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ABSTRACT

Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based thera-
pies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated compli-
cations. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural
biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting
angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free
stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We
first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given
the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids.
Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss mul-
tidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability
and standardization of stem cell-based products.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0225807

I. INTRODUCTION

Employing stem cells with self-renewal and regenerative capabili-
ties to rescue dysfunctional tissues and organs offers new treatment
modalities for currently incurable diseases. Conventional regenerative
therapy involving cell suspensions has encountered challenges of stem
cell survival and limited therapeutic effect after transplantation. The
biomaterials and trypsin used in the culture process may compromise
the cell viability and functionality, leading to reduced therapeutic effi-
cacy in the targeted sites. Subsequently, the three-dimensional (3D)
cultivation technology has gained considerable attention to mimic the
cell–cell and cell–extracellular matrix (ECM) interactions in the bio-
logical niche, displaying promising results in many disease conditions.1

This strategy frequently involves biocompatible and sometimes biode-
gradable scaffolds as carriers for stem cells; however, the use of exoge-
nous biomaterials in the cell-scaffold composite platforms often raise
concerns of untoward immune responses and biosafety issues about
the degradation of scaffolds.2,3 Hence, scaffold-free culture systems

have been investigated to mimic the in vivo physiological microenvi-
ronment of stem cells. The 3D structures can enhance the survival, the
stemness and the differentiation abilities of stem cells.4–7 Additionally,
the structural integrity of 3D cell format, such as sheets and spheroids,
can also facilitate manipulation, stacking, and transplantation into
lesions in various anatomical sites.8–12

To date, multidisciplinary technologies have been integrated to
fabricate cell sheets and spheroids. By applying specific factors or gene
modifications to stem cells, their therapeutic effects can be synergisti-
cally enhanced. Collaboration between experts in academia and indus-
try has driven the development of stem cell-based products, including
the introduction of automated manufacturing systems for large-scale
production of clinical-grade tissues.13 This review aims to elaborate
on the establishment of scaffold-free 3D culture systems of stem cells
and their applications in tissue regeneration. We will first discuss the
engineering methods of cell sheets and spheroids, and then introduce
their current employment in biomedical research and clinical use.
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Finally, we will highlight the current challenges and future perspectives
of scaffold-free 3D culture technologies for stem cell research and clini-
cal application.

II. THE SOURCES OF STEM CELLS

The selection of stem cells for tissue engineering is guided by their
characteristics and intended clinical application. Generally, stem cells
can be categorized into pluripotent and adult stem cells. Embryonic
stem cells (ESCs) exhibit pluripotency, capable of differentiating into
various cell types. However, their clinical use is limited due to concerns
about high mutation rates, heterogeneous differentiation, potential
immune rejection, and ethical challenges.14 Induced pluripotent stem
cells (iPSCs) can differentiate into a wide range of adult cells, including
cardiomyocytes, neurons, endothelial cells, and hepatocytes, making
them valuable for tissue regeneration, disease modeling, and pharma-
ceutical testing.15,16 Nevertheless, iPSCs may trigger immune reactions
and carry risks of genetic alterations and tumorigenesis, resulting in
limited clinical use.17

Hematopoietic stem cells (HSCs), multipotent cells from which
myeloid- and lymphoid-lineages derive, have shown therapeutic effects
in some clinical trials,18,19 such as liver rejuvenation in collaboration
with local hepatic progenitor cells.20 Neural stem cells (NSCs) can dif-
ferentiate into neurons, oligodendrocytes, and astrocytes, thus support-
ing neurogenesis and nerve regeneration.21 They protect both the
central and peripheral nervous systems by the release of glial cell line-
derived neurotrophic factor (GDNF).22 Mesenchymal stem cells
(MSCs) can be isolated from several types of mesenchymal tissues,
including bone marrow, adipose tissue, dental pulps, periodontal liga-
ments, umbilical cord, and placenta, indicating their diverse accessibil-
ity for research.23 Adipose-derived stem cells (ASCs) and bone
marrow-derived MSCs (BM-MSCs) are among some of the most fre-
quently employed MSCs for cell therapy. MSCs possess pro-
angiogenic properties through secretion of several angiogenic growth
factors, such as vascular endothelial growth factor (VEGF) and hepato-
cyte growth factor (HGF).24 MSCs can regulate numerous complex

immune responses and mobilize a varied kinds of immune cells involv-
ing T cells, B cells, and natural killer cells. These immunomodulatory
effects are mediated by MSC-derived cytokines, including interleukin-
10 (IL-10), prostaglandin E2 (PGE2), transforming growth factor-b
(TGF-b), indoleamine 2,3-dioxygenase (IDO), and nitric oxide.25

III. CELL PHENOTYPES IN 3D CULTURE SYSTEMS

Two-dimensional (2D) cell cultures on tissue culture polystyrene
surfaces (TCPS) represent an artificial and less physiological environ-
ment. Without the support of ECM and intercellular interactions, the
cell morphology and characteristics can change significantly from their
in vivo state.26 In contrast, 3D scaffold-free cultures simulate tissue
structure by secreting matrices and forming 3D cell constructs, such as
cell sheets and spheroids. Studies have shown that increased stem cell–
ECM interaction in 3D culture systems promotes stemness, potency,
and the release of trophic factors (Table I).27,28

Pluripotent-based organoids have become valuable tools for
small-scale drug screening, providing rapid insights into physiological
relevance and potential disease-modulating therapies.29 In the context
of specific diseases, particularly those arising from monogenic muta-
tions, iPSC-derived organoids have been effectively developed to
recapitulate disease characteristics in vitro.30 These iPSC-based micro-
physiological 3D models provide a unique opportunity to decipher
sporadic cases of certain degenerative diseases, which are challenging
to investigate in animal models.31,32 Similarly, human iPSC-derived
organotypic cardiac microtissues, incorporating multiple heart cell
types, have contributed innovative insights into heart diseases. These
long-term 3D cultures successfully recapitulated self-organization, cel-
lular heterogeneity, and ultrastructural maturation within the
microtissues.33

MSC sheets contain ECM proteins such as fibronectin and lami-
nin, and cell junction proteins such as integrin b1 and connexin 43.34

Similarly, MSC spheroids produced substantially greater amounts of
ECM protein, including tenascin C, collagen VI a3, and fibronectin.35

Thus, cells within these scaffold-free 3D formats maintained their

TABLE I. A comparison of 2D and 3D stem cell culture.

2D cell culture 3D sheet culture 3D spheroid culture

Cell morphology Mostly spindle-shaped cells201 Unaligned rounded cell shape202 Rounded cell shape203

More homogenous in size28

ECM deposition Limited Enriched Enriched
Cell–Cell interaction Limited cell–cell interaction34 Enhanced cell–cell interaction34,204 Enhanced cell–cell interaction205

Cell viability Decreased over time203 Enhanced viability34 Enhanced viability203

Proliferation and senescence Replicative senescence occurs
as passage number increase206

Decreased proliferation202 Decreased proliferation207

Decreased senescence203

Differentiation potential Compromised206 Preserved204 Preserved28

Cytokine and growth factor
expression

Reduced growth factor
expression

compared to 3D culture
formats208

Maintained or increased
secretion of

pro-angiogenic and
immunomodulatory

factors137

Increased secretion
of pro-angiogenic,

immunomodulatory, and
anti-fibrotic factors209

Applications Cell expansion, basic research,
and cell therapy

Tissue engineering, disease
modeling210,211

Tissue engineering, disease
modeling,212,213 and drug

screening214,215
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multilineage potential, exhibited good viability and collagen produc-
tion, and showed higher expression of HGF, fibroblast growth factor-2
(FGF2), and insulin-like growth factor 1 (IGF-1).36,37 Moreover,
enhanced expression of stemness markers Sox-2, Oct-4, and Nanog
was noted in ASCs within cell spheroids and sheets.11,38 These cells
retain the ability to differentiate, and can modulate the expression of
cytokines and growth factors in response to environmental stimuli.39,40

For example, 3D MSC spheroids promote the secretion of HGF,
VEGF, FGF2, matrix metalloproteinase-2 (MMP-2), and MMP-14,
compared to 2D cultures.35,40 ERK and AKT pathways are activated
through E-cadherin in MSC spheroids, leading to increased VEGF
secretion.8 Additionally, MSC spheroids exhibited increased levels
of hypoxia-induced survival factors produced by spheroids, such as
C-X-C motif chemokine 12 (CXCL12) and hypoxia-inducible factor-
1a (HIF-1a).41 The MSC spheroids have also been shown to display
reduced production of pro-inflammatory chemokines.42 Meanwhile,
enhanced expression of some immunomodulatory factors, including
cyclooxygenase-2 (COX-2), tumor necrosis factor-inducible gene 6
(TSG-6), prostaglandin E2 (PGE2), and TGF-b1, were noted in ASC
spheroids.43 Likewise, ASC sheets expressed significantly more C1q/
TNF-related protein-3 (CTRP3) for immunomodulation, which inhib-
ited the C-C motif ligand 2 released by macrophages and subsequently
reduced the chemotaxis of unstimulated macrophages.24,44 However,
downregulation of VEGF has been noted upon ASC sheet formation.24

IV. SCAFFOLD-FREE CELL SHEET STRATEGY

Cell sheet engineering is an emerging scaffold-free approach in
tissue engineering that aims to deliver stem cells more effectively.45

Traditionally, stem cells are administered through topical injection or
intravascular infusion, which may lead to decreased cell retention at
the target site and increased risk of thrombotic events.46 Cell sheet fab-
rication preserves intercellular structures and mimics biological activi-
ties within niches. By avoiding enzymatic treatment during
detachment, cell sheets can be harvested while maintaining the prolif-
eration and differentiation capabilities of stem cells.45 Cell sheets can,
therefore, be conveniently applied to lesion sites, exerting therapeutic
effects such as pro-angiogenesis and anti-fibrosis through paracrine
mechanisms.47 Cell sheet engineering can also be modified by per-
forming multi-layer stacking, enabling the creation of thicker 3D struc-
tures that can recapitulate natural tissue architecture without the use of
scaffolds.48

Over the decades, various strategies for culturing and transferring
cell sheets have been developed (Fig. 1). Successfully fabricated cell
sheets can be harvested using the following techniques: temperature-
responsive systems,49–51 chemically defined cultures using ascorbic
acid derivatives,11,44 photo-responsive culture surfaces,52,53 and
magnetic-responsive culture surfaces.54 By ensuring the structural
integrity of cell sheets during detachment, cell sheets have been suc-
cessfully applied in the regeneration of various tissue types, including
myocardium,9,48 skin,11,44,55,56 cartilage,57,58 bones,59,60 periodontal tis-
sue,61,62 nerves,36,63,64 and tendon-to-bone junctions.65,66

A. Temperature-responsive systems

Several synthetic polymers respond to alterations in temperature,
chemical species, pH, electric fields, magnetic force, and other environ-
mental factors. Poly(N-isopropylacrylamide) (PIPAAm) is a noncyto-
toxic and biocompatible synthetic polymer that changes its water

solubility with respect to the temperature. It can be applied to TCPS
using electron beam polymerization, creating a surface that becomes
hydrophobic at 37 �C, which is suitable for cell adhesion, proliferation,
and ECM secretion.67 When the temperature drops below 32 �C,
PIPAAm hydrates and renders the surface hydrophilic, allowing cell
sheet detachment while maintaining its integrity. Most studies set the
detachment temperature at 20 �C,68 although some set it at 32 �C.69

While preserving cell morphology and proliferation rates similar to
those observed on TCPS, PIPAAm-coated surfaces have successfully
fabricated cell sheets from multiple cell sources for application in
extensive in vitro and in vivo studies.49 The main disadvantage of this
system is the prolonged low-temperature phase during detachment,
which takes up to 30–60min and may hamper cell metabolism.70

Revisions to accelerate the detachment process include grafting
PIPAAm onto porous membranes,71 combining it with other poly-
mers,72 or incorporating a transfer membrane.49 Recently, micropat-
terned PIPAAm surfaces have also shown potential in the fabrication
of complex tissues.73 Commercially available thermo-responsive cul-
ture dishes (TRCD) have effectively augmented the construction of cell
sheets in both preclinical and clinical studies, although they are rela-
tively expensive.9,61,69

Methylcellulose (MC), a water-soluble polysaccharide, forms a
temperature-responsive hydrogel under suitable conditions, making it
effective for harvesting cell sheets.74 MC hydrogels are non-cytotoxic
and have been extensively used in stem cell sheet fabrications
in vitro.75,76 At 37 �C, the gel phase with a hydrophobic surface facili-
tates cell adhesion and proliferation. Cooling down to the lower critical
solution temperature (LCST) reverts the polymer to a solution phase,
enabling the detachment of cell sheets.51,74,77 By adjusting the propor-
tion of MC in the gel, the optimal LCST can be achieved at approxi-
mately 32 �C, which is in close proximity to the physiological
temperature compared to PIPAAm.77 Moreover, MC hydrogels are
more economical and efficient for detachment compared to PIPAAm.
Although they lack mechanical strength and stability,50 a citric acid-
based cross-linking strategy has been proposed to enhance the physical
properties.78 However, the preparation process for MC hydrogels is
tedious, requiring a meticulous production process.77 Additionally, a
comparative study has indicated that cell proliferation is lower when
cultured on MC surfaces than on PIPAAm surfaces.75

B. Chemically defined culture medium

Ascorbic acid is an essential water-soluble vitamin and antioxi-
dant that has been demonstrated to reduce intracellular reactive oxy-
gen species (ROS) levels and to stimulate cell proliferation and ECM
production.79 Its positive effect on stemness has been observed in
ASCs,11 periodontal ligament-derived MSCs,80 and corneal epithelial
stem cells.81 Ascorbic acid can be used alone or in combination with
other strategies for sheet engineering.56,82 Specifically, introducing
derivatives of ascorbic acid stimulates cell proliferation and ECM
deposition, enabling the fabrication and harvesting of cell sheets by
simple peeling.11,82 In a comparative study, ASC sheets cultured with
ascorbic acid supplementation on TRCD or TCPS exhibited compara-
ble collagen deposition and pro-angiogenic ability in a cutaneous
wound healing model.82 Moreover, high doses of ascorbic acid can lead
to cellular apoptosis through metabolic stress and genotoxic effects,
which can potentially be mitigated by increasing the cell seeding den-
sity.83 Otherwise, ascorbic acid-2-phosphate, an oxidation-resistant
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derivative of ascorbic acid, has been successfully applied in culturing
cell sheets.11,44 It can enhance the viability of ASCs while maintaining
their stemness and differentiation capabilities.11 This approach
has been utilized in several pre-clinical studies involving large
animals.60,63,66

C. Photo-responsive systems

Titanium dioxide (TiO2) is renowned for its biocompatibility,
chemical stability, and photo-induced hydrophilicity. A TiO2 nanodot
film is applied to a quartz substrate to facilitate photo-responsive cell
sheet detachment.52 Upon exposure to 365-nm ultraviolet (UV) light
for 20min, the water contact angle significantly decreases, resulting in
cell detachment. The total light energy absorbed is well below the

safety threshold for cells. The detached cells exhibit viability and reat-
tachment capabilities comparable to those treated with trypsin.53

Laminin-521, a protein expressed in human pluripotent stem cells, is
known to enhance cell adhesion, pluripotency, and proliferation across
various cell types.84,85 Laminin-521 immobilized on the TiO2 nanodot
surface has been successfully applied to fabricate rat BM-MSC sheets
consisting of four to eight layers of cells, while maintaining high viabil-
ity, pluripotency, and DNA integrity.53

Koo et al. integrated the photosensitizer hematoporphyrin (Hp)
into polyketone (PK) polymers, creating a ROS-producing Hp-incor-
porated polyketone (Hp-PK) film that served as an adhesion surface
without cytotoxic effects. The process involved placing the Hp-PK film
with the cell sheet facing down on the target surface. The film’s oppo-
site side was then exposed to green LED light for 20min, activating

FIG. 1. Cell sheet fabrication and harvesting systems. (a) Temperature-responsive system: cells cultured on the N-isopropylacrylamide (PIPAAm) -coated surface at 37 �C. By
lowering the temperature to 20 �C, PIPAAm became hydrophilic and the cell sheets were detached. Similarly, cells were cultured on hydrophobic methylcellulose (MC)-coated
surface at 37 �C. As the temperature declined below the lower critical solution temperature (LCST), MC turned hydrophilic and the cell sheets were detached. (b) Chemically
defined culture medium: ascorbic acid was supplemented in the medium for facilitating extracellular matrix (ECM) production within cell sheets. (c) Photo-responsive system:
TiO2 nanodot (TN) films were applied to facilitate photo-responsive cell sheet detachment. Upon exposure to 365-nm ultraviolet (UV) light, the water contact angle significantly
decreased, resulting in cell detachment. (d) Magnetic-responsive system: employing the magnetite cationic liposomes (MCLs) and magnetic force, assisted by low-attachment
surfaces to minimize cellular adhesion. (e) pH-responsive system: electrochemically induced pH lowering at the interface altered the protein microstructure and disrupted
cell–ECM interactions for detachment. (f) Ion-responsive system: incorporating functional copolymers coating, with their hydrophobicity determined by the divinylbenzene
(DVB)/4-vinylpyridine (4VP) ratio, to facilitate cell sheet detachment through changing the concentration of cations. (g) Manipulation/stacking/transfer: techniques using pipettes,
membranes and plungers for layering and transferring cell sheets precisely, facilitating the construction of multi-layered tissue structures.
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ROS production by Hp. This method enables the creation of multilayer
cell sheets and their direct transplantation onto target tissues.86

D. Magnetic-responsive systems

Ito et al. developed a novel method for cell sheet engineering
using magnetite nanoparticles and magnetic levitation. They incorpo-
rated non-cytotoxic magnetite cationic liposomes (MCLs) into
keratinocytes, which formed five-layer sheets in low-calcium media
and ten-layer sheets in high-calcium media when exposed to a magnet
placed beneath a low-attachment plate. This setup minimized cellular
adhesion to the culture surface, aided by a hydrophilic poly (vinylidene
fluoride) (PVDF) membrane-wrapped magnet.87 Similarly, by mixing
MCL-labeled ASCs with an ECM solution containing collagen and
basement membrane matrices, and seeding them in an ultra-low
attachment plate, they formed multilayer ASC sheets within 1–3 h
using magnetic force.88 Zhang et al. improved upon these methods
using magnetic nanoparticles of iron (II) iron (III) oxide coated with
nanoscale graphene oxide (nGO@Fe3O4) to fabricate multilayer den-
tal pulp-derived MSC sheets. The graphene oxide coating enabled effi-
cient binding of growth factors like TGF-b3 and BMP2 without
affecting cell viability or proliferation. This approach allowed for rapid,
controlled fabrication of multilayer sheets within two days and pro-
vided better esthetic integration for skin regeneration due to the natu-
ral coloration of nGO@Fe3O4, overcoming limitations of the black
appearance of MCLs.54

E. pH-responsive systems

Guillaume et al. introduced an innovative method for cell detach-
ment using a polyelectrolyte coating combined with electrochemically
induced local pH reduction and overall pH decrease in the culture
medium. This technique enhanced cell adhesion and proliferation
across various cell types. The multilayers of poly (allylamine hydro-
chloride) (PAH) and poly (styrene sulfonate) (PSS) were constructed
on indium tin oxide (ITO) electrodes. The electrochemically induced
water electrolysis led to a local pH drop at the interface, altering the
protein microenvironment and disrupting cell–ECM interactions.89 In
this study, a monolayer sheet of human placenta-derived MSCs was
produced with 4h of culture, and detachment was achieved within 10–
20min using an electrical current. Alternatively, introducing a buffered
culture medium at pH 4.0 induced a rapid overall pH change, detach-
ing the cell sheet in just 2–3min. The detached cell sheet retained its
adipogenic and osteogenic potential, demonstrating excellent cell via-
bility for broad applications in tissue regeneration.89

F. Ion-responsive systems

Concerning the interaction between fibronectin and integrin on
the cell surface, hydrophobic substrates can distort the conformation
of fibronectin, thus reducing the exposure of its integrin binding
region. Baek et al. developed an innovative method for cell sheet
detachment utilizing a functional polymer coating that alters the sur-
face hydrophobicity by modulating the concentration of cations in the
medium. Consequently, the affinity between cells and the ECM can be
manipulated to induce sheet detachment. The study combined nonpo-
lar, hydrophobic divinylbenzene (DVB) and polar, hydrophilic
4-vinylpyridine (4VP) to create a composite culture surface, with its
hydrophobicity determined by the DVB/4VP ratio. An optimal ratio

was identified to modify the culture surface for efficient cell sheet sepa-
ration. The introduction of less concentrated divalent cations, such as
calcium and magnesium ions, further decreased the integrin-
fibronectin affinity, enabling detachment within 100 s. Human MSC
sheets produced by this technique possess adequate viability, prolifera-
tive activities with enhanced expression of adhesion proteins.90

G. Physical manipulations

Pipettes are commonly employed for transferring and stacking
cell sheets, wherein the sheets can be folded and transferred in the cul-
ture medium. Once transferred to another platform, the sheets can be
spread out by adding drops of medium or using forceps. This method
has been shown effective both in vitro and in vivo. However, pipetting
poses challenges when manipulating multi-layer sheets and carries the
risk of damaging the cell sheets.91 Forceps offer intuitive operation for
peeling, transferring, and stacking cell sheets.11,82 Despite their advan-
tages, forceps can damage the structure of mechanically fragile or thin
sheets. To mitigate this issue, customized forceps tips have been devel-
oped, which may enhance the process by providing a gentler and more
controlled handling method.92

Plungers coated with hydrogels, such as gelatin or fibrin, are well
recognized tools for transferring and stacking cell sheets.93 Hydrogels
transition into a gel phase at low temperature, acting as an adhesion
surface for sheet transfer. Hydrogel-coated plungers are overlaid on
TRCDs at 20 �C, allowing cell sheets to be lifted after incubation.93

Raising the temperature to 37 �C results in gelatin melting and subse-
quent cell sheet release. Unlike gelatin, fibrin does not dissolve at
37 �C, and sheets adhered to a fibrin coating require mechanical sepa-
ration.70 These manipulators offer convenience, stability, and feasibility
for scale production, though some biomaterials (e.g., hydrogels) may
remain on the cell sheets.

Various membranes assist in cell sheet transfer by relying on the
adhesion of the cell sheet to the transfer membrane through capillary
pressure. These transferred sheets then adhere to new surfaces via
adhesion molecules, with transfer efficacy influenced by the mem-
brane’s wetness.94 Adjusting the wetness with a drop of culture
medium can optimize membrane affinity. Several types of membranes
have been developed to support this purpose, including CellShifterV

R

,95

PVDF membrane,96 SeprafilmVR ,97 and polyglycolic acid (PGA) mem-
branes.98 Biodegradable materials like SeprafilmVR and PGA mem-
branes also serve as carriers to support sheet structure, aiding in
transplantation.62,99

V. SCAFFOLD-FREE CELL SPHEROID STRATEGY

Cell spheroids, also known as cell aggregates,100 pellets,101 micro-
masses,101 microtissue,102 3D-bullets,103 or embryoid bodies104 if com-
posed of ESCs, leverage cells’ inherent ability to self-organize into
spherical 3D structures. While cells can aggregate on 3D scaffolds and
within hydrogels, challenges arise when adapting to synthetic environ-
ments.105 Scaffold-free cell spheroids introduce a transformative
approach by replicating cell features in vivo, mirroring the intricate
architecture and functionality of native tissues without external struc-
tural support.106 Compared to 2D structures, stem cell spheroids dem-
onstrate enhanced cell viability, pluripotency, and beneficial properties
such as angiogenic, anti-fibrotic, and immunomodulatory effects.
These attributes significantly elevate the therapeutic potential of sphe-
roids in tissue regeneration.
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The essence of scaffold-free spheroid culture hinges on reducing
cell adhesion to culture surfaces while promoting the aggregation of
suspended cells.107 This is achieved through surface modifications,108

dynamic culture conditions,109 and the application of external
forces.110 Innovative microfluidic devices, which provide microcham-
bers for spheroid formation and channels for cell and medium deliv-
ery, enable the development of micro-organs-on-chips (Fig. 2).111

A. Forced aggregation

In a pellet culture system, centrifugation induces cell aggregation
at the bottom of conical tubes,100,112 facilitating pellet compaction and
differentiation. However, this approach poses the risk of developing a
central necrotic core within the spheroids due to gradients in oxygen
and nutrient levels.113,114 Moreover, the extensive use of tubes is time-
consuming and requires considerable space. To mitigate these chal-
lenges, high-throughput microwell systems have been developed for
efficient cell aggregation.

B. Hanging drop

By placing cell suspension drops under a lid, the hanging drop
method allows gravity to concentrate cells at the base of the drop. This
method is appreciated for its simplicity and the ability to regulate
spheroid size.115 However, an increased cell number or an extended
culture duration can lead to higher risks of cell necrosis and apopto-
sis.116 To address these challenges, a high-throughput culture system
featuring an array of 384 hanging drops on a plate has been developed.
This system is specifically designed for cancer stem cell spheroid cul-
turing and pharmaceutical analysis, offering a more efficient and scal-
able solution.117

C. Low attachment culture surface

Low-attachment strategies reduce cell adherence to culture surfa-
ces, promoting spheroid formation through enhanced cell–cell interac-
tions. Compounds such as polydimethylsiloxane118 and agarose119

have been used to create non-adhesive surfaces. Additionally,

FIG. 2. Cell spheroid culture and fabrication techniques. (a) Force aggregation: utilizing pellet culture and centrifugation to promote cell aggregation. (b) Hanging drop: drops
containing cells are suspended to facilitate spheroid formation. (c) Low attachment microenvironment: creating spheroids using ultra-low attachment surfaces or agarose-coated
wells to prevent cell adhesion. (d) Dynamic culture: incorporating rotating wall vessels and rocking culture systems to enhance nutrient and gas exchange. (e) Magnetic levita-
tion: employing magnets and magnetic nanoparticles to levitate cells, promoting spheroid formation without physical support. (f) Microfluidic: leveraging microfluidic channels to
control the cell culture environment precisely. (g) Polymer scaffolds: using micropatterned thermally responsive cell culture platforms (TRCP) or chitosan surface to provide
structural support for spheroids.
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micromolded non-adhesive hydrogels, composed of agarose120 or
polyacrylamide,121 facilitate the spontaneous formation of spheroids
within low-attachment micromolds. These micromolds can be
machine-crafted into various shapes for array-based, high-throughput
spheroid cultures, offering a versatile and scalable approach for gener-
ating uniform spheroids.118

D. Dynamic culture

The spinner flask method is a dynamic culture technique for
spheroid formation that utilizes an impeller, which facilitates cell colli-
sions, evenly distributes nutrients, and prevents cell sedimentation.
Cells initially form loose aggregates through integrin binding and com-
pact over time via E-cadherin interactions.122 The stirring rate is criti-
cal, as low rates may cause sedimentation, while high rate may induce
shear stress.

Rotating wall vessels, similar to spinner flasks, reduce cell settling
by rotating along the x-axis, creating a microgravity environment with
minimal shear forces.123 This dynamic approach ensures uniform
spheroid size and shape, enhancing spheroid yield.124 Rocking culture
systems, employing shakers or rockers, create a dynamic environment
where cell suspensions gradually form spheroids, typically over three
to four weeks. However, the prolonged culture period may limit their
practical use.6,125

E. Magnetic levitation

Magnetic levitation is an innovative spheroid construction
method that utilizes magnetic forces to counteract cell sedimentation.
The process involves incubating cells overnight with magnetic nano-
particles to enhance particle attachment, followed by resuspension in a
low-attachment microwell plate placed above a magnet. This setup lev-
itates the cells to the air–liquid interface, facilitating their spontaneous
aggregation into spheroids. While this technique effectively forms
spheroids, it requires specialized equipment, such as biocompatible
magnetic nanoparticles and appropriate magnetic setups, which may
increase the complexity and cost of the process.126,127

F. Microfluidic

Microfluidic technology significantly enhances the production
and culture of cell spheroids on a chip. This technology excels in man-
aging dynamic flow and gradients of oxygen, nutrients, and growth
factors, providing advantages over other spheroid formation meth-
ods.111 When integrated with biosensors, microfluidic devices enable
real-time imaging andmonitoring, facilitating precise disease modeling
and drug testing.111,128 However, the complexity of these systems may
necessitate specialized equipment and expertise, potentially limiting
accessibility and increasing operational costs.

G. Polymer surface

Chitosan polymer surface provides an alternative to traditional
low-attachment approaches for spheroid formation.38,129 The process
involves coating culture surfaces with a chitosan solution, sometimes
augmented with hyaluronan, which is then dried. Cells initially adhere
to these modified surfaces, proliferate, and subsequently migrate to
form spheroids.129 However, variability in spheroid size can arise due
to differences in cell adhesion and migration rates.

TRCD dishes with PIPAAm enable consistent spheroid creation
by featuring specific zones for cell adhesion and a non-adhesive poly-
ethylene glycol (PEG) perimeter. Lowering the temperature makes the
PIPAAm hydrophilic, simplifying spheroid harvest.130,131

Nevertheless, this method requires precise temperature regulation for
effective spheroid recovery, adding complexity to the process.

VI. APPLICATIONS IN TISSUE REGENERATION
A. Preclinical animal models of stem cell sheets

Cell sheet technology enables the transplantation of a substantial
number of stem cells to the target tissues, either through direct applica-
tion or with the assistance of devices. This approach has shown prom-
ising therapeutic potential in several large animal models, including
rabbits,132 dogs,133 pigs,134 and monkeys.135 Particularly, MSC sheets
have shown significant pro-angiogenic, anti-fibrotic, and immuno-
modulatory effects in vivo. BM-MSC sheets have been reported to
enhance angiogenesis and accelerate wound healing.86,136 They also
exhibited regenerative potential for bone and cartilage repair, particu-
larly in growth plate injury.96 After transplantation, BM-MSC sheets
continuously released VEGF and HGF, thus reducing tubular and
endothelial injury and curbing renal fibrosis via microvascular
protection.137

ASC sheets have been thoroughly studied in myocardial infarc-
tion models, demonstrating their ability to promote angiogenesis, sup-
press remodeling and fibrosis, and improve cardiac function.9,132,138

The composite construct made of ASC sheets and embryonic stem
cell-derived cardiac progenitors has demonstrated cardiomyogenic
potential and trophic support, significantly enhancing myocardial
angiogenesis.135 ASC sheet engineering is also used for cutaneous
wound healing and limb ischemia, primarily through neovasculariza-
tion and anti-fibrosis mechanisms.11,44,56,82,139,140 Treatment of articu-
lar cartilage with ASC sheets result in reduced expression of MMP-1,
MMP-13, and aggrecanase-1.141 Additionally, ASC sheets have been
employed to reinforce anatomical barriers and inhibit fibrosis in appli-
cations such as intestinal anastomosis,142 colorectal anastomosis,143

pancreatic transection stumps,88 and arterial injuries.134 Subcutaneous
grafting of ASC sheets has been shown to increase adiponectin levels,
decrease TNF-a levels, and improve glucose intolerance, indicating
potential for diabetes management.144 Synovial MSC sheets, known
for their efficacy in chondrogenesis, have been utilized to repair carti-
lage defects in porcine models.12,145 Furthermore, tissue engineers
have explored the potential of amniotic MSC sheets for bone and carti-
lage regeneration,59,60 while urine-derived stem cell sheets have
enhanced rotator cuff repair in a canine model by stimulating the for-
mation of enthesis-like tissue.66

B. Clinical trials of stem cell sheets

To summarize clinical trials involving stem cell sheets, we
searched the WHO international clinical trials registry platform
(ICTRP), ClinicalTrials.gov, Japan primary registries network (JPRN)
portal, and European Union Clinical Trials Register. We identified
both unpublished and published trials conducted up to June 2024.
Clinical studies on stem cell sheets and spheroids were compiled in
Table II.

The periodontal ligament (PDL) is rich in stem cells, which hold
promise for autologous transplantation in patients with periodonti-
tis.61,62 In a randomized controlled trial involving 30 subjects with
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periodontitis, one group was treated with artificial bone alone, while
the other group received PDL-derived stem cell sheets combined with
artificial bone. The trial confirmed safety over a 12-month period but
found no significant difference in clinical improvement between the
two groups.146 In another uncontrolled trial, ten subjects receiving
PDL-derived cell sheets showed sustained improvement in clinical
parameters at 6months and no adverse effects over an average follow-
up period of 55months.147

Autologous limbus tissue containing limbal epithelial stem cells
has demonstrated efficacy in managing limbal stem cell defi-
ciency.148,149 In a single-arm trial, autologous limbal epithelial cell
sheets were transplanted in 10 subjects with unilateral limbal stem cell
deficiency. Successful reconstruction was achieved in 60% of subjects
at one year, increasing to 70% at two years, significantly surpassing
outcomes observed with allogeneic limbal transplantation. Regarding
visual acuity, 50% of the subjects showed improvement at one year,
with this figure rising to 60% at two years. No clinically significant
adverse events related to cell sheet transplantation was reported.216

C. Preclinical animal models of stem cell spheroids

Stem cell-based spheroid therapy has emerged as a potent tool in
regenerative medicine, demonstrating superior therapeutic effects. The
safety and efficacy of this approach have been rigorously evaluated and
compared to single-cell suspensions in various animal models, includ-
ing rabbits and pigs. These 3D structures not only exhibit enhanced
therapeutic potential but also demonstrate efficacy in enhancing
wound healing, treating bone and osteochondral defects, and manag-
ing cardiovascular diseases. Integrating these innovative approaches
into translational research holds immense promise for enhancing clini-
cal outcomes, offering a more reproducible and effective strategy for
cell-based therapies. For instance, studies have successfully highlighted
the regenerative potential of BM-MSC spheroids in cartilage and sub-
chondral bone repair, offering accelerated healing in osteochondral
defect models.150,151 Similarly, synovial MSCs, renowned for their
chondrogenic capabilities, have been shown useful in repairing carti-
lage defects in animal models.152 Additionally, ASC spheroids have
been effectively delivered to the myocardium via transcatheter injec-
tion to enhance cardiac repair.153

D. Clinical trials of stem cell spheroids

Based on our review of clinical trials focusing on MSC therapies,
particularly MSC spheroids, it is evident that while intravascular

infusion has been extensively studied for various MSC therapies, trials
specifically involving MSC spheroids are relatively limited. One signifi-
cant concern in the clinical application of MSC spheroids is the throm-
botic risk associated with intravascular MSC infusion.154 In a
preclinical trial involving monkeys, human MSC spheroids, approxi-
mately 450lm in diameter, were intravenously administered to assess
safety and distribution. Remarkably, these spheroids persisted in the
bloodstream for over one hour, contrasting with dissociated cells,
which tended to accumulate primarily in the lungs. Importantly, dur-
ing a 60-day observation period, none of the 19 monkeys experienced
fatalities or detectable physiological changes, suggesting a potential
safe application of MSC spheroid therapy in humans.155

In a phase I uncontrolled trial, researchers examined the efficacy
and safety of intradiscal ASC spheroids combined with hyaluronic acid
injection in a cohort of eight patients with discogenic low back pain.156

These spheroids showed promising outcomes when initially primed
with matrilin-3, a protein known to enhance the expression of collagen
II and aggrecan. Six subjects reported reduced pain scores at six
months, and four showed radiological improvements by the modified
Pfirrmann grading system. Importantly, no adverse events were
reported during the study period.156

Moreover, in the realm of degenerative retinal diseases, clinical
trials involving suprachoroidal injection of umbilical cord-derived
MSCs (UC-MSCs) have demonstrated effectiveness and safety in
patients with retinitis pigmentosa (RP).157,158 In an uncontrolled trial
involving 15 RP patients, suprachoroidal implantation of UC-MSC
spheroids led to improvements in best-corrected visual acuity
(BCVA), visual field (VF), and multifocal electroretinogram (mfERG)
recordings over a six-month follow-up period. Significant improve-
ments in BCVA were observed compared to fellow eyes at one, three,
and six months.159

VII. RECENT ADVANCES AND EMERGING
TECHNOLOGIES
A. Bioprinting and bioreactors

Bioprinting technologies have been applied in tissue engineering
to enable precise deposition of cells and biomaterials to construct
complex structures for personalized implants.160 Techniques like
micro-extrusion, inkjet, and laser assistance allow for the creation of
microtissues, which offer greater regenerative potential compared to
single-cell suspensions, though residual biomaterials remain in the
spheroids.161 Bioprinting more sophisticated and large tissues with
robust mechanical properties requires the combination of multiple

TABLE II. A summary of clinical trials/studies employing 3D scaffold-free stem cell culture methods.

Target tissue Stem cell construct Model tested References

Periodontal tissue PDL-derived stem cell sheet Periodontitis 146
PDL-derived cell sheet Periodontitis 147

PDL-MSC sheet Periodontitis jRCT2090220391, UMIN000034310
Corneal epithelium Limbal epithelial cell sheet Unilateral limbal stem cell deficiency 216NCT04773431, KCT0004741
Articular cartilage ASC spheroid Knee osteoarthritis NCT04773431, KCT0004741,

jRCTb050200097, jRCTb050220148
Lumbar disc ASC spheroid Discogenic low back pain 156
Retinal tissue UC-MSC spheroid Retinitis pigmentosa 159
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bio-fabrication tools and materials.162 Micro-extrusion printing, driven
by pneumatic or mechanical forces, is particularly effective in dispensing
spheroids to form these microtissues. Innovative approaches involve
placing spheroids in molds to create columnar structures for repairing
bone defects, aided by computer-aidedmoldmanufacturing.163

Bioinks, composed of bioprintable materials like hydrogels, bio-
degradable polymers, cell aggregates, synthetic polymers, and decellu-
larized extracellular matrix components, play a critical role in
modulating cellular behavior within tissue-engineered scaffolds.164

Over the past decade, composite approaches using 3D printing have
been extensively explored to fabricate vascularized organoids. For
instance, Liu et al. developed cardiac microtissues by combining early
vascular cells (EVCs) and cardiomyocytes, facilitating in situ vascular
differentiation and self-assembly to form vascular networks within
engineered tissues.165 This EVC spheroid-laden cardiac patch presents
an innovative therapeutic option for myocardial infarction. Similarly,
Puistola et al. used decellularized ECM in corneal stroma-specific bio-
ink, integrating it with ASC-derived corneal stromal keratocytes to cre-
ate corneal stroma structures without needing donor corneas. The
cost-effective approach is expected to enhance the accessibility and
efficiency of treatments for corneal blindness.166

The Kenzan bioprinting method represents a high-resolution,
scaffold-free approach to cell-only 3D bioprinting, where spheroids
serve as the printing units. In this method, a Kenzan array, consisting
of needles arranged in a cuboid formation, acts as a 3D framework for
spheroid deposition. Each spheroid is precisely impaled onto a needle
at a specific depth, allowing it to fuse with neighboring spheroids in a
defined spatial layout. Post-printing, the needle array is removed, leav-
ing the 3D structure to mature in bioreactors, which also help maintain
the integrity of the fused spheroids. The Kenzan method has success-
fully printed gingival MSC spheroids for osteogenic applications and
constructed 3D nerve structures for nerve regeneration.167,168

However, challenges persist, particularly in preventing the disintegra-
tion of partially fused spheroids during needle array removal.

Bioreactors play a pivotal role in tissue engineering by providing
a dynamic culture environment that supports stem cell growth and dif-
ferentiation.169 These biomimetic conditions optimize oxygen and
nutrient delivery, overcoming diffusion barriers and facilitating tissue
maturation and functionality of 3D stem cell constructs. This approach
offers an optimal microenvironment for developing large-scale engi-
neered tissues with enhanced therapeutic potential.

B. Integration with biomaterials

Biomaterials play a crucial role in mimicking the native ECM and
providing mechanical strength. Biodegradable transfer membranes
such as SeprafilmVR 136 and PGA sheets,61,62,133 have been used in ani-
mal studies to aid in the transplantation of cell sheets. For instance,
artificial bone combined with stem cell sheets has been successfully
employed to regenerate bone and periodontal tissues.61,170 Similarly,
combining BM-MSC spheroids with basement membrane matrices or
artificial bones has shown benefits in bone regeneration.171

The injection of spheroids often results in a low rate of cell reten-
tion at the targeted sites. Biomaterials address this challenge by facili-
tating the grafting of stem cells into target tissues, ensuring sustained
delivery of critical cytokines and growth factors. For example, a biode-
gradable cardiac patch composed of poly (ester carbonate urethane)
urea, in conjunction with ECM hydrogels and ASC sheets, enhanced

stem cell engraftment, cardiac function, and angiogenesis in a myocar-
dial infarction model compared to ASC alone.172 Biodegradable pock-
eted patches constituted of PEG and polycaprolactone, combined with
bio-sealant, supported the transplantation of ASC spheroids onto the
heart surface.173 Moreover, acellular dermal matrix, a biocompatible
material specializing in skin repair, can effectively deliver ASC sphe-
roids in vivo.174 It provides a supportive scaffold that enhances the via-
bility and integration of ASC spheroids, improving therapeutic
outcomes in wound healing applications.

C. Genetic modifications

Specific genes play pivotal roles in enhancing cellular functions
and amplifying therapeutic outcomes in tissue engineering. For
instance, researchers have engineered BM-MSCs to overexpress tro-
phic factors like HGF or VEGF, significantly boosting their paracrine
effects.175 This genetic modification not only increases proliferation
and enhances the expression of these factors in vitro but also stimulates
angiogenesis, improves cardiac function, and prevents hypoxia-
induced apoptosis when cell are delivered intramyocardially. Similarly,
BM-MSC sheets overexpressing VEGF-A via lentiviral transduction
have shown enhanced angiogenesis and reduced fibrosis.176

Baculovirus-mediated gene delivery for VEGF overexpression in ASC
sheets also demonstrated therapeutic benefits in myocardial infarction
and ischemic limb models.132,177 HGF-overexpressing ASC sheets
delivered via adeno-associated viral vector serotype DJ (AAV-DJ) have
promoted vascularization and neuroprotection while attenuating
necrosis and fibrosis in ischemic limb models.178 AAV-DJ is also effec-
tive in introducing multiple trophic factors into ASC sheets, leading to
better preservation of viable myocardium compared to non-
transduced ASC sheets in myocardial infarction models.179

In spinal cord injury (SCI) models, MSC spheroids engineered to
express brain-derived neurotrophic factors (BDNF) through pCAGGS
vector incorporation have shown improved motor function recovery
and reduced neuronal loss.180 Moreover, BM-MSCs derived from the
SB623 cell line, known for increased production of angiogenic and
neuroprotective factors compared to unprocessed BM-MSCs, have
been used in clinical trials for ischemic strokes (NCT02448641).181

Transplantation of SB623 cell sheets in ischemic cardiomyopathy
models has demonstrated improved cardiac function by promoting
angiogenesis.182

D. Biophysical modifications

Biophysical modifications, such as hypoxic conditions and
photo-biomodulation, significantly influence stem cell behavior and
enhance tissue regeneration. For instance, BM-MSCs cultured under
3% oxygen exhibit decreased replicative senescence and enhanced
chondrogenesis, mediated by the PI3K/AKT pathway and HIF-1a.183

ASCs under similar hypoxic conditions also showed increased viability,
prevention of apoptosis, and elevated expression of growth factors like
VEGF, FGF2, and HIF-1a.184,185 Hence, hypoxia-preconditioned BM-
MSC sheets have demonstrated improved therapeutic efficacy in myo-
cardial infarction models, enhancing cardiac function, angiogenesis,
and reducing infarct size compared to unconditioned sheets.136

Hypoxic preconditioning of ASC sheets enhanced the expression of
pro-angiogenic factors such as VEGF and FGF2,186 while modulating
HGF expression and a1-adrenergic receptor sensitivity.187 Similarly,
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both BM-MSC and ASC spheroids exhibit enhanced chondrogenesis
and increased secretion of ECM proteins, VEGF, and FGF2 under
hypoxic conditions.188 Hypoxia-preconditioned UCB-MSC spheroids,
specifically, upregulated anti-apoptotic gene Bcl-2,189 while ASC sphe-
roids exhibited higher HIF-1a expression, indicative of their pro-
angiogenic potential.8

Photo-biomodulation, a noninvasive light therapy that uses spe-
cific wavelengths of light to enhance cellular functions, has been shown
to strengthen the biological properties of ASC spheroids, including
survival rate after transplantation, secretion of pro-angiogenic factors,
and promotion of angiogenesis in an ischemic limb model.190

Consistent results were observed in another skin flap ischemia model,
where ASC spheroids were exposed to 660nm LED light for 10min
before grafting.191

VIII. CHALLENGES AND FUTURE PROSPECTS

Generating 3D organoids for tissue engineering has made tre-
mendous progress in the past decades, but these organoids are often
confined to thin-layer tissues such as corneas and cartilage.192 The
abundant ECM within stem cell spheroids or sheets can offer suitable
microenvironment for cellular morphogenesis and regeneration. A
critical challenge is ensuring angiogenesis in host tissues post-
transplantation to provide a stable and continuous supply of nutrients
and oxygen. Pre-vascularization, achieved by seeding human umbilical
vein endothelial cells on MSC sheets, has shown potential for forming
and integrating new vessels with host vasculature.193,194 Various strate-
gies for constructing pre-vascularized tissues have been employed to
mimic the physiological microvascular network,195 establishing sub-
stantial foundation for long-term functionality following transplanta-
tion. Moreover, the addition of multiple angiogenic growth factors to
3D-cultured MSCs showed synergistic effects on angiogenesis for
improving tissue repair.196 Similarly, the integration of spheroids of
the same source on ASC sheets can augment the angiogenic capability
of sheets, providing scaffold-free composites for ischemic tissue
regeneration.119

Achieving reproducible and cost-effective stem cell products is
crucial for translational medicine. Large-scale production requires effi-
cient cell expansion systems, such as cell suspension cultures in bio-
reactors, and automated manufacturing processes.197 Clinical-grade
cell products must comply with good manufacturing practices and reg-
ulatory standards, with potency assessments ensuring their functional
effectiveness.198 Currently, the high cost and time involved in
manufacturing autologous cell sheets and spheroids limit their clinical
use. Increasing evidence supports the efficacy of allogenic stem cell
transplantation, paving the way for ready-to-use products in regenera-
tive medicine.198 Cryopreservation of 3D stem cell constructs may fur-
ther facilitate their clinical application, but maintaining cell viability
remains a significant hurdle.93

By integrating heterotypic cells or innovative technology, such as
nanomedicine and microfluidics, we can significantly enhance their
limited potential and accurately simulate the microenvironment of tar-
geted lesions, thus bringing promising future in 3D tissue engineer-
ing.195,199,200 Moreover, genetic and biophysical modifications of stem
cells have unlocked their therapeutic potential but raise ethical and
technical challenges. Genetic modifications can lead to instability and
ethical concerns, while biophysical adjustments require specialized
expertise and equipment. Continued research to address these limita-
tions will be essential for the future of scaffold-free culture systems in

regenerative medicine and biomedical research. After overcoming
these challenges, stem cell-based 3D tissue engineering can be
advanced to offer new options for effective and efficient regenerative
therapies.
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