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Aims/hypothesis—Our study aimed to integrate maternal metabolic and genetic data related to 

insulin sensitivity during pregnancy to provide novel insights into mechanisms underlying 

pregnancy-induced insulin resistance.

Methods—Fasting and 1 h serum samples were collected from women in the Hyperglycemia and 

Adverse Pregnancy Outcome Study who underwent an OGTT at ~28 weeks’ gestation. We 

obtained targeted and non-targeted metabolomics and genome-wide association data from 1600 

and 4528 mothers, respectively, in four ancestry groups (Northern European, Afro-Caribbean, 

Mexican American and Thai); 1412 of the women had both metabolomics and genome-wide 

association data. Insulin sensitivity was calculated using a modified insulin sensitivity index that 

included fasting and 1 h glucose and C-peptide levels after a 75 g glucose load.

Results—Per-metabolite and network analyses across the four ancestries identified numerous 

metabolites associated with maternal insulin sensitivity before and 1 h after a glucose load, 

ranging from amino acids and carbohydrates to fatty acids and lipids. Genome-wide association 

analyses identified 12 genetic variants in the glucokinase regulatory protein gene locus that were 

significantly associated with maternal insulin sensitivity, including a common functional missense 

mutation, rs1260326 (β=−0.2004, p=4.67×10−12 in a meta-analysis across the four ancestries). 

This SNP was also significantly associated with multiple fasting and 1 h metabolites during 

pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate and 1 h lactate, 2-

ketoleucine/ketoisoleucine and palmitoleic acid. Mediation analysis suggested that 1 h palmitoleic 

acid contributes, in part, to the association of rs1260326 with maternal insulin sensitivity, 

explaining 13.7% (95% CI 4.0%, 23.3%) of the total effect.

Conclusions/interpretation—The present study demonstrates commonalities between 

metabolites and genetic variants associated with insulin sensitivity in the gravid and non-gravid 

states and provides insights into mechanisms underlying pregnancy-induced insulin resistance.

Graphical Abstract
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Introduction

Human pregnancy is characterised by decreased insulin sensitivity with accompanying beta 

cell compensation to help meet maternal metabolic needs and ensure fetal growth and 

development. In the first trimester, maternal insulin sensitivity improves slightly but 

decreases by 30–70% in the second and third trimesters [1]. Secretion of adipokines (e.g. 

leptin) and cytokines (e.g. TNF-α, IL-6 and IL-1β), oxidative stress and, possibly, the gut 
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microbiome contribute to pregnancy-induced insulin resistance [2], although understanding 

of pregnancy-induced insulin resistance is incomplete. Integration of multiple approaches, 

e.g. genetics and metabolomics, could help to identify underlying contributors to pregnancy-

induced insulin resistance.

Dysregulation of interrelated pathways of glucose, lipid and amino acid metabolism 

contribute to insulin resistance in the non-gravid state. For example, human and animal 

studies have demonstrated a role for branched-chain amino acids (BCAAs) and their 

metabolic by-products as both a biomarker and causal agent of insulin resistance [3], while 

epidemiology studies have demonstrated accumulation of acylcarnitines and altered fatty 

acid and lipid metabolism in obesity-induced insulin resistance [4]. To date, metabolomics 

data related to pregnancy-induced insulin resistance are limited, and whether changes similar 

to those observed in non-pregnant cohorts are present is unclear.

Genome-wide association studies (GWAS) have identified genetic loci contributing to 

insulin resistance in non-gravid cohorts [5], but GWAS examining genetic variants 

associated with pregnancy-induced insulin resistance have not been reported. Again, whether 

similar variants are associated with insulin resistance in the gravid and non-gravid states is 

not known.

The goals of the present study were to characterise the maternal metabolome associated with 

insulin resistance during pregnancy before and after a glucose load, identify genetic loci 

associated with insulin resistance during pregnancy, and determine the interrelationship of 

associated genetic variants with the maternal metabolome.

Methods

Participants and data and sample collection

The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study was an observational, 

multinational, epidemiological study conducted from 1999 to 2006 that recruited 25,505 

women to explore associations of maternal glucose levels with adverse pregnancy outcomes 

[6]. All pregnant women <32 weeks’ gestation at 15 field centres in nine countries were 

eligible for enrolment in the HAPO study, except when specific exclusion criteria were 

present: (1) age <18 years at the time of the first interview; (2) planning to deliver at another 

hospital; (3) date of last menstrual period uncertain and no ultrasound estimation from 6 to 

24 weeks’ gestation; (4) unable to complete an OGTT by 32 weeks’ gestation; (5) multiple 

pregnancy; (6) became pregnant through assisted reproductive technology; (7) unblinded 

blood glucose testing and/or diagnosis of gestational diabetes mellitus (GDM) during the 

pregnancy prior to enrolment in HAPO; (8) previous diagnosis of diabetes requiring 

treatment with medication outside pregnancy; (9) receiving treatment with oral 

glucocorticoids, thiazide diuretics, β-blockers, ACE inhibitors, phenytoin or antiretroviral 

agents; (10) known to be HIV-positive or to have hepatitis B or C; (11) participation in the 

HAPO study during a previous pregnancy; (12) inability to converse in language(s) used in 

field centre forms without an interpreter. Maternal race/ethnicity was based on maternal self-

report. The HAPO study protocol was approved by the institutional review board of each 

field centre, and all participants gave their informed consent.
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Standardised phenotypic data were collected using a rigidly defined, common protocol 

across field centres. Rigorous training and certification procedures were established for 

research personnel to ensure data accuracy and reliability and consistency across field 

centres. Fasting, 1 h and 2 h glucose levels and fasting and 1 h C-peptide levels were 

measured in a central laboratory before and after a 75 g glucose load during an OGTT 

performed between 24 and 32 weeks’ gestation but as close to 28 weeks as possible [7]. The 

OGTT was performed in the morning after at least 3 days of usual diet and physical activity 

and fasting for 8–14 h. Participants consumed a standard 75 g glucose load within 5 min. 

Physical activity during the OGTT was limited to walking in the clinic. Maternal blood 

samples during the OGTT were processed by field centres within 60 min of collection, 

stored at −20°C or −80°C for 1–6 weeks, shipped on dry ice to the HAPO central laboratory 

and stored frozen at −80°C until used for the metabolomics assays. A total of 2189 women 

were unblinded because they had glucose values that exceeded predetermined levels during 

the OGTT or failed to complete the study (mainly because they delivered at a different 

hospital), resulting in a final cohort of 23,316 women.

Insulin sensitivity using OGTT glucose and C-peptide (ISOGTT C-pep) values was 

calculated according to the equation of Radaelli et al, with a numerator adjustment for 

scaling: ISOGTT C-pep=1000/√(fasting plasma glucose×fasting C-peptide×G×C), where G and 

C are the means of fasting and 1 h plasma glucose (mmol/l) and C-peptide (μg/l), 

respectively [8]. Maternal height, weight, systolic BP (SBP) and diastolic BP (DBP) were 

measured at the time of OGTT. BP was obtained using an Omron 711 electronic BP monitor 

(Omron Corporation, Japan) after the participant had been seated for ≥5 min. After obtaining 

the BP, the participant was instructed to remain seated and the BP reading was repeated 1–2 

min later. The mean of the two BP measurements was used. Mean BP was calculated using 

the formula: mean BP=1/3×SBP+2/3×DBP. Duplicate height measurements were obtained at 

the time of the OGTT. If the measurements differed by ≥1 cm, a third was taken. Weight was 

measured using a beam balance scale prior to the OGTT. A duplicate measurement was 

obtained, and a third measurement was obtained if the two measures differed by more than 

0.5 kg. The woman’s age, pre-pregnancy weight, gestational age at the time of the OGTT, 

family history of diabetes and hypertension, ethnic group and history of cigarette smoking 

and alcohol consumption were obtained from the participant questionnaire.

Targeted and non-targeted metabolomics data from 1600 HAPO mothers, including 400 

women each from Afro-Caribbean, Northern European, Mexican American and Thai 

cohorts, were obtained on maternal serum samples collected at ~28 weeks’ gestation at the 

time of the HAPO study OGTT as described [9]. Mothers were sampled to span the range of 

maternal glucose and BMI. Genome-wide SNP data were obtained from 4528 HAPO 

mothers, including 1126 Afro-Caribbean, 1380 Northern European, 830 Mexican American 

and 1192 Thai mothers [10]. A total of 1412 women had both metabolomics and genome-

wide SNP data available.

Conventional clinical, targeted and non-targeted metabolite measurements

Conventional clinical and targeted metabolites present in maternal serum were measured as 

described [9, 11]. Specifically, conventional clinical metabolites were measured using 
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standard enzymatic chemistries on a Beckman Coulter Unicell DxC 600 clinical analyser 

(Beckman Coulter, USA). These metabolites included triacylglycerols, NEFA, lactate, 

glycerol and 3-hydroxybutyrate (3-OHB).

Targeted panels of amino acids and acylcarnitines were analysed by flow injection, 

electrospray-ionisation tandem MS and quantified by isotope or pseudo-isotope dilution 

using a Waters TQ triple quadrupole mass spectrometer, equipped with an Acquity LC 

system and with data handling in the MassLynx 4.1 environment (Waters Corporation, 

USA). In total, 64 conventional and targeted metabolites were analysed.

Non-targeted assays were performed using GC-MS as described [11]. Briefly, serum 

samples were extracted with methanol that was spiked with a retention time-locking internal 

standard of perdeuterated myristic acid. After methanol extraction, drying and derivatisation 

by methoximation and trimethylsilylation, samples were run in daily batches of 11 matched 

pairs of fasting and 1 h OGTT sera on a 7890B GC/5977B MS (Agilent Technologies, 

USA). Each batch also included three injections of a quality control (QC) sample and a 

process blank. QC samples consisted of uniform pools generated from aliquots of all sera in 

the study and were injected at the beginning, middle and end of each batch. GC-MS peaks 

were deconvoluted with AMDIS freeware (http://www.amdis.net/) [12] and annotated using 

the Agilent Fiehn GC-MS Metabolomics RTL Library [13] with additions from the 

laboratory at Duke University School of Medicine. QC data were used for batch correction 

to account for sensitivity variation on a feature-specific basis, and batch correction was 

performed as described using the metabomxtr R package (version 1.22.0) [14, 15]. In total, 

71 non-targeted metabolites that were not available in the conventional clinical and targeted 

metabolite assays were included in the final analyses. These were reported in relative terms 

as AMDIS-deconvoluted, integrated peak areas (amdis.net), which were then log2 

transformed. Thus, a total of 135 metabolites (conventional clinical, targeted and non-

targeted metabolites) were included in the final analyses.

Genome-wide genotyping and imputation

The approach for genome-wide genotyping and QC has been described [10]. In brief, Afro-

Caribbean and Mexican American DNA samples were genotyped using the Illumina 

HumanOmni1M-Duo v3B SNP array (Illumina, USA), Northern European samples using 

the Illumina Human610-Quad v1B SNP array at the Broad Institute (Cambridge, MA, 

USA), and Thai samples using the Illumina HumanOmni1-Quad v1–0B SNP array at the 

Center for Inherited Disease Research (Baltimore, MD, USA) following agreed-upon 

protocols of the Gene, Environment Association Studies Consortium [16]. For the final 

analyses, exclusion criteria for samples and SNPs included poorly performing samples, 

misspecified sex, chromosomal anomalies, unintended sample duplicates, sample 

relatedness, low call rate, high number of Mendelian errors, departures from Hardy–

Weinberg equilibrium (<1×10−4), duplicate discordance, sex differences in heterozygosity, 

low minor allele frequencies (<0.01) and/or low imputation quality score (<0.75) [10].

Genotype imputation was performed on the Michigan Imputation Server using Minimac3 

(version 2.0.1) [17] and the Consortium on Asthma among African-ancestry Populations in 

the Americas reference panel for Afro-Caribbean samples [18], the Haplotype Reference 
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Consortium v.r1–1 reference panel for European ancestry samples [19] and the 1000 

Genomes phase 3 v5 reference panel for Mexican American and Thai samples [20]. 

Consistent strand assignments between the reference dataset and the QC-cleaned and -

filtered datasets were ensured using the strand-checking utility of Minimac3. Strand was 

corrected and/or SNPs were removed where strandedness could not be resolved. The HAPO 

mother’s genotype was then imputed to the above reference panels. We used a conservative 

allelic r2 threshold of 0.9 to remove unreliably imputed SNPs. A total of 6,168,240 SNPs 

were analysed in meta-analyses across the four ancestry groups.

Data analysis

Per-metabolite analysis—Acylcarnitines and 3-OHB levels were log-transformed before 

analysis to satisfy normality. Distributions of the other targeted metabolites were sufficiently 

normal, as were non-targeted metabolites following log2 transformation. Outlying 

metabolite values, defined as ≥5 SDs from the mean, and data from three women with more 

than ten outlying metabolites were excluded from the statistical analysis.

For targeted metabolites, per-metabolite linear regression models were used to estimate 

associations between insulin sensitivity and metabolites within each ancestry group. 

Regression models included adjustment for maternal mean arterial pressure, age and 

gestational age at the OGTT, field centre, newborn sex, and sample storage time (model 1), 

model 1 + maternal BMI at OGTT (model 2), model 1 + parity (model 3) and model 3 + 

maternal BMI at OGTT (model 4). For analysis of non-targeted metabolites, a mixture 

model approach [15], which considered both the levels of metabolites with detectable values 

and frequency of samples with undetectable values, was used to estimate the association of 

non-targeted metabolites with insulin resistance. The mixture model relies on a joint 

statistical likelihood of the presence or absence of a metabolite in each sample using a 

logistic model and, if present, its continuous abundance using a normal distribution for the 

log2-transformed MS peak areas. The statistical likelihood is then maximised to calculate β 
estimates representing association with phenotypes. Bootstrap sampling was used to 

determine SEs of the β estimates. Separate analyses were conducted for fasting and 1 h 

metabolite levels and for the change in metabolite levels from fasting to 1 h.

Random effects meta-analysis of within-ancestry results [21] was used to examine 

associations of maternal metabolites with maternal insulin sensitivity, using the metafor R 

package, version 2.0.0 (www.metafor-project.org). Effect heterogeneity across ancestry 

groups was described using I2 statistics and formally tested using Cochran’s Q to test 

whether effects were heterogeneous.

Benjamini–Hochberg false discovery rate (FDR) correction was applied to metabolite 

analyses [22]. A p value <0.05 after FDR adjustment was used to indicate statistical 

significance.

Network analysis—Network analyses using the igraph R package (version 2.0.1) [23] 

were used to model metabolite correlations and their associations with insulin sensitivity as 

described [9]. For these analyses, separate partial correlation networks for metabolites 

associated with insulin resistance were constructed. Nodes represented metabolites, and 

Liu et al. Page 6

Diabetologia. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.metafor-project.org/


edges demonstrated conditional dependence of metabolite pairs. Graphical lasso using the 

glasso R package, version 1.7 (http://CRAN.R-project.org/package=glasso), was applied to 

residuals from linear regression of metabolites on potential confounders to establish a sparse 

estimate of the inverse covariance matrix for all metabolites. The graphical lasso algorithm 

identifies pairs of metabolites that demonstrate partial correlation with each other after 

adjusting for all other metabolites in the network, and it uses a penalty variable to shrink 

very low partial correlations to zero. Thus, the strongest pairwise relationships are retained 

and edges between metabolite pairs are used to represent what is called ‘conditional 

dependence’ in the network [24]. Spinglass clusters represent communities of nodes that are 

more tightly connected to each other than to other nodes in the network [25]. Spinglass 

clustering was applied to the graphical lasso networks to assist with description of 

communities of related metabolites.

Association of SNPs with maternal insulin sensitivity—Association of SNPs with 

maternal insulin sensitivity was determined using linear regression under an additive model 

adjusting for field centre (for Northern European mothers), the first two principal 

components, gestational age (weeks), maternal age, BMI, height, mean arterial pressure, 

parity, smoking (yes/no) and alcohol intake status (yes/no) at the OGTT. SNPTEST, version 

2.5, was used to estimate the β and SE for each regression model and assess the significance 

of the association between SNPs and maternal insulin sensitivity. SE and β were combined 

across the four cohorts using meta-analysis under a fixed-effects model, weighting each 

stratum by sample size. Statistical significance was considered to be p<5×10−8 in the fully 

adjusted model.

Association of SNPs with metabolites—Association of genetic variants with 

metabolite levels was analysed using linear regression under an additive model adjusting for 

field centre (for Northern European mothers), the first two principal components, gestational 

age (weeks), maternal age, BMI, height, mean arterial pressure and fasting plasma glucose at 

OGTT for fasting metabolites (1 h plasma glucose at OGTT for 1 h metabolites). SNPTEST, 

version 2.5, was used as described above. Since 135 metabolites were analysed, a 

Bonferroni-corrected p value <0.05 was considered statistically significant.

Mediation analysis—Structural equation modelling was used to evaluate mediation 

models using the lavaan, version 0.6–4 [26], R package in R-3.5.3. Simple mediation models 

were controlled for field centre (for Northern European mothers), first two principal 

components, gestational age (weeks), maternal age, BMI, height, mean arterial pressure, 

parity, smoking (yes/no) and alcohol intake status (yes/no) at OGTT, and fasting plasma 

glucose for fasting metabolites (1 h plasma glucose for 1 h metabolites). The aim of 

mediation analysis was to explore whether association of the SNP rs1260326, which is in 

GCKR and encodes glucokinase regulatory protein (GKRP), with maternal insulin 

sensitivity is mediated through specific metabolites. This was done by quantifying the direct 

and indirect relationships between the independent variable (rs1260326), mediator (specific 

metabolites) and dependent variable (maternal insulin sensitivity). A p value <0.05 was 

considered significant in these exploratory analyses.
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Results

Study population

Maternal demographic data for the 4528 HAPO mothers included in the genome-wide SNP 

analyses [10] and 1600 HAPO mothers in the metabolomics analyses [9] were reported 

previously (electronic supplementary material [ESM] Tables 1 and 2, respectively).

Targeted and non-targeted metabolites associated with insulin sensitivity

Per-metabolite analysis—Initial analyses examined the association of maternal insulin 

sensitivity at ~28 weeks’ gestation with individual metabolite levels, both fasting and 1 h 

after a glucose load (Fig. 1; ESM Tables 3–5). Meta-analyses across the four ancestry groups 

demonstrated an inverse association of multiple fasting metabolites with maternal insulin 

sensitivity in model 4 (Fig. 1; ESM Table 4), including BCAAs, carnitine esters of their 

catabolites, BCAA-derived ketoacids and a BCAA-derived metabolic by-product, glutamate/

glutamine, similar to what has been described in obese, insulin-resistant, non-pregnant 

adults [27, 28]. Additional amino acids inversely associated with insulin sensitivity included 

the aromatic amino acids tyrosine and phenylalanine as well as alanine, proline and its 

metabolite hydroxyproline, arginine, histidine and asparagine/aspartate. Other notable 

inversely associated metabolites included lactate, pyruvate, triacylglycerols, 2-

hydroxybutyrate, docosanoyl carnitine (C22) and erythritol/threitol. Fasting metabolites 

positively associated with insulin sensitivity included multiple saturated and unsaturated 

short-, medium- and long-chain acylcarnitines as well as the non-proteinogenic amino acid 

ornithine, fatty acid palmitoleic acid and monosaccharide 1,5-anhydroglucitol.

Similar analyses identified metabolites associated with maternal insulin sensitivity 1 h after 

a glucose load (Fig. 1; ESM Table 5). With some exceptions, 1 h metabolites associated with 

insulin sensitivity were similar to those associated in the fasting state. This included inverse 

associations of valine, its ketoacid, carnitine esters derived from BCAA metabolism, 

glutamate/glutamine as well as the aromatic amino acid phenylalanine. Additional amino 

acids inversely associated with insulin sensitivity included proline and hydroxyproline, 

alanine, arginine and asparagine/aspartate. One hour glycine levels were positively 

associated with insulin sensitivity as were ornithine levels. Compared with the fasting state, 

a more limited number of long-chain, unsaturated acylcarnitines (C16:1, C18:1-DC, C20:4) 

were positively associated with insulin sensitivity. Similar to the fasting state, 1,5-

anhydroglucitol was positively associated and erythritol/threitol inversely associated with 

insulin sensitivity. Additional sugars, including fructose and gluconate, were inversely 

associated with insulin sensitivity as were pyruvate, lactate and 2-hydroxybutyrate. Glycerol 

1-phosphate was positively associated with insulin sensitivity, while triacylglycerols and 

additional lipid-related metabolites, including NEFA, the fatty acids decanoate and laurate, 

3-OHB and glycerol, were inversely associated with insulin sensitivity. These latter features 

are consistent with a model in which more insulin-resistant individuals are less able to 

suppress peripheral lipolysis during a glucose challenge, resulting in higher levels of 

products of lipid mobilisation such as NEFA, ketones and glycerol. This may in turn 

influence glucose homeostasis by altering hepatic acetyl-CoA levels to promote 

gluconeogenesis [29].
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The change in levels of a limited number of metabolites from fasting to 1 h following a 

glucose load was associated with maternal insulin sensitivity (ESM Fig. 1, ESM Table 6). 

This included an inverse association of the change in level of lipid-related metabolites, 

including triacylglycerols, glycerol, NEFA and 3-OHB, as well as the BCAA metabolite 

acylcarnitine C5. The change in level of a number of medium- and long-chain acylcarnitines 

was positively associated with insulin sensitivity.

Power was limited to examine fasting and 1 h metabolites associated with insulin sensitivity 

within each ancestry group. However, these exploratory analyses did demonstrate 

differences in the metabolites that reached statistical significance in their association with 

insulin sensitivity within the different ancestry groups (ESM Fig. 2, ESM Tables 4–6). 

Prominent among these were differences in the acylcarnitines that reached statistical 

significance in the different ancestry groups.

Network analysis—Recognising that dependencies exist among metabolites, network 

analyses were conducted to better characterise joint associations of maternal insulin 

sensitivity with fasting and 1 h metabolites (Fig. 2). These analyses allow for visualisation of 

individual significant metabolite–phenotype associations in the context of a larger metabolite 

environment. Spinglass clusters, representing communities of metabolites more tightly 

connected to each other than to other metabolites in the network, were also identified [25].

The network of fasting metabolites associated with maternal insulin sensitivity in the fully 

adjusted model included 14 spinglass clusters, most of which were composed of 

acylcarnitines or amino acids. By contrast, the network of 1 h metabolites included a more 

diverse group of spinglass clusters with clusters of acylcarnitines and amino acids, together 

with clusters of lipid-related metabolites and carbohydrates.

SNPs associated with insulin sensitivity and metabolites during pregnancy

We performed a GWAS using genome-wide SNP data from 4528 HAPO mothers in four 

ancestry groups to identify genetic variants associated with maternal insulin sensitivity at 

~28 weeks’ gestation. In a meta-analysis across the four ancestry groups, 12 variants in the 

GCKR locus which were in linkage disequilibrium demonstrated a genome-wide significant 

association (p<5×10−8) with maternal insulin sensitivity (Fig. 3; ESM Tables 7, 8). These 

variants included rs1260326, which encodes a functional missense mutation (P446L). With 

proline (encoded by the C allele of rs1260326) as opposed to leucine (encoded by the T 

allele of rs1260326) at position 446, GKRP responds more robustly to fructose-6-phosphate, 

resulting in more avid binding of glucokinase to GKRP (with a resulting decrease in 

glucokinase activity) [30, 31].

As rs1260326 is thought to be the functional SNP that accounts for association of the 

pleiotropic GCKR locus with multiple metabolic phenotypes [31], its association with the 

levels of fasting and 1 h metabolites associated with insulin sensitivity was examined (Table 

1; ESM Table 9). In a meta-analysis across the four ancestries, the C allele of rs1260326 

demonstrated a significantly inverse association with fasting and 1 h triacylglycerols and 2-

hydroxybutyrate as well as 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid. 

The proportion of variation in metabolite levels explained by rs1260326 varied from 4.1% in 
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Northern Europeans to 1.5% in Thais for fasting 2-hydroxybutyrate, from 4.5% in Northern 

Europeans to 2.6% in Mexican Americans for 1 h 2-hydroxybutyrate, from 5.8% in Northern 

Europeans to 0.5% in Thais for fasting triacylglycerols, from 4.8% in Northern Europeans to 

0.4% in Thais for 1 h triacylglycerols, from 3.2% in Northern Europeans to 0.7% in Afro-

Caribbeans for 1 h 2-ketoleucine/ketoisoleucine, from 4.1% in Mexican Americans to 1.4% 

in Thais for 1 h lactate, and from 2.3% in Northern Europeans to 0.3% in Thais for 1 h 

palmitoleic acid.

Mediation analysis

We next tested whether the metabolites associated with both maternal insulin sensitivity and 

rs1260326 (fasting and 1 h triacylglycerols and 2-hydroxybutyrate; 1 h lactate, 2-

ketoleucine/ketoisoleucine and palmitoleic acid) mediated, in part, the relationship between 

rs1260326 and maternal insulin sensitivity (Fig. 4; ESM Table 10). Given the cross-sectional 

nature of the data, these analyses reflected hypothesised directionality of associations.

In structural equation models, the association of rs1260326 with 1 h palmitoleic acid was 

statistically significant (β=−0.19, SE=0.047, p=5.78×10−5), as was the association of 1 h 

palmitoleic acid with maternal insulin sensitivity (β=0.16, SE=0.029, p=3.21×10−8). The 

indirect effect of rs1260326 on maternal insulin sensitivity through 1 h palmitoleic acid was 

also statistically significant (β=−0.030, SE=0.0092, p=1.14×10−3), as was the direct effect of 

rs1260326 on maternal insulin sensitivity with 1 h palmitoleic acid modelled as the 

hypothesised mediator (β=−0.19, SE=0.049, p=1.32×10−4). The total direct effect for 

rs1260326 on maternal insulin sensitivity yielded regression coefficients of greater 

magnitude than the model that included the hypothesised mediator 1 h palmitoleic acid (β=

−0.22, SE=0.050, p=1.06×10−5). These results suggest that 1 h palmitoleic acid mediates, in 

part, the relationship between rs1260326 and maternal insulin sensitivity, accounting for 

13.7% (95% CI 4.0%, 23.3%) of the total effect size for rs1260326.

For some metabolites, the indirect effects in structural equation models reached significance 

for rs1260326 (fasting 2-hydroxybutyrate, fasting and 1 h lactate and triacylglycerols). 

However, the direct effect of rs1260326 on maternal insulin sensitivity was larger than the 

total effect and had an opposite direction compared with the indirect effect. This suggests 

that these metabolites had a suppressive effect on the relationship between rs1260326 and 

maternal insulin sensitivity.

Discussion

Metabolomic profiling to better define pregnancy-induced insulin resistance has received 

limited attention. Previously, we reported the association of targeted and conventional 

clinical metabolites with maternal insulin sensitivity at ~28 weeks’ gestation [32]. We have 

now expanded on those results through inclusion of non-targeted metabolites and analyses of 

metabolic networks. Together, the targeted assays of acylcarnitines, amino acids and 

conventional clinical metabolites, and non-targeted assays, cover the small molecules in the 

major human bioenergetics pathways, including glycolysis, the Krebs cycle, ketones, β- and 

ω-oxidation of fatty acids, and catabolism of amino acids. The non-targeted metabolites also 

provide some insight into metabolism of diverse small sugars, sugar alcohols, sugar acids, 
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purines, pyrimidines and certain botanical foodstuffs and gut-microbial metabolites that 

enter the human circulation. Integration of genetic and metabolomics data in the present 

study demonstrated that one metabolite associated with maternal insulin sensitivity, 

palmitoleic acid, mediates, in part, the association of a genetic variant with insulin 

resistance.

We observed an association of higher levels of BCAAs, their branched-chain ketoacids and 

metabolic by-products with maternal insulin resistance, similar to that of the non-gravid 

state [27, 28]. In the non-gravid state, it has been hypothesised that BCAA accumulation 

contributes to insulin resistance by inducing incomplete oxidation of fatty acids in skeletal 

muscle [33]. Consistent with that, Zucker obese rats fed a standard chow/BCAA-restricted 

diet shifted from glucose to fatty acid oxidation in the heart compared with Zucker obese 

rats maintained on a standard chow diet [34]. Whether a similar mechanism holds in 

pregnancy is not known. In non-gravid cohorts, aromatic amino acids were also associated 

with insulin resistance [27]. Previously, phenylalanine, but not tyrosine, was shown to be 

associated with fasting C-peptide during pregnancy [35], consistent with our finding that 

phenylalanine was associated with maternal insulin resistance. In our study, tyrosine, the 

initial product of phenylalanine catabolism, was also associated with insulin resistance. In 

contrast to a previous study [36], we also demonstrated an association of histidine, a 

precursor of glutamate and α-ketoglutarate, with maternal insulin resistance.

The extent to which the mechanisms underlying insulin resistance in pregnancy differ from 

those of the non-gravid state is not known [37]. Numerous metabolites are associated with 

insulin resistance in both gravid and non-gravid cohorts; however, one notable difference is 

the acylcarnitines. Accumulation of acylcarnitines, which can either reflect mitochondrial 

dysfunction or increased rates of fatty acid oxidation, is associated with insulin resistance in 

non-gravid cohorts: for example, medium-chain but not short- and long-chain acylcarnitines 

were associated with insulin resistance in non-pregnant populations [38, 39]. Here we found 

that short-, medium- and long-chain acylcarnitines were positively associated with maternal 

insulin sensitivity during pregnancy, suggesting differences in the association of 

acylcarnitines with insulin sensitivity in the pregnant vs the non-pregnant state. Better 

understanding of the mechanistic significance of this finding will require examination of 

acylcarnitine levels in tissue biopsies. For example, in skeletal muscle of rodent models of 

obesity, increases in a broad array of acylcarnitines were accompanied by decreased 

tricarboxylic acid cycle intermediates, indicative of impaired mitochondrial fatty acid 

metabolism [4]. This lesion may not be present in maternal skeletal muscle during 

pregnancy.

Candidate gene and GWAS have identified genetic variants associated with insulin 

resistance in the non-gravid state, including variants in GCKR [5, 40]. Here we performed a 

GWAS to identify SNPs associated with insulin sensitivity in pregnancy, which, to our 

knowledge, has not been previously reported. Multiple SNPs within GCKR reached 

genome-wide significance. The modest size of the cohort likely limited power; thus, 

additional loci may await identification in larger cohorts. Variants in GCKR, including 

rs1260326, have been associated with higher glucose, insulin resistance and type 2 diabetes 
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in non-gravid cohorts [31, 41]. In our study, the C allele of rs1260326 was associated with 

greater insulin resistance.

Multiple studies have demonstrated that the GCKR locus is a pleiotropic locus associated 

with a wide variety of metabolites and metabolic phenotypes, with the strongest association 

found with triacylglycerol levels [31]. However, the interface between GCKR variants in the 

GCKR locus, altered glucose metabolism and metabolite levels in the non-gravid state is 

somewhat paradoxical in that the C allele of rs1260326 is associated with a greater risk of 

type 2 diabetes, higher levels of fasting glucose and insulin as well as insulin resistance, but 

lower levels of fasting triacylglycerols, alanine, leucine and isoleucine [42–44]. The 

association of rs1260326 with metabolite levels in pregnancy has not been examined 

previously, either in the fasting state or following a glucose load. We have now demonstrated 

an inverse association of the C allele of rs1260326 with multiple metabolites during 

pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate, as well as 1 h 

lactate, palmitoleic acid and 2-ketoleucine/isoleucine, a BCAA metabolite. An inverse 

association of rs1260326 with 2-hydroxybutyrate has been reported in non-gravid 

populations; 2-hydroxybutyrate is associated with insulin resistance [45] and was reduced 

after gastric bypass, as weight and insulin resistance decreased [46]. The inverse association 

of rs1260326 with 1 h lactate levels and fasting and 1 h triacylglycerol levels is consistent 

with its inverse association with fasting lactate and triacylglycerols in non-gravid cohorts 

[43, 47]. These findings with triacylglycerols and 2-hydroxybutyrate levels are somewhat 

paradoxical given the positive association of the C allele of rs1260326 with insulin 

resistance and its inverse association with the levels of these metabolites in both non-gravid 

[31] and, as shown here, gravid cohorts. The mechanisms underlying these paradoxical 

associations remain to be determined, although the C allele of rs1260326 is likely associated 

with lower hepatic glucokinase activity [31], which would result in less effective glucose 

clearance, lower rates of de novo lipogenesis and a state of ‘insulin resistance’.

The availability of both genetic and metabolomic data related to maternal insulin sensitivity 

during pregnancy allowed use of mediation analyses to define the potential role of 

metabolites in pregnancy-induced insulin resistance. Serum palmitoleic acid levels were 

inversely associated with insulin sensitivity in our cohort, while the C allele of rs1260326 

was associated with lower insulin sensitivity, and carriers of this allele had lower levels of 

palmitoleic acid. Mediation analyses indicated that 1 h palmitoleic acid mediated, in part, 

the association of rs1260326 with maternal insulin resistance. Palmitoleic acid is the second 

most abundant monounsaturated fatty acid in the circulation and is derived primarily from 

endogenous synthesis in adipose tissue and to some extent dietary intake [48, 49]. Women 

with GDM have lower levels of palmitoleic acid [50], while some, but not all, studies in non-

gravid cohorts have demonstrated a positive association of circulating levels of palmitoleic 

acid with insulin sensitivity [51]. More recently, a longitudinal study in humans 

demonstrated that palmitoleic acid was an independent determinant of changes in insulin 

sensitivity [48]. Finally, in rodents, infusion of palmitoleic acid improved whole body 

glucose disposal and hepatic insulin sensitivity [52, 53]. Together, and consistent with the 

mediation analyses, these studies support a potential role for palmitoleic acid as an 

adipocyte-derived lipokine that enhances insulin sensitivity [52, 54].
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This study had several strengths: it included a large cohort of pregnant women from multiple 

ancestries, ensuring applicability of the results to diverse populations; the availability of 

samples from the fasting state and 1 h after a glucose load allowed insight into two different 

metabolic states; and the genetic data allowed for extension of the results beyond 

associations. The study also had limitations: first, the study was cross-sectional, limiting the 

ability to establish causality; second, the gold standard for measuring insulin sensitivity is 

the hyperinsulinaemic–euglycaemic clamp, but this approach was not practical for a large 

population-based study, and the equation used to estimate insulin sensitivity was validated 

against this technique [55]; third, as the current study captured only a portion of the 

metabolome that is detectable using a GC-MS-based technology, additional studies will be 

needed to explore the potential contribution of additional metabolites; finally, the GWAS 

findings were not replicated. Similar associations of rs1260326 with the phenotypes and 

metabolites demonstrated here have, however, been reported in non-gravid cohorts.

In conclusion, this is the first report of integrating genetic and metabolomic data to better 

characterise maternal metabolism during pregnancy. Numerous metabolites, including amino 

acids, carbohydrates, fatty acids and lipids, were associated with maternal insulin sensitivity, 

independently of maternal BMI, while common variants in GCKR were significantly 

associated with multiple fasting and 1 h metabolites during pregnancy. Among the 

significant metabolites, mediation analyses suggested that 1 h palmitoleic acid might 

underlie, in part, the association of rs1260326 with maternal insulin sensitivity. These 

studies have begun to define mechanisms underlying pregnancy-induced insulin resistance. 

Future studies in larger cohorts will provide the opportunity to better define these 

mechanisms.
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Reserch in context

What is already known about this subject?

• Pregnancy is associated with a marked increase in insulin resistance

• Secretion of a number of hormones and cytokines by the placenta and other 

tissues contributes to pregnancy-induced insulin resistance

• Changes in the maternal metabolome associated with maternal insulin 

resistance during pregnancy have not been clearly defined

What is the key question?

• Are contributions of the maternal metabolome and genome to pregnancy-

induced insulin resistance similar to those in the non-gravid state?

What are the new findings?

• Our study identified numerous metabolites associated with maternal insulin 

sensitivity before and 1 h after a glucose load, ranging from amino acids and 

carbohydrate metabolites to fatty acids, other lipids and lipid metabolites

• Genome-wide association analyses identified 12 genetic variants in the 

GCKR locus significantly associated with maternal insulin sensitivity

• rsl 260326, a common functional missense mutation in GCKR, was 

significantly associated with multiple fasting and 1 h metabolites during 

pregnancy, including fasting and 1 h triacylglycerol and 2-hydro)cybutyrate/ 

and 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid, with 

mediation analyses suggesting that 1 h palmitoleic acid contributes, in part, to 

the association of rs 1260326 with pregnancy-induced insulin resistance

How might this impact on clinical practice in the foreseeable future?

• Identification of metabolic and genetic markers associated with pregnancy-

induced insulin resistance might inform new approaches for identifying 

women at risk of developing a greater degree of insulin resistance during 

pregnancy, and of gestational diabetes
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Fig. 1. 
Significant associations of fasting and 1 h metabolite levels and per-metabolite change 

following a glucose load with insulin sensitivity in meta-analysis. Significant associations of 

metabolites are shown based on p<0.05 after FDR adjustment in the fully adjusted model 

(model 4), which included field centre, sample storage time, mean arterial pressure, maternal 

age, neonatal sex, gestational age and maternal BMI at OGTT and parity. The red 

metabolites were positively associated with insulin sensitivity and the black metabolites 

were inversely associated. AA, amino acid; AC, acylcarnitine; Asn/Asx, asparagine/aspartic 

acid; Cho, carbohydrate; FA, fatty acid; G1P, glycerol 1-phosphate; GC/TCA, glycolysis/

tricarboxylic acid cycle; Glu/Glx, glutamine/glutamic acid; Leu/Ile, leucine/isoleucine; 

NM/2AA/NE, N-methylamine/2-aminobutanoic acid/N-ethylglycine; OA, organic acid; 

OHpro, hydroxyproline; Pur/Pyr, purine or pyrimidine
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Fig. 2. 
Sub-networks of fasting metabolites (a) and 1 h metabolites (b) associated with maternal 

insulin sensitivity. Nodes are coloured by metabolite class and sized by FDR-adjusted p 
values in the fully adjusted model (model 4), with large nodes referring to metabolites 

significantly associated with insulin sensitivity and small nodes referring to metabolites 

correlated with an individually significant metabolite. Blue shading represents spinglass 

communities within the estimated network. The solid lines between two nodes represent 

dependencies for intra-cluster metabolites, and the red dashed lines represent dependencies 

for metabolites across clusters. AA, amino acid; AC, acylcarnitine; Asn/Asx, asparagine/

aspartic acid; Cho, carbohydrate; FA, fatty acid; G1P, glycerol 1-phosphate; Glu/Glx, 

glutamine/glutamic acid; Leu/Ile, leucine/isoleucine; NM/2AA/NE, N-methylamine/2-

aminobutanoic acid/N-ethylglycine; OA, organic acid; OHpro, hydroxyproline; Pur/Pyr, 

purine or pyrimidine
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Fig. 3. 
Manhattan plot for maternal insulin sensitivity for the meta-analysis across the four ancestry 

groups. The red line indicates genome-wide significance (p<5×10−8)
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Fig. 4. 
Mediation analysis of the role of 1 h palmitoleic acid in mediating the relationship between 

rs1260326 and maternal insulin sensitivity. a, The association between rs1260326 and 1 h 

palmitoleic acid; b, the association between 1 h palmitoleic acid and maternal insulin 

sensitivity; c, the direct association between rs1260326 and maternal insulin sensitivity after 

adjustment for 1 h palmitoleic acid; ab+c, the total effect of rs1260326 on maternal insulin 

sensitivity. All associations were adjusted for field centre (for European ancestry mothers), 

the first two principal components, gestational age (weeks), maternal age, BMI, height, 

mean arterial pressure, parity, smoking (yes/no), alcohol intake status (yes/no) and fasting 

plasma glucose for fasting metabolites (1 h plasma glucose for 1 h metabolites) at the OGTT
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