmax. Compared with the
NCCLA algorithm, the INCCLA algorithm retains the
originally proposed settings of RPprob and SLprob, changes
the settings of lfmin and lfmax, and adds the parameter R.
Given this, to analyze further the effect of parameters on the
performance of the INCCLA algorithm, this section only
analyzes the effect of parameters R, lfmin and lfmax on the
performance of the INCCLA algorithm. To ensure fairness
of comparison, the population size in each algorithm is
N� 50, the dimension of the test function is D� 30, and the
maximum number of function evaluations is
MaxFEs� 150,000, RPprob � 0.9, SLprob � 0.99.

Table 1 gives the mean and average values of the optimal
results obtained from 30 independent runs of the INCCLA
algorithm on the CEC2013 test set when R is set to different
parameters. In this experiment, lfmin � 0.0001 and
lfmax � 0.09. Table 2 give the mean and average values of the
optimal results of the INCCLA algorithm for 30 independent
runs on the CEC2013 test set when lfmin and lfmax are set to
different combinations of parameters. For this experiment,
R� 15. Tables 1 and 2 blacken the parameters that achieved
the best results on each function and count the number of
functions that performed best on each parameter set in the
last row.

According to the data in Table 1, it can be seen that
INCCLA achieves the best convergence on 19 test functions
when R� 15. When R� 5, 25, and 35, the best convergence is
achieved on 9, 11, and 14 test functions, respectively. ,us,
the performance of INCCLA is sensitive to the setting of the
parameter R, and the algorithm performs best when R� 15.
Similarly, according to the data in Table 2, the performance
of INCCLA is also sensitive to the settings of lfmin and lfmax,
and INCCLA achieves the best convergence among the 19
tested functions when lfmin � 0.0001 and lfmax � 0.09. In
summary, if there is no special requirement, INCCLA with
R, lfmin, and lfmax set to 15, 0.0001, and 0.09, respectively, the
algorithm can obtain better optimization results.

4.2. Experiment on Effectiveness of Each Improvement
Strategy. According to Section 3, it is known that the
INCCLA algorithm improves the NCCLA algorithm in three
aspects. In this paper, to verify the effectiveness of the three
improvement strategies, the NCCLA algorithm is combined
with the three improvement strategies individually to form
three new algorithms, namely, the INCCLA algorithm based
on cosine similarity, the INCCLA algorithm based on im-
proved juvenile learning phase, and the INCCLA algorithm
based on improved reinforcement phase, named as
INCCLA1, INCCLA2, and INCCLA3, respectively, and

compared with the original NCCLA algorithm on the
CEC2013 test suit.

In this section, to ensure fairness of comparison, the
population size in each algorithm isN� 50, the dimension of
the test function is D� 30, and the maximum number of
function evaluations is MaxFEs� 5000×D� 150,000. ,e
other parameters of each algorithm are set as shown in
Table 3. To avoid the contingency of a single operation of the
algorithms, each algorithm was run 30 times independently
on each test function.

Table 4 presents the running results of each algorithm on
28 test functions in 30 dimensions, where the “±” before and
after represents the mean and standard deviation of the
optimal values in 30 experiments, respectively, and the data
that outperform the original NCCLA algorithm on the same
function are marked in bold. To compare the significance of
the performance of each improved strategy with the per-
formance of NCCLA and to verify that the obtained results
are not coincidental, Tables 5 and 6 present the results of the
Wilcoxon rank sum test and Friedman test [34] between
each improved strategy and NCCLA algorithm on 28 test
functions, respectively. In Table 5, when the p value is
greater than 0.05, it indicates that there is no significant
difference between the improvement strategy and NCCLA,
which is indicated by the symbol “ = .” When the p value is
less than 0.05, and the mean value of the optimal solution of
the result obtained in 30 experiments of the improvement
strategy is better than NCCLA, it indicates that the im-
provement strategy is significantly better than NCCLA,
which is indicated by the symbol “+”; otherwise, it indicates
that the performance of the improvement strategy is sig-
nificantly worse than NCCLA, which is indicated by the
symbol “−.” In Table 6, the smaller the rank mean value
corresponding to the algorithm, the better the algorithm’s
overall performance.

Table 4 shows that INCCLA1 obtains better mean values
on all the remaining 24 test functions except F1, F8, F20, and
F21 compared to NCCLA. INCCLA2 obtained better mean
values on all 24 tested functions except F4, F8, F15, and F23;
INCCLA3 obtained better mean values on all 26 tested
functions except F17 and F27. As can be seen from Table 5,
the Wilcoxon rank sum test results for INCCLA1 and
NCCLA on the four tested functions of F4, F5, F10, and F13
are “+,” indicating that INCCLA1 outperforms NCCLA on
these four functions. ,e Wilcoxon rank sum test result of
“−” on the F21 test function indicates the inferior perfor-
mance of INCCLA1 over NCCLA on F21, while the Wil-
coxon rank sum test result of “� ” on the remaining 23 test
functions indicates that they perform similarly; INCCLA2
outperforms NCCLA on 14 test functions, has similar
performance to NCCLA on 13 test functions, and inferior
performance to NCCLA on F23 test functions; while
INCCLA3 outperforms NCCLA on 15 test functions and has
similar performance to NCCLA on 13 test functions. As can
be seen from Table 6, the rank means of INCCLA2 is the
smallest, indicating that the overall performance of the al-
gorithm is superior, and the rank means of both INCCLA1
and INCCLA2 are smaller than those of NCCLA, indicating
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Table 1: Effect of parameter R on the performance of the algorithm.

Function R� 5 R� 15 R� 25 R� 35
F1 0.00E + 00 ± 0.00E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F2 7.62E + 05 ± 3.02E+ 05 8.10E+ 05± 4.96E+ 05 7.76E+ 05± 3.66E+ 05 2.45E+ 06± 3.89E+ 06
F3 0.00E + 00 ± 0.00E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F4 1.13E+ 04± 3.87E+ 03 1.10E+ 04 ± 3.46E + 03 1.43E+ 04± 3.64E+ 03 1.82E+ 04± 4.62E+ 03
F5 0.00E + 00 ± 0.00E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F6 2.87E+ 01± 2.49E+ 01 2.40E + 01 ± 2.04E + 01 2.91E+ 01± 2.50E+ 01 3.39E+ 01± 2.58E+ 01
F7 0.00E + 00 ± 0.00E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F8 2.09E + 01 ± 4.40E− 02 2.10E+ 01± 5.23E− 02 2.09E+ 01± 8.22E− 02 2.10E+ 01± 5.06E− 02
F9 0.00E + 00 ± 0.00E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F10 2.68E− 01± 9.36E− 02 2.10E− 01± 5.91E− 02 1.91E− 01± 7.21E− 02 1.24E− 01 ± 5.80E− 02
F11 0.00E + 00 ± 0.00E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F12 4.00E+ 00± 2.15E+ 01 0.00E+ 00 ± 0.00E + 00 4.08E+ 00± 2.23E+ 01 0.00E + 00± 0.00E+ 00
F13 4.86E+ 00± 2.62E+ 01 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F14 6.82E+ 00± 4.57E+ 00 6.29E+ 00 ± 4.92E + 00 3.88E+ 01± 7.61E+ 01 5.26E+ 01± 7.95E+ 01
F15 4.07E+ 03± 5.73E+ 02 3.94E+ 03± 6.65E+ 02 3.69E + 03 ± 4.42E + 02 3.69E+ 03± 7.34E+ 02
F16 1.03E+ 00± 3.89E− 01 9.33E− 01 ± 2.63E− 01 9.36E− 01± 3.55E− 01 9.57E− 01± 2.58E− 01
F17 4.28E+ 00± 7.40E+ 00 5.43E+ 00 ± 7.92E + 00 7.20E+ 00± 9.07E+ 00 8.64E+ 00± 4.20E+ 00
F18 1.18E+ 02± 3.47E+ 01 9.65E+ 01± 2.06E+ 01 9.90E+ 01± 2.63E+ 01 8.60E+ 01 ± 2.39E+ 01
F19 6.73E+ 00± 1.85E+ 00 5.32E+ 00 ± 2.09E + 00 5.42E+ 00± 1.54E+ 00 5.53E+ 00± 1.84E+ 00
F20 1.94E− 01± 1.05E+ 00 0.00E+ 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00± 0.00E+ 00
F21 4.15E+ 02± 8.03E+ 01 4.00E+ 02 ± 0.00E + 00 4.00E + 02 ± 0.00E + 00 4.00E + 02± 0.00E+ 00
F22 9.01E+ 01± 6.02E+ 01 7.70E + 01 ± 5.90E + 01 1.10E+ 02± 6.44E+ 01 1.11E+ 02± 7.74E+ 01
F23 3.96E+ 03± 5.75E+ 02 4.06E+ 03± 5.45E+ 02 3.55E + 03 ± 7.00E + 02 3.67E+ 03± 6.44E+ 02
F24 2.00E + 02 ± 1.81E− 02 2.00E+ 02± 2.44E− 02 2.00E+ 02± 2.13E− 02 2.00E+ 02± 1.93E− 02
F25 2.59E+ 02± 3.90E+ 01 2.40E+ 02± 3.15E+ 01 2.42E+ 02± 3.21E+ 01 2.23E+ 02 ± 2.13E+ 01
F26 3.06E+ 02± 1.60E+ 01 2.87E+ 02 ± 3.45E + 01 2.97E+ 02± 1.82E+ 01 3.00E+ 02± 5.68E− 07
F27 3.27E+ 02± 7.05E+ 01 3.13E + 02 ± 8.90E− 01 3.13E+ 02± 9.46E− 01 3.13E+ 02± 9.22E− 01
F28 9.64E+ 02± 3.39E+ 01 9.14E+ 02± 2.15E+ 01 8.83E+ 02± 1.81E+ 01 8.60E + 02± 1.80E + 01

9 19 11 14
Bold indicates the best results obtained on each function.

Table 2: Effect of parameters lfmin and lfmax on the performance of the algorithm.

Function lfmin � 0.0001, lfmax � 0.005 lfmin � 0.0001, lfmax � 0.09 lfmin � 0.0005, lfmax � 0.02 lfmin � 0.005, lfmax � 0.2
F1 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F2 1.03E+ 06± 6.20E+ 05 8.10E + 05± 4.96E+ 05 8.62E+ 05± 5.43E+ 05 9.26E+ 05± 5.10E+ 05
F3 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F4 1.42E+ 04± 4.01E+ 03 1.10E + 04± 3.46E+ 03 1.25E+ 04± 3.36E+ 03 1.28E+ 04± 3.47E+ 03
F5 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F6 2.99E+ 01± 2.55E+ 01 2.40E + 01± 2.04E + 01 2.61E+ 01± 2.29E+ 01 2.60E+ 01± 2.23E+ 01
F7 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F8 2.10E+ 01± 4.85E− 02 2.10E+ 01± 5.23E− 02 2.10E+ 01± 4.17E− 02 2.10E+ 01± 5.84E− 02
F9 8.85E− 01± 4.85E+ 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F10 2.12E− 01± 9.61E− 02 2.10E− 01± 5.91E− 02 2.16E− 01± 6.67E− 02 2.15E− 01± 7.12E− 02
F11 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F12 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F13 4.75E+ 00± 2.60E+ 01 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F14 6.81E+ 02± 8.45E+ 02 6.29E + 00± 4.92E + 00 1.38E+ 02± 3.17E+ 02 9.30E+ 00± 2.29E+ 01
F15 4.21E+ 03± 5.84E+ 02 3.94E+ 03± 6.65E+ 02 3.89E+ 03± 7.58E+ 02 3.78E+ 03± 6.28E+ 02
F16 1.02E+ 00± 3.13E− 01 9.33E− 01± 2.63E− 01 9.73E− 01± 2.67E− 01 9.77E− 01± 3.63E− 01
F17 3.17E+ 01± 4.06E+ 01 5.43E+ 00± 7.92E+ 00 1.05E+ 01± 1.10E+ 01 4.87E+ 00± 8.60E+ 00
F18 1.29E+ 02± 2.59E+ 01 9.65E + 01± 2.06E + 01 1.19E+ 02± 3.04E+ 01 9.69E+ 01± 2.65E+ 01
F19 7.11E+ 00± 2.59E+ 00 5.32E+ 00± 2.09E+ 00 6.10E+ 00± 2.32E+ 00 5.27E+ 00± 1.94E+ 00
F20 2.72E− 01± 1.49E+ 00 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E+ 00
F21 4.00E+ 02± 0.00E+ 00 4.00E+ 02± 0.00E+ 00 3.93E + 02± 3.65E + 01 4.00E+ 02± 0.00E+ 00
F22 5.18E+ 02± 8.92E+ 02 7.70E + 01± 5.90E + 01 1.25E+ 02± 7.26E+ 01 1.16E+ 02± 5.89E+ 01
F23 4.06E+ 03± 7.22E+ 02 4.06E+ 03± 5.45E+ 02 4.29E+ 03± 6.34E+ 02 4.02E+ 03± 6.07E+ 02
F24 2.00E+ 02± 2.30E− 02 2.00E+ 02± 2.44E− 02 2.00E + 02± 2.24E− 02 2.00E+ 02± 2.46E− 02
F25 2.34E + 02± 3.04E + 01 2.40E+ 02± 3.15E+ 01 2.51E+ 02± 3.59E+ 01 2.56E+ 02± 3.80E+ 01
F26 3.01E+ 02± 7.13E+ 00 2.87E + 02± 3.45E + 01 2.97E+ 02± 2.91E+ 01 2.98E+ 02± 2.03E+ 01
F27 3.14E+ 02± 1.49E+ 00 3.13E+ 02± 8.90E− 01 3.13E+ 02± 1.03E+ 00 3.13E+ 02± 1.14E+ 00
F28 9.10E+ 02± 2.50E+ 01 9.14E+ 02± 2.15E+ 01 9.07E + 02± 1.73E + 01 9.19E+ 02± 2.33E+ 01

7 19 13 13
Bold indicates the best results obtained on each function.
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that all three improvement strategies proposed in this paper
achieve better results.

In summary, all three improvement strategies proposed
in this paper have certain improvement effects on NCCLA.
,e improvement strategies in the juvenile learning phase
and the improvement strategies in the reinforcement phase
have the most obvious improvement effects.

4.3. Performance Comparison of INCCLA with Other
Algorithms. In this section, to verify the superior perfor-
mance of the INCCLA algorithm in terms of convergence
precision and convergence speed, this section compares the
INCCLA with the NCCLA algorithm and the four better
evolutionary algorithms on the CEC2013 and CEC2020 test
suites, including the artificial bee colony algorithm based on
new neighborhood selection mechanism (NSABC) [35], the
sine cosine algorithm based on transition parameters and
mutation operators (MSCA) [36], artificial tree algorithm

based on two populations (IATTP) [37] and the improved
crow search algorithm (ICSA) [38]. To ensure the fairness of
the comparison, the population size in each algorithm is
N� 50, and the maximum number of function evaluations is
MaxFEs� 150,000. ,e other parameters of each algorithm
are set as shown in Table 7, where the parameter values of
each comparison algorithm are taken as in the original
paper.

4.3.1. Comparison of INCCLA with Other Algorithms on
Convergence Precision

(1) Testing at CEC 2013. In order to fully compare the per-
formance of INCCLA with other algorithms in terms of
convergence precision, tests were conducted on the CEC2013
test suite with three different dimensions, D� 10, D� 30, and
D� 100, respectively. Tables 8–10 give the mean and standard
deviation of 30 independent experiments for each algorithm

Table 3: Algorithm-related parameters.

Algorithm Parameter
NCCLA RPprob � 0.9; SLprob � 0.99; VSLprob � 0.99; P1prob � 0.95; TaEprob � 0.3; lfmin � 0.0005; lfmax � 0.02
INCCLA1 RPprob � 0.9; SLprob � 0.99; VSLprob � 0.99; P1prob � 0.95; TaEprob � 0.3; lfmin � 0.0005; lfmax � 0.02
INCCLA2 RPprob � 0.9; SLprob � 0.99; R� 15; lfmin � 0.0005; lfmax � 0.02
INCCLA3 RPprob � 0.9; SLprob � 0.99; VSLprob � 0.99; P1prob � 0.95; TaEprob � 0.3; lfmin � 0.0001; lfmax � 0.09

Table 4: Results of each improvement strategy in the 30-dimensional CEC2013 test suite.

Function NCCLA INCCLA1 INCCLA2 INCCLA3
F1 1.99E− 05± 5.60E− 05 4.22E− 05± 1.59E− 04 4.19E− 06± 1.30E− 05 2.10E− 30± 9.42E− 30
F2 7.59E+ 06± 4.32E+ 06 6.38E + 06± 3.75E + 06 6.37E+ 06± 3.13E+ 06 7.13E + 05± 2.69E + 05
F3 0.00E+ 00± 0.00E+ 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F4 7.59E+ 03± 2.43E+ 03 6.33E + 03± 2.47E + 03 8.13E+ 03± 2.51E+ 03 3.28E + 03± 1.98E + 03
F5 8.91E− 04± 3.77E− 03 3.42E− 05± 8.93E− 05 6.86E− 05± 2.37E− 04 0.00E + 00± 0.00E + 00
F6 6.64E+ 01± 3.21E+ 01 5.82E + 01± 2.90E + 01 5.15E+ 01± 2.35E + 01 3.12E+ 01± 2.78E + 01
F7 0.00E+ 00± 0.00E+ 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F8 2.10E+ 01± 5.25E− 02 2.10E+ 01± 5.42E− 02 2.10E + 01± 4.17E− 02 2.10E+ 01± 3.49E− 02
F9 5.26E+ 00± 9.82E+ 00 2.23E + 00± 6.87E + 00 0.00E+ 00± 0.00E + 00 2.52E + 00± 7.71E + 00
F10 9.26E+ 00± 7.28E+ 00 6.80E + 00± 5.65E + 00 6.67E+ 00± 3.25E + 00 2.16E− 01± 1.98E− 01
F11 0.00E+ 00± 0.00E+ 00 0.00E + 00± 0.00E + 00 0.00E+ 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F12 1.16E+ 02± 3.57E+ 01 8.96E + 01± 6.22E + 01 0.00E+ 00± 0.00E + 00 1.02E + 02± 7.05E + 01
F13 1.31E+ 02± 6.87E+ 01 1.18E+ 02± 6.15E + 01 0.00E+ 00± 0.00E + 00 1.07E + 02± 8.38E + 01
F14 1.78E+ 01± 3.12E+ 01 8.96E + 00± 4.34E + 00 4.24E+ 00± 2.81E+ 00 1.15E+ 01± 2.49E + 01
F15 4.79E+ 03± 1.50E+ 03 4.33E + 03± 1.14E + 03 7.17E+ 03± 2.72E+ 02 3.65E + 03± 5.90E + 02
F16 2.68E+ 00± 3.22E− 01 2.50E + 00± 3.43E− 01 2.62E + 00± 2.98E− 01 1.06E + 00± 3.87E− 01
F17 9.59E+ 00± 1.21E+ 01 7.98E + 00± 1.19E + 01 5.44E+ 00± 6.87E + 00 1.10E+ 01± 1.37E+ 01
F18 1.77E+ 02± 4.90E+ 01 1.66E + 02± 4.61E+ 01 1.43E+ 02± 4.88E+ 01 1.54E + 02± 3.64E + 01
F19 1.57E+ 01± 7.70E+ 00 1.47E + 01± 6.78E + 00 7.74E+ 00± 2.36E + 00 9.11E + 00± 2.73E + 00
F20 1.31E+ 01± 3.16E+ 00 1.34E+ 01± 2.31E+ 00 0.00E+ 00± 0.00E + 00 1.20E + 01± 3.58E + 00
F21 4.00E+ 02± 2.73E− 01 4.00E+ 02± 3.12E− 01 4.00E + 02± 1.97E− 01 4.00E+ 02± 7.62E− 12
F22 1.17E+ 02± 6.11E+ 01 7.99E+ 01± 7.61E + 01 9.09E+ 01± 6.46E + 01 1.04E + 02± 8.25E + 01
F23 4.21E+ 03± 6.46E+ 02 4.07E + 03± 1.11E + 03 6.90E+ 03± 4.60E+ 02 3.87E + 03± 9.03E + 02
F24 2.04E+ 02± 1.37E+ 01 2.01E+ 02± 7.70E− 01 2.00E + 02± 4.13E− 02 2.02E+ 02± 1.10E+ 01
F25 2.88E+ 02± 3.40E+ 01 2.79E + 02± 3.98E + 01 2.48E+ 02± 4.21E+ 01 2.85E + 02± 3.25E + 01
F26 3.08E+ 02± 4.25E+ 01 2.99E + 02± 4.17E + 01 2.97E+ 02± 1.82E+ 01 2.97E + 02± 3.89E + 01
F27 4.46E+ 02± 2.75E+ 02 3.94E + 02± 1.81E + 02 3.22E+ 02± 2.68E + 00 6.16E+ 02± 3.16E+ 02
F28 1.46E+ 03± 8.95E+ 02 1.21E + 03± 5.33E + 02 1.08E+ 03± 5.76E+ 01 1.05E + 03± 3.53E + 02
Bold indicates the best results obtained on each function.
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on the 10-dimension, 30-dimension, and 100-dimension
CEC2013 datasets. ,e functions that achieved the best op-
timization results on the same functions are bold. To further
verify the differences between INCCLA and each algorithm,
the Wilcoxon rank sum test with a 5% significance level was
performed between INCCLA and each algorithm, and the
results are shown in Table 11. To comprehensively evaluate
the overall performance of all algorithms, the results of the
Friedman test are given in Table 12.

For the 10-dimensional optimization problem, as shown
in Table 8, INCCLA achieves better mean values in all 28 test
functions compared with NCCLA, and INCCLA achieves
global optimum on 9 test functions, including F1, F3, F5, F7,
F9, F11, F12, F13, and F20. Both the INCCLA algorithm and
NSABC achieved the global optimum on nine test functions,
including F1, F3, F5, F7, F9, F11, F12, F13, and F20, and the
two algorithms achieved comparable mean values on
functions F25 and F26. On five functions, including F19,

Table 5: Wilcoxon rank sum test results between NCCLA and each improvement strategy.

Function
p value (vs.NCCLA)

INCCLA1 INCCLA2 INCCLA3
F1 0.876 (�) 0.053 (�) 0.000 (+)
F2 0.304 (�) 0.379 (�) 0.000 (+)
F3 1.000 (�) 1.000 (�) 1.000 (�)
F4 0.029 (+) 0.363 (�) 0.000 (+)
F5 0.003 (+) 0.004 (+) 0.000 (+)
F6 0.559 (�) 0.082 (�) 0.000 (+)
F7 1.000 (�) 1.000 (�) 1.000 (�)
F8 0.067 (�) 0.340 (�) 0.077 (�)
F9 0.179 (�) 0.005 (+) 0.218 (�)
F10 0.035 (+) 0.270 (�) 0.000 (+)
F11 1.000 (�) 1.000 (�) 1.000 (�)
F12 0.302 (�) 0.000 (+) 0.385 (�)
F13 0.025 (+) 0.000 (+) 0.616 (�)
F14 0.491 (�) 0.000 (+) 0.012 (+)
F15 0.099 (�) 0.000 (+) 0.000 (+)
F16 0.057 (�) 0.395 (�) 0.000 (+)
F17 0.090 (�) 0.118 (�) 0.137 (�)
F18 0.420 (�) 0.006 (+) 0.045 (+)
F19 0.706 (�) 0.000 (+) 0.000 (+)
F20 0.264 (�) 0.000 (+) 0.273 (�)
F21 0.019 (-) 0.994 (�) 0.000 (+)
F22 0.067 (�) 0.050 (�) 0.911 (�)
F23 0.112 (�) 0.000 (-) 0.108 (�)
F24 0.482 (�) 0.000 (+) 0.000 (+)
F25 0.807 (�) 0.000 (+) 0.473 (�)
F26 0.529 (�) 0.000 (+) 0.000 (+)
F27 0.599 (�) 0.000 (+) 0.510 (�)
F28 0.258 (�) 0.002 (+) 0.000 (+)
+/�/− 4/23/1 14/13/1 15/13/0

Table 6: Friedman test results for four algorithms.

NCCLA INCCLA1 INCCLA2 INCCLA3
Avg.rank 3.48 2.48 1.96 2.07
Sort 4 3 1 2

Table 7: Related parameter settings of each algorithm.

Algorithm Parameter
NCCLA RPprob � 0.9; SLprob � 0.99; VSLprob � 0.99; P1prob � 0.95; TaEprob � 0.3; lfmin � 0.0005; lfmax � 0.02
NSABC C� 1.5; limit� 100; k� 10
MSCA a� 2; b� 0.5
IATTTP h1� h2� h3� 0.5, h4� 0.8, m� 50, q� 0.8
ICSA AP� 0.1; FL� 1.5
INCCLA RPprob � 0.9; SLprob � 0.99; R� 15; lfmin � 0.0001; lfmax � 0.09
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F21, F24, F26, and F28, the INCCLA algorithm had inferior
mean values to NSABC, and on the remaining 12 functions,
the INCCLA algorithm obtained better mean values than
NSABC. MSCA, IATTP, and ICSA all achieved theoretical
optima on only seven test functions, including F3, F7, F9,
F11, F12, F13, and F20. As seen in Table 11, NCCLA has
similar performance on 10 functions compared to INCCLA,
but significantly inferior performance on the 18 tested
functions; NSABC performs significantly better on 4
functions but significantly inferior on 10 functions; MSCA
has similar performance on 9 of the tested functions, but
significantly inferior performance on the remaining 19
tested functions; IATTP has significantly better performance
on F4, F26, and F27 only, but significantly inferior per-
formance on the 14 tested functions; ICSA has significantly
better performance on F26 only, but significantly inferior
performance on all 14 functions. In summary, it shows that
for low-dimensional optimization problems, the INCCLA
proposed in this paper has some advantages in terms of
convergence precision compared with other representative
methods.

For the 30-dimensional optimization problem, it can be
seen from Table 9 that INCCLA achieves the global opti-
mum on nine test functions, including F1, F3, F5, F7, F9,
F11, F12, F13, and F20. Like INCCLA, NCCLA also ach-
ieves the global optimum on these nine test functions, and
INCCLA achieves worse mean values than NCCLA only on
F4, but better mean values on the remaining test functions;
NSABC achieved theoretical optima on six functions, in-
cluding F1, F3, F5, F7, F9, and F11; MSCA obtained the
theoretical optimal results on F3 and F11 only; IATTP
obtained the theoretical optimal for six functions, in-
cluding F3, F7, F9, F11, F12, and F13; ICSA obtained the
theoretical optimal for five functions, including F3, F7, F9,
F12, and F13. As seen in Table 11, compared to INCCLA,
NCCLA has similar performance on 5 functions and sig-
nificantly better performance on F4 only, but significantly
inferior performance on the 22 tested functions; NSABC
has significantly better performance on F6 and F26, but
significantly inferior performance on 14 functions; MSCA
has similar performance on 4 tested functions, but sig-
nificantly inferior performance on the remaining 24 tested
functions; IATTP had significantly better performance on
F4 only, but significantly inferior performance on 17 test
functions; ICSA has similar performance on 7 test func-
tions only, but significantly inferior performance on the
remaining 21 test functions. In summary, it shows that for
the 30-dimensional CEC2013 test suite, the INCCLA
proposed in this paper has a significant advantage in

convergence accuracy compared with other representative
methods, and the performance gap between algorithms is
significantly more significant than that of the 10-dimen-
sional optimization problem.

For the 100-dimensional optimization problem, it can
be seen from Table 10 that INCCLA achieves the global
optimum on three test functions, including F3, F7, and F11.
NCCLA achieves the global optimum on F3 and F11, except
that INCCLA and NCCLA obtain the same mean value on
F8, NCCLA obtains a better mean value than INCCLA on
F4, F14, F17, and F22, but NCCLA obtains a worse mean
value than INCCLA on the rest of the 21 functions; NSABC
obtained the global optimum on F3 and F11; MSCA ob-
tained the theoretical optimum on F11 only; neither IATTP
nor ICSA obtained the theoretical optimum on any
function. As seen in Table 11, NCCLA performs signifi-
cantly better on only four functions compared to INCCLA,
including F4, F14, F17, and F22, but performs significantly
inferior on the 20 test functions; NSABC has similar
performance on 5 tested functions, significantly better
performance on 7 functions, but significantly inferior
performance on 16 functions; MSCA has similar perfor-
mance on F8 and F11, but significantly inferior perfor-
mance on the remaining 26 test functions; IATTP has
significantly better performance on F4 only, but signifi-
cantly inferior performance on the 24 test functions; ICSA
has significantly better performance on F4 only, but sig-
nificantly inferior performance on the 23 test functions. In
summary, it shows that for high-dimensional optimization
problems, the INCCLA proposed in this paper has a sig-
nificant advantage in convergence precision compared with
other representative methods, and the performance gap
between the algorithms is more significant than that for
optimization problems in 10 and 30 dimensions.

Table 12 shows that the overall performance of INCCLA
is the best among the six optimization algorithms for the 10-
dimensional, 30-dimensional, and 100-dimensional test
functions, and its advantage is more obvious as the di-
mensionality of the optimization problem increases. In both
10-dimensional and 30-dimensional test functions, NSABC
ranks second in overall performance, and IATTP, ICSA, and
NCCLA are slightly worse than NSABC in both dimensions.
In the 100-dimensional test function, the overall perfor-
mance of NCCLA ranked second, and NSABC, ICSA, and
IATTP were slightly worse than NCCLA in this dimension.
,e overall performance of MSCA was the worst among the
six algorithms. In summary, compared with other algo-
rithms, the INCCLA proposed in this paper has certain
advantages in terms of convergence precision.

Table 12: Friedman test results of 6 algorithms.

Dimension NSABC MSCA IATTP ICSA NCCLA INCCLA

D� 10 Avg.rank 2.68 4.96 3.54 3.50 4.07 2.25
sort 2 6 3 4 5 1

D� 30 Avg.rank 2.50 5.34 3.57 4.07 3.73 1.79
sort 2 6 3 5 4 1

D� 100 Avg.rank 2.91 5.59 4.04 3.93 2.86 1.68
sort 3 6 5 4 2 1
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(2) Testing at CEC 2020. To further examine the performance
of the INCCLA algorithm, the INCCLA algorithm and four
other algorithms are tested on the 10-dimensional CEC2020
test suite. ,e parameters of each algorithm were set as
above. Table 13 counts the results of 30 independent ex-
periments for each algorithm, including the mean and
standard deviation, the results of theWilcoxon rank sum test
results for each algorithmwith a significance level of 5% with
the INCCLA algorithm, the number of functions for which
each algorithm is significantly better than INCCLA, sig-
nificantly worse than INCCLA, and not significantly dif-
ferent from INCCLA, and the results of the Fridman test and
ranking results for each algorithm.

As shown in Table 13, for the 10-dimensional CEC2020
test function set, compared with NCCLA, INCCLA showed
similar performance only on F10, achieved better mean
values on the remaining 9 test functions, and performed
significantly better on them. Compared with NSABC,
INCCLA performs significantly inferior only on F9 and F3,
achieves similar performance on 5 test functions, and per-
forms significantly better on 3 test functions; compared to
MSCA, INCCLA achieves better mean values on all 10 tested
functions as well as showing significantly better perfor-
mance. Compared to IATTP, INCCLA only showed inferior
performance on F6 and F9, similar performance on F10, and
significantly better performance on 7 test functions; com-
pared to ICSA, INCCLA only showed inferior performance
on F9, similar performance on F2 and F3, and significantly
better performance on 7 test functions. It is obvious from the
rank sum calibration results that INCCLA has an advantage
over several other comparative algorithms on the CEC2020
test suite.

In summary, compared with NCCLA and the other four
superior optimization algorithms, INCCLA shows a sig-
nificant advantage in convergence precision.,e advantages
become more obvious as the dimension of the optimization
problem increases.

4.3.2. Comparison of INCCLA with Other Algorithms on
Convergence Speed. In order to compare the differences in
convergence speed among the algorithms more intuitively,
Figure 4 shows the convergence curves of each algorithm on
the 28 test functions of the CEC2013 test suite when the
dimension is 30, where the horizontal coordinate is the
number of function evaluations and the vertical coordinate
is the logarithm of the fitness value.

As shown in Figure 4, for the unimodal functions F1∼F5,
INCCLA can obtain the global optimum on F1, F3, and F5
test functions, but the convergence speed is slightly slower
than NSABC on F1 and F5 test functions; INCCLA shows
better convergence precision and the fastest convergence
speed than the other five algorithms on F2; INCCLA is
second only to IATTP in terms of convergence precision and
convergence speed on F4. For multimodal functions
F6∼F20, INCCLA can obtain the global optimum on F7, F9,
F11, F12, F13, and F20 test functions, and the convergence
speed is second only toMSCA on F11; INCCLA shows better
convergence precision and the fastest convergence speed

than the other five algorithms on F6, F10, and F19. INCCLA
shows better convergence precision and relatively better
convergence speed on F8, F14, F15, F16, F17, and F18 test
functions. In the early evolutionary stage, the convergence
speed of INCCLA is slightly slower than the other algo-
rithms.When it reaches the late evolutionary stage, INCCLA
can continue searching for better solutions compared to the
reduced search performance of the other algorithms. For the
composition functions F21∼F28, INCCLA shows better
convergence precision and fastest convergence speed than
the other five algorithms on the test functions F25, F27, and
F28; INCCLA shows higher convergence precision and
relatively faster convergence speed on F22 and F23. ,e
convergence speed of INCCLA on F21 is similar to that of
the three algorithmsNSABC, NCCLA and IATTP, where the
convergence precision of INCCLA and NSABC is slightly
better than that of the other algorithms; the convergence
speed of INCCLA on F24 is similar to that of the four al-
gorithms NCCLA, ICSA, IATTP, and NSABC, with the
convergence precision of INCCLA being higher. On F26, the
convergence speed and precision of INCCLA are similar to
those of ICSA and IATTP, and the convergence precision of
INCCLA is second only to that of NSABC. In summary, it
shows that INCCLA has some advantages in terms of
convergence speed compared with NCCLA and the other
four superior optimization algorithms.

In summary, compared with NCCLA and the other four
superior optimization algorithms, the INCCLA proposed in
this paper is superior in the overall performance in terms of
convergence precision and convergence speed, although it
has the shortcoming of not converging fast enough in the
early stage for individual complex functions. ,e essential
reasons for this are all caused by the three improved evo-
lutionary strategies in Sections 3.1–3.3 of this paper, which
are analyzed in depth as follows. ,e update strategy of the
INCCLA algorithm has a large step size in the early evo-
lutionary stage, which makes individuals search a farther
distance around themselves, thus ensuring the global search
of the algorithm and reducing the possibility of the algo-
rithm falling into a local optimum, for more complex op-
timization problems, which also inevitably slows down the
rapid aggregation of the population around a dominant
region. ,erefore, it makes INCCLA not converge fast
enough in the early stage on individual complex functions.
However, as the iteration proceeds, the individual search
step size gradually decreases, and it is easier to search to have
the advantage of the area, easy to refine the search, which
improves the convergence speed in the late evolutionary
stage and facilitates the algorithm to obtain a more excellent
convergence precision. In addition, the parental selection
mechanism can guide the evolutionary direction of juveniles
during the learning phase, allowing the algorithm to increase
algorithmic diversity while maintaining convergence. ,e
juvenile crow hybrid learning mechanism can determine the
state of the algorithm in the current evolutionary stage
according to the individual’s attributes and select the
learning mode in a targeted manner so that the algorithm
can effectively maintain the balance of convergence speed
and diversity in the evolutionary process. ,e interplay and
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Figure 4: Convergence curves of each algorithm on the CEC2013 test suite. (a)-(ab) denote the 28 test functions F1∼F28 in the CEC2013 test
set, respectively.
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influence of these three mechanisms ensures the overall
advantage of INCCLA in terms of convergence precision
and convergence speed. In the next step, we will work on
further improving the convergence speed of the INCCLA
algorithm in the pre-evolutionary stage while ensuring no
significant change in the convergence precision.

4.4. Comparison of the Effects of Engineering Applications.
To further compare the effectiveness of INCCLA with each
comparison algorithm for engineering applications, this sec-
tion will be validated by dealing with the collaborative
beamforming optimization problem. ,e collaborative
beamforming optimization problem is a typical problem in
antenna arrays. ,e amplitude ξ ∈ [0, 1] and phase
α ∈ [−π , π] of the transmit signal weights of each collaborative
node are used as decision variables in the algorithm optimi-
zation process, and the peak side valve level PSL minimization
as shown in (27) is achieved by algorithm optimization.

PSL � 20 log10
max AF θSL, w( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

AF(ϕ, w)
, (27)

where, AF(θ, w) represents the array factor, as shown in (28)
and φ is the main beam direction.,e positions of θSL can be
found by finding all the peak points of the array factor (other
than the main lobe’s peak) for the domain
θ ∈ [−π, ϕ)∪ t(ϕ, π], the denominator AF(ϕ, w) is the main
beam power, which can be calculated as described in the
literature [39], and molecule max|AF(θSL, w)| is the maxi-
mum beam power in the side flap.

AF(θ, w) � 􏽘
k

k�1
wke

j(2π/λ)rk cos θ−ψk[ ( )]. (28)

,is section examines the practical engineering optimi-
zation of INCCLA and the other comparative algorithms by
optimizing the collaborative beamforming problem shown in
Figure 5, in which the wavelength of the transmitting signal is
λ. ,e six synergistic nodes are distributed in a circular
domain of radius 6λ, where one synergistic node is located in
the center of the circular domain.

,e parameter settings of each algorithm are shown in
Table 7. In order to avoid adverse effects of chance on al-
gorithm evaluation, each algorithm was run 10 times
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independently. ,e best median PSL obtained by each al-
gorithm corresponding to the collaborative beam optimiza-
tion scheme was selected for comparison. ,e beam diagram
of INCCLA with each comparison algorithm in the Cartesian
coordinate system is visually presented in Figure 6. ,e PSL
obtained by each algorithm is labeled within the figure.

According to Figure 6, it can be seen that each algorithm
achieves better collaborative beam optimization compared to
the unoptimized algorithm, where the best PSL values ob-
tained by INCCLA, NCCLA, NSABC, MSCA, IATTP, and
ICSA are −5.5044 dB, −5.2306 dB, −5.2181 dB, −3.5948 dB,
−4.1655 dB, and −5.3668 dB, respectively. Compared with the
other five algorithms, the best PSL value obtained by INCCLA
is the smallest and achieves the best collaborative beam op-
timization among the five algorithms. In summary, the
proposed INCCLA also performs better in engineering
applications.

5. Conclusions

,is paper proposes an improved New Caledonian Crow
Learning Algorithm (INCCLA) to improve further the
convergence performance and the ability to escape from the
local optimum of the NCCLA algorithm. First, INCCLA
introduces cosine similarity in the parent selection phase.
,e selected parent can guide the juvenile crow to exploit
different regions, maintaining the balance between pop-
ulation diversity and the convergence speed of the algorithm

in the evolutionary process. Second, INCCLA sets up a
mixed learning mechanism of complete learning and in-
complete learning, with the complete learning phase ac-
celerating individual convergence and improving the
convergence speed of the algorithm, and the incomplete
learning phase increasing population diversity and en-
hancing the ability of the algorithm to escape from the local
optimum. Finally, the juvenile crow reinforcement phase
introduces weight factors and random perturbations to
increase the global search and local exploration ability of the
algorithm in the evolutionary process. ,e proposed parent
reinforcement phase enhances the individual search capa-
bility of the parent and improves the overall performance of
the algorithm. Experimental results on the CEC2013 and
CEC2020 test suites show that the improvement strategy
proposed in this paper effectively improves the overall
performance of INCCLA, enabling the algorithm to main-
tain a balance between convergence speed and population
diversity during the evolutionary process, and can achieve
better results in most of the test functions. In addition,
INCCLA is also more competitive in unimodal, multimodal,
and composition problems compared with the other four
optimization algorithms. INCCLA is also applied to the
collaborative beamforming optimization problem, demon-
strating the usefulness of INCCLA in engineering
applications.

Although the INCCLA algorithm proposed in this paper
has obvious advantages in terms of convergence accuracy, its
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Figure 6: Beam diagram of INCCLA and each comparison algorithm in the cartesian coordinate system. (a)–(e) are the beam diagram of
INCCLA with NCCLA, NSABC, MSCA, IATTP, and ICSA, respectively.
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time complexity is slightly higher. In future work, the time
complexity of the algorithm needs to be further reduced. In
addition, it further broadens the application of the INCCLA
algorithm in practical engineering fields.
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