
Reconstructing 16S rRNA genes in

metagenomic data

Cheng Yuan1, Jikai Lei1, James Cole2 and Yanni Sun1,*

1Computer Science and Engineering, Michigan State Univerisity, 428 South Shaw Rd East Lansing, MI 48824, USA

and 2Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA

*To whom correspondence should be addressed.

Abstract

Metagenomic data, which contains sequenced DNA reads of uncultured microbial species from

environmental samples, provide a unique opportunity to thoroughly analyze microbial species that

have never been identified before. Reconstructing 16S ribosomal RNA, a phylogenetic marker

gene, is usually required to analyze the composition of the metagenomic data. However, massive

volume of dataset, high sequence similarity between related species, skewed microbial abundance

and lack of reference genes make 16S rRNA reconstruction difficult. Generic de novo assembly

tools are not optimized for assembling 16S rRNA genes. In this work, we introduce a targeted rRNA

assembly tool, REAGO (REconstruct 16S ribosomal RNA Genes from metagenOmic data). It

addresses the above challenges by combining secondary structure-aware homology search,

zproperties of rRNA genes and de novo assembly. Our experimental results show that our tool can

correctly recover more rRNA genes than several popular generic metagenomic assembly tools and

specially designed rRNA construction tools.

Availability and implementation: The source code of REAGO is freely available at https://github.

com/chengyuan/reago.

Contact: yannisun@msu.edu

1 Introduction

Microbes are ubiquitous species existing in all environments on

earth, including extreme conditions (Rothschild and Mancinelli,

2001). From the desert to acid wastewater, from pine forest soil to

mine drainage, they sustain themselves using various mechanisms

(Konings et al., 2002). Human bodies are also habitats of microbes.

It is estimated that there are 1014 bacterial cell inhabiting on our

body, which is 10 times more than our own cells (Berg, 1996;

Savage, 1977). Human life as well as the entire ecosystem are pro-

foundly affected by microbes. There is a strong need to understand

the function of microbial communities and how they interact with

their hosts. The function of microbial community is defined by its

composition and diversity (Loreau et al., 2001). In particular, meta-

genomic data, which contains sequenced DNA reads of uncultured

microbial species from environmental samples, provide a unique op-

portunity to thoroughly analyze microbial species that have never

been identified before.

A commonly adopted approach for identifying the microbial spe-

cies in environmental samples is to conduct comparative analysis of

ribosomal RNA sequences (Woese and Fox, 1977; Woese et al.,

1990). The use of rRNA for microbial phylogenetic analysis had be-

come such a relied-upon methodology that by 2008; 77% of all

INSDC (Benson et al., 2010; Cochrane et al., 2009; Tateno et al.,

2002) bacterial DNA sequence submissions described an rRNA gene

sequence (Christen, 2008)! 16S rRNA reads from metagenomic

studies provide a source of sequences that are not subject to PCR

primer bias and therefore covers taxa that might be missed by exist-

ing popular primer sets (Hamady and Knight, 2009). The rRNA

genes are a patchwork of hypervariable (rapidly evolving) and uni-

versally conserved regions. Unassembled reads in metagenomic data

usually lack usable phylogenetic signal. Thus, there is a strong need

to recover complete or near-complete rRNA genes from the short

reads for analyzing microbial composition in the underlying sam-

ples. However, the massive data volume, short read length, skewed

species abundance and high similarity of 16S rRNA genes all make

rRNA recovery in metagenomic data very difficult. The goal of this

work is to provide a tool that can efficiently and accurately recover

rRNA genes from metagenomic data.

Existing pipelines for annotating rRNA genes in metagenomic

data can be divided into two groups. The first type of pipelines relies

on existing de novo assembly tools to output assembled contigs,

which are then used as input to available genome-wide rRNA search

tools. There are various metagenomic assembly programs (Laserson

et al., 2011; Luo et al., 2012; Namiki et al., 2012; Peng et al., 2011;

VC The Author 2015. Published by Oxford University Press. i35
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31, 2015, i35–i43

doi: 10.1093/bioinformatics/btv231

ISMB/ECCB 2015

https://github.com/chengyuan/reago
https://github.com/chengyuan/reago
http://www.oxfordjournals.org/

Salzberg et al., 2008; Treangen et al., 2013; Wu et al., 2012), which

intend to recover individual genomes in an environmental sample.

Metagenomic assembly is computationally difficult (Treangen et al.,

2013). In particular, previous work shows that metagenomic

sequencing of high-complexity microbial communities results in lit-

tle or no assembly of reads (Jeffrey and Zhong, 2011; Tringe et al.,

2005). In addition, our goal is to detect rRNA genes in metagenomic

data while much of generic de novo assemblies consist of other gen-

omic regions. Thus, the commonly used pipeline of combining gen-

eric metagenomic assembly and genome-wide rRNA detection tools

is convenient but not optimized for rRNA detection in metagenomic

data. The second type of pipelines avoids metagenomic assembly

and incorporates properties of rRNA genes (Fan et al., 2012; Miller

et al., 2011). The most promising one is perhaps EMIRGE (Miller

et al., 2011), which uses an expectation maximization approach

along with a set of reference gene sequences to assemble rRNA genes

from metagenomic data. However, EMIRGE requires a large

number of known rRNA genes for the mapping step and may miss

remotely related rRNA genes.

Therefore, lacking reference genomes, recovering full-length

rRNA genes from a large number of short and error-prone reads is

still an outstanding challenge. In this work, we propose and imple-

ment a targeted rRNA assembly program, REAGO, which is opti-

mized for rRNA gene recovery in metagenomic data. It has three

advantages comparing with existing methods. First, it significantly

reduces the problem size by first discarding reads that are not likely

sequenced from rRNA genes. Second, paired-end information is

carefully applied to guide gene assembly and thus distinguish rRNA

genes from different species. Third, the profile-based homology

search step enables us to decide the orientation and relative position

of each contig, leading to efficient scaffolding. We applied our tool

to two metagenomic datasets and benchmarked its performance

with several other programs. The experimental results show that our

tool competes favorably in recovering rRNA genes in metagenomic

datasets.

2 Method

2.1 Overview of REAGO
Figure 1 is a schematic representation of the pipeline, which con-

tains four stages. First, we identify 16S rRNA reads from the ori-

ginal metagenomic dataset using secondary-structure-aware

homology search. The majority of non-16S reads are discarded in

this process, significantly reducing the problem size. Second,

REAGO constructs overlap graphs. Various graph reduction tech-

niques are applied to remove possible sequencing errors and

prepare the graph for efficient assembly. The third stage assembles

reads into contigs by our path finding algorithms. The path

finding procedure is guided using paired-end information and

aims to avoid generating chimeric 16S rRNA genes by

maximizing Weighted Paired-End Match Score (WPEMS) (Section

2.5). Finally, paired-end information again is used to scaffold in-

complete 16S fragments, if any, into longer contigs or full-length

genes.

2.2 16S rRNA reads identification
In our method, we first conduct homology search to identify reads

originating from 16S rRNA genes. To utilize both the sequence and

structural conservation of 16S rRNA genes, we align metagenomic

reads to a Stochastic Context-Free Grammar (SCFG) based model

(Durbin, 1998), which is trained on characterized rRNA genes and

describes both the sequence and secondary structure conservation.

The-state-of-the-art implementation of SCFG is covariance model

(CM) in Infernal (Nawrocki et al., 2009). The scores and associated

E-values of the alignments between reads and the CM are used to

screen rRNA reads. In general, reads sequenced from 16S rRNA

genes are likely to get high alignment scores while reads from other

genes tend to receive low scores.

Fragmentary sequences pose great challenges to the alignment

algorithms since structural information in short reads is likely to be

partially missing. As a result, such short reads tend to receive mar-

ginal alignment scores and are not identified. Infernal handles this

problem by recovering possibly missing bases while performing the

alignment (Kolbe and Eddy, 2009). Thus, short 16S rRNA reads can

still receive significant alignment scores.

BLAST (Altschul et al., 1990) is another choice for 16S read

identification. By aligning reads with the reference 16S rRNA data-

base, rRNA reads may be recognized using BLAST alignment scores

or E-values. We choose SCFG-based homology search over BLAST

for two reasons. First, BLAST conducts homology search based on

sequence similarity and may miss reads lacking primary sequence

conservation. 16S ribosomal RNAs share high sequence similarity

on many regions across different species. However, there also exist a

number of variable regions where secondary structures are better

conserved than primary sequences. Secondary structural information

could then be very helpful to provide additional evidence for 16S

sequence identification. A number of studies have demonstrated the

advantages of incorporating secondary structural information in

various types of non-coding RNA homology search (Nawrocki

et al., 2009). Experiments were conducted to compare BLAST and

CM-based approaches (Kolbe and Eddy, 2009; Yuan and Sun,

2013) on identifying short rRNA reads. The results indicate that

BLAST tends to miss short rRNA reads that are sequenced from

non-conserved regions. CM-based approaches generally improve the

identification accuracy by including secondary structure informa-

tion. The second reason behind choosing SCFG-based homology is

that the single SCFG-based model provides a convenient reference

for inferring the orientation and relative positions among contigs

during the scaffolding stage.

Identify 16S
reads

Create overlap
graphs

Assemble 16S
rRNA genes

Scaffold 16S
rRNA fragments

Fig. 1. Pipeline of the 16S rRNA gene assembly. Short black and gray bars

represent reads originating from different 16S rRNA genes. Short white bars

represent reads from non-16S regions. Long bars represent contigs

assembled from short reads

i36 C.Yuan et al.

2.3 Overlap graph creation and graph pruning
All reads that are possibly sequenced from rRNA genes are used to

construct an overlap graph for assembly. An overlap between two

reads is formed if the suffix of a read matches the prefix of another

read. A straightforward overlap detection method performs pair-

wise comparison among all reads, requiring Oðn2Þ comparisons.

There exist efficient implementations of overlap graphs based on

data structures such as hash table and BTW (Gonnella and Kurtz,

2012; Simpson and Durbin, 2012). We choose Readjoiner

(Gonnella and Kurtz, 2012), which provides a set of time and space

efficient algorithms for detecting all suffix-prefix matches among a

set of reads. In overlap graphs, each vertex represents a read and

each edge represents a suffix-prefix match of size at least l, a pre-

determined overlap threshold. l has high impact on complexity and

connectivity of graphs. Small l tends to increase the connectivity, but

also complexity, of the overlap graph. Larger l is likely to produce

less tangled graph, but can possibly miss connections between reads

from lowly sequenced regions. Note that transitive edges are auto-

matically removed in the output by Readjoiner.

The original graphs generated from the output of Readjoiner

could be very complex because of the large data size, sequencing

errors, and highly similar regions shared by different genes.

We apply an iterative graph pruning procedure, as depicted in

Figure 2, to gradually simplify the graph at each iteration. The pro-

cedure terminates when the graph stops changing. Below we detail

each stage.

2.3.1 Node collapsing

The original overlap graph tends to have chains of linearly con-

nected vertices. In such chains, each vertex has only a single incom-

ing edge and outgoing edge. Such vertices can be merged without

loss of reachability.

2.3.2 Alignment-based error correction

Sequencing errors and highly similar regions shared by different

genes can contribute to a large number of bifurcations, greatly com-

plicating the graph. Error correction in metagenomic data is an un-

solved problem. Rare reads may come from low abundance genes

rather than sequencing errors. Nevertheless, we still follow the error

correction rationale commonly used in de novo genome assembly

and correct bases in rare reads. As shown in Figure 3, we applied a

heuristic but efficient alignment-based error correction to two types

of bifurcations. Reads or contigs from sibling nodes V0;V1; � � � ;Vn,

which share the same predecessor or successor, are aligned.

Specifically, based on the known overlaps with the contig in the

common predecessor or successor, the contigs in the sibling nodes

will be aligned first. Then the reads inside the contigs can be aligned

using their positions inside the contig.

For each column in the read alignment, a base is corrected if it is

overwhelmingly out-voted by other bases that are aligned to it. An

assumption made here is, if a base is sequenced multiple times, it is

correctly sequenced the majority of the time. A base a is corrected

into a0, if and only if the number of a0 is at least s times more than

the number of a. It is worth noting that this strategy could poten-

tially incorrectly mutate bases from low abundance genes, since the

number of those bases could be out-voted by bases from related and

abundant genes. In order to make our tool more practically useful,

we sacrifice some accuracy for assembly efficiency. The value of s is

customizable so the user can change the strictness of error correction

in different datasets by adjusting the value of s. A larger s tends to

yield more conserved error correction. A smaller s tends to correct

more erroneous bases, but may also falsely modify correct bases into

incorrect ones, especially in regions with low coverage.

An example is depicted in Figure 4. Sequences represented in ver-

tices V2 and V3 are very similar and only differ in one base. The bi-

furcation may be caused by sequencing error or simply represent

similar regions from highly related species. Reads in both vertices

are aligned. In the highlighted column, the number of base T in V3 is

far less than that of the base A in V2, so we mutate the T into A then

merge V2 and V3 in to a single vertex.

2.3.3 Topology-based graph reduction

Alignment-based error correction is only applied to nodes sharing

the same predecessor or successor. Following the existing assembly

methods (Zerbino and Birney, 2008), we conduct topology-based

graph reduction and remove tips and bubbles. Similar to the bifurca-

tion removal procedure, the tip and bubble removal could poten-

tially remove contigs from low abundance genes. So we also allow

the thresholds used in this step to be adjusted by users.

2.4 Bad edge removal
Due to the nature of metagenomic datasets, there may exist multiple

species with very high sequence similarity. Thus, reads originating

from different species have high chance to form edges in the graph.

In another word, having suffix-prefix match does not necessarily

guarantee correct connection. Wrong edges not only increase the

complexity of graph but also lead to chimera.

Thus after graph reduction, we applied a Naive Bayes Classifier,

similarly to the RDP classifier (Wang et al., 2007), on each vertex

and approximately annotate it with one or more genera. If the verti-

ces on either end of an edge do not share any common annotated

genus, we regard it as a ‘bad’ edge and remove it. Annotation of

each vertex can be obtained by calculating a posterior probability

PðGijCÞ, where C is the contig that the vertex represents and Gi rep-

resents a genus. The probability indicates the likelihood that C origi-

nated from Gi. If the probability is higher than a threshold, we

annotate C with Gi. To calculate PðGijCÞ, we first decompose the

contig C into a set of k-mers k1;k2; . . . ;kn. Same as the RDP classi-

fier, the default value of k is 8. Then PðCjGiÞ can be extended as

Node collapsing

Error correction

Topology-based graph reduction

Bad edge removal

Fig. 2. Graph reduction is conducted iteratively until there is no change on the

graph

A B

Vp

V0

Vn

V1
.....

.. ...

.. ...

.. ...

Vs

V0

Vn

V1
.....

.. ...

.. ...

.. ...

Fig. 3. Two types of bifurcation where error correction is applied. (A) Multiple

vertices sharing the same successor. (B) Multiple vertices sharing the same

predecessor

Reconstructing 16S rRNA genes in metagenomic data i37

Pðk1; k2; . . . ; knjGiÞ. Assuming the independence of ki as in the

Naive Bayes Classifier, we can further simplify the likelihood

to Pðk1jGiÞPðk2jGiÞ � � �PðknjGiÞ, in which each term can be pre-

calculated based on the RDP database (Cole et al., 2005). The prior

probability PðGiÞ can also be calculated as the proportion of se-

quences in Gi to the total number of sequences in the RDP database.

The posterior probability PðCjGi Þ, which indicates the likelihood

that C does not originate from Gi, can also be calculated in the same

way. The detailed steps are listed in Figure 5.

For a vertex, a genus Gi is included into its annotation if PðGijCÞ
is greater than a threshold. As most vertices in the graphs represent

only short and partial 16S genes, the classifier may not have enough

evidence to uniquely and accurately annotate them. As a result, each

vertex is generally associated with multiple genera. Yet, base on our

observation, the annotation always includes the true positive genus.

The edge removal algorithm works better on longer sequences.

Thus, it is iteratively applied after graph reduction and node collaps-

ing, as shown in Figure 2.

2.5 Guided path finding using paired-end information
We then recover 16S rRNA sequences by finding paths that repre-

sent a full or partial rRNA gene. Path finding starts at a vertex with

no incoming edge and terminates at a vertex with no outgoing edge.

Paired-end information of reads are widely used in many assembly

tools for guiding the creation of contigs (Zhang et al., 2014) or

scaffolds. The rationale is that the two ends of a read pair should be

assembled in the same contig or scaffold. To utilize the paired-end

information, a common approach adopted by SOAPdenovo (Li

et al., 2010), ABySS (Simpson et al., 2009) and ALLPATHS (Butler

et al., 2008) creates graphs from a set of contigs where each vertex

represents a contig and an edge is formed between two vertices if

more than a certain number of read pairs exist between their reads.

Then the graphs are searched, using various constraints and heuris-

tics, to extend contigs into longer scaffolds. Velvet (Zerbino and

Birney, 2008), on the other hand, assumes a small variance of insert

size distribution and aims to create ‘long nodes’ that are longer than

all inserts. The objective function intends to maximize the number

of ‘long nodes’ while minimizing the number of read pairs spanning

over such nodes. As an extension of Velvet, MetaVelvet (Namiki

et al., 2012) uses paired-end information to guide the creation of

contigs by checking their consistency. The number of paired-end

reads connecting the origin node and the extension node is used to

resolve chimeric node candidates.

In our algorithm, we use paired-end information to guide the

path finding and scaffolding. At each vertex with multiple succes-

sors, we decide which one to include based on a new metric,

WPEMS, which gives higher weights to paired-end reads located in

distant nodes than those located in nearby nodes. Let ðr; r0Þ be a

mate pair located in vertices V and V 0 (V 6¼ V 0), respectively. The

WPEMS of this read pair is thus 2dðr;r0 Þ, where dðr; r0Þ is the number

of vertices between V and V 0. If V ¼ V0, we define its WPEMS as 0.

V1

CAGTCACGTCACAGT

CACGTCACAGT
ACGTCACAGTT

V2

CGTCACAGTTAG
GTCACAGTTAGA

CACAGTTAGAG

CACGTCTCAGT
ACGTCTCAGTTV3

V1

CAGTCACGTCACAGT CACGTCACAGT

ACGTCACAGTT
CGTCACAGTTAG
GTCACAGTTAGA

CACAGTTAGAG

CACGTCACAGT
ACGTCACAGTT

V23V1

CAGTCACGTCACAGT

CACGTCACAGT
ACGTCACAGTT

V2

CGTCACAGTTAG
GTCACAGTTAGA

CACAGTTAGAG

CACGTCACAGT
ACGTCACAGTTV3

CACGTCACAGTTAGAG

CACGTCTCAGTT

CACGTCACAGTTAGAG

CACGTCTCAGTT

CACGTCACAGTTAGAG

A B C

Fig. 4. An example of error correction (applied on V2 and V3). The sequence represented by each node is given beside the node. (A) Ungapped alignment of reads

from bifurcating vertices. (B) Mutate rare bases. (C) Remove bifurcation

Fig. 5. The detailed calculation of the probability that a contig C originated from a genus Gi

i38 C.Yuan et al.

The WPEMS of a path P is the sum of WPEMS of all paired end

reads in P.

WPEMSðPÞ ¼
X

ðr;r0 Þ
2dðr;r0 Þ

When deciding among a set of vertices to visit next, we select the

vertex that maximizes the WPEMS of the current path in a greedy

way. The rationale behind the design of WPEMS is that only read

pairs existing in non-adjacent vertices provide extra evidence for

path finding. Read pairs included in the same vertex or spanning ad-

jacent vertices do not provide additional path finding information

beyond the existing overlap graph. In practice, the graph pruning

procedure (Fig. 2) leads to many vertices representing relatively long

contigs. Thus, for average fragment sizes such as hundreds of bases,

the paired-end reads usually exist within the same vertex or vertices

already connected by an edge. Figure 6 describes a typical example

of read pair distribution in a graph. There are usually many paired-

end reads spanning adjacent vertices such as from n6 to n8. Many

fewer paired-end reads span non-adjacent vertices, such as those

from n1 to n7 and from n4 to n7. Paired-end reads located in two ad-

jacent nodes have WPEMS of 1, because there is no intermediate

node between the adjacent nodes.

We use the example in Figure 6 to explain our path finding pro-

cedure. Nodes in the graph are formed by reads from two different

16S rRNA genes A and B, colored in blue and yellow, respectively.

Nodes n3 and n6 are represented using shaded color since they

are formed by reads from common regions of A and B. Genes A

and B are represented by n1 ! n3 ! n4 ! n6 ! n7 and

n2 ! n3 ! n5 ! n6 ! n8, respectively. Suppose the path finding

process has successfully identified the path n1 ! n3 ! n4 ! n6,

which is highlighted in yellow, and needs to choose between n7 and

n8 as the next node to include. By choosing n7, the increased score is

8� 23 þ 12� 22 þ 11� 21 þ 30� 20 ¼ 164. By choosing n8, the

score is 15� 22 þ 70� 20 ¼ 130. Thus, WPEMS will choose n7, the

correct node, because of more paired-end reads shared between non-

adjacent nodes.

In order to produce all 16S ribosomal RNA sequences, we apply

the path finding algorithm on each vertex with no incoming edge. If

the length of a contig represented by a path is greater than a user-

defined threshold, we consider the contig to be a full-length gene.

Otherwise, we include it in the input to the next scaffolding stage.

As this approach is a greedy algorithm, the time complexity is very

low. The entire path finding procedure take O(mn) time to com-

plete, where m is the average out-degree of each vertex and n is the

average distance between nodes with no incoming edge and nodes

with no outgoing edge.

2.6 Scaffolding 16S rRNA segments
In the path finding stage, contigs longer than a user-defined param-

eter L, are output directly. Contigs shorter than L are selected for

further processing. Short contigs are usually created due to region-

ally low coverage of rRNA genes in metagenomic data. Reads from

lowly sequenced regions failed to create connection to other region

due to small overlap. As a result, rRNA segments originating from

the same gene may be broken apart. To produce full-length rRNA

sequences, we can utilize the WPEMS, with a minor modification,

to scaffold shorter segments. First, as we know the orientation and

alignment position of each read on the CM during the homology

search, we can infer the orientation and alignment position of each

contig based on the contained reads. Then, for two segments SA and

SB with SA being in the upstream of SB (Fig. 7), the WPEMS between

SA and SB is defined as

WPEMSðSA; SBÞ ¼
X

ðr;r0 Þ
2dðr;r0 Þ

where ðr; r0Þ is a mate pair. r and r0 are in SA and SB, respectively. As

we have no information about the gap between SA and SB, we define

dðr; r0Þ as the total number of vertices after r and before r0, in SA and

SB, respectively. An example is given in Figure 7.

We only calculate WPEMSðSA; SBÞ if SA is on the upstream

of SB and their CM alignment position overlap. If SA and SB

are from the same gene, WPEMSðSA; SBÞ tends to be the

highest among all WPEMSðSA; SiÞ and WPEMSðSj; SBÞ. So we cal-

culate the pair-wise WPEMS in all segments. We then connect SA

and SB, if

WPEMS ðSA; SBÞ > WPEMS ðSA; SiÞ
for all Si on the downstream of SA; and

WPEMSðSA; SBÞ > WPEMSðSj; SBÞ
for all Sj on the upstream of SB

All connected segments with total length longer than L will be

output.

3 Experimental results

To evaluate the performance of our algorithm, we applied REAGO

to a simulated metagenomic dataset and a mock community dataset.

As the species and their genomes are largely known in the

two datasets, we are able to evaluate the accuracy of rRNA

assembly. We benchmarked our tool with EMIRGE, a 16S rRNA

n1 n2

n3

n4 n5

n6

n7 n8

15

7030

11

12

8

n1

nn3

n4

nn66

Fig. 6. Path finding using paired-end information. Solid lines represent over-

laps between nodes and dashed lines represent the existence of paired-end

reads. The numbers beside dashed lines are the numbers of paired end reads

between the corresponding nodes

Segment A Segment B

24 22 21

WPEM = 1x24 + 1x22 + 1x21 = 22

Fig. 7. Calculate the score between two segments. Arcs indicate existence of

paired-end reads between vertices. Thickness of arcs indicate weight of the

paired-end match. Actual weights are labeled beside each arc. Assuming

there is only one mate-pair among contigs, the WPEMS is 22

Reconstructing 16S rRNA genes in metagenomic data i39

identification tool, and two popular metagenomic assembly tools,

IDBA-UD (Peng et al., 2012) and MetaVelvet (Namiki et al., 2012).

We also compared the performance of the three tools on two sets of

inputs, the entire datasets and only true positive reads (i.e. reads

sequenced from 16S rRNA genes). For all the tools, we evaluated

their performance to reconstruct 16S rRNA sequences at sequence-

level and genus-level. We also recorded and compared their running

time on the same high performance computing node with a 64-bit

CPU and Linux operating system. The detailed commands, param-

eters and output can be found along with the source code of

REAGO.

3.1 Experiment 1: simulated metagenomic dataset
To evaluate the performance of REAGO, we first applied it to a

simulated metagenomic dataset containing reads from 11 species of

8 genera. We used WGSIM (Li, 2011) to generate 9.6eþ7 paire-

d-end, 110 nt long error-containing reads. The sequencing

error rate was set to 2% by default and the insert size was set

to 320 with a standard deviation of 10 bases. The relative

abundance of the 11 species is shown in Table 1. The most abun-

dant species is 11 times more abundant than the least abundant

species.

To challenge REAGO, we selected some closely related species

in the same genus with highly similar 16S rRNA genes. We listed

their pair-wise sequence similarity in Table 2. For example, three

selected species in Chlorobium share sequence identity above

93%. Chlorobium phaeobacteroides and Chlorobium phaeovi-

brioides even share similarity as high as 96%. Reads simulated

from these species tend to produce extremely tangled overlap

graphs that pose challenges for assembly. Traversing such graphs

will result in a large number of paths, and most of which represent

chimeric assemblies.

3.1.1 Performance of rRNA reads classification

Following the pipeline in Figure 1, we applied cmsearch, CM align-

ment program in Infernal to identify reads originating from rRNA

genes. When building the CM for cmsearch, we only used rRNA

genes that are not in the simulated dataset. Specifically, we down-

loaded 2591 bacterial 16S rRNA genes from the RDP website (Cole

et al., 2005). Then we removed the rRNA genes in the 11 species

used for simulation and also the ones in the same genera as those 11

species. As a result, we have 2537 genes in the training set for build-

ing the CM in cmsearch. The performance of cmsearch is quantified

using two metrics: sensitivity and positive predictive value (PPV).

The set of reads sequenced from 16S rRNA genes are true posi-

tive (i.e. TP) while the set of reads extracted from other regions are

true negative. Let P be the set of reads predicted as positive by

cmsearch. We thus have

sensitivity ¼ P \ TP

TP
:

PPV ¼ P \ TP

P

It is worth noting that we only keep reads that can be globally

aligned to CM. For reads that are partially sequenced from the

rRNA genes and thus produce partial or local alignments, we don’t

keep them for downstream analysis. Correspondingly, during the

performance evaluation, we only use reads that are completely

sequenced from the rRNA genes and non-rRNA regions. Reads

sequenced from boundaries of rRNA genes will not be used for com-

putation. For this simulated dataset, the sensitivity and PPV of

cmsearch in recognizing rRNA reads are both 0.990. Reads originat-

ing from 16S rRNA genes were precisely separated from those from

other regions of genomes with only a small amount of incorrectly

classified reads. The output of cmsearch contains 82 638 reads,

which are used as input for overlap graph construction. Compared

with the original size of the dataset (9.6e7 reads), the problem size is

significantly reduced.

3.1.2 Overlap graph construction

The reads classified as rRNA reads by cmsearch were used as input

to Readjoiner for efficient overlap graph construction. By default,

the overlap threshold was set to 70% of the read length, which is 77

in the simulated dataset. A larger overlap may be used when

sequencing depth is high for each species, while smaller overlap

should be used if some low abundance species are present. A smaller

overlap, however, tends to yield more tangled graphs. We have tried

a range of overlaps from 66 to 99. The results are almost identical

on the simulated dataset. The default error correction threshold

s was set to 50, indicating that a base will be corrected if at least 50

bases of a different kind are aligned to it.

We evaluated the efficiency of our error correction and graph re-

duction algorithms using the change of graph complexity, which is

quantified by the total number of paths in the graph. The increase of

the number of different paths implies the increase of the graph

complexity. We only record ‘complete’ paths that start at nodes

with no incoming edge and end at nodes with no outgoing edges.

The original graph contains 16 994 765 paths. After applying our

graph reduction procedures, the graph is significantly simplified,

containing only 961 paths. As shown by the assembly results pre-

sented in the following section, a majority of the genes have been

kept in the reduced graph.

Table 1. Species abundance

Species Abundance (%)

Bacteroides thetaiotaomicron VPI-5482 (BTV) 24.17

Bacteroides vulgatus (BVG) 4.13

Chlorobium phaeobacteroides DSM 266 (CPB) 10.02

Chlorobium phaeovibrioides DSM 265 (CPV) 6.29

Chlorobium tepidum TLS (CTT) 12.38

Salinispora tropica CNB-440 (STC) 1.96

Sulfurihydrogenibium sp YO3AOP1 (SSY) 4.72

Bordetella bronchiseptica RB50 (BBR) 7.86

Burkholderia xenovorans LB400 (BXL) 10.02

Leptothrix cholodnii SP-6 (LCS) 4.72

Nitrosomonas europaea ATCC 19718 (NEA) 13.75

Table 2. Pair-wise sequence similarity

BBR BTV BVG BXL CPB CPV CTT LCS NEA SSY STC

BBR - - - - - - - - - - -

BTV 71 - - - - - - - - - -

BVG 71 91 - - - - - - - - -

BXL 91 72 71 - - - - - - - -

CPB 76 75 75 75 - - - - - - -

CPV 75 75 75 74 96 - - - - - -

CTT 75 75 74 74 93 94 - - - - -

LCS 90 73 72 90 76 77 76 - - - -

NEA 88 73 72 89 75 75 74 86 - - -

SSY 73 72 72 73 73 73 73 74 74 - -

STC 76 72 71 76 77 77 76 77 76 76 -

Bold numbers indicate sequence similarity above 90%.

i40 C.Yuan et al.

3.1.3 Assembly

Finally, we evaluated the performance of our assembly algorithms

and compared it with EMIRGE, IDBA-UD and MetaVelvet. Metrics

used are the number of genes recovered at sequence level, the num-

ber of genera recovered, the number of falsely recovered genes, and

the running time. For all tools, all contigs or super-contigs longer

than 1350 nts are considered to be final output. An assembly is con-

sidered to be correct at sequence level if and only if it can be aligned

to the true gene with at least 98% identity by BLAST. A genus is

correctly recovered as long as one of its genes is recovered.

For EMIRGE we did two experiments using two different rRNA

gene databases. The first one is its original small subunit ribosomal

RNA (SSU) candidate database excluding just the 11 training genes.

Similar to the method of constructing the training set for the CM in

REAGO, the second one uses the original database excluding all

genes in the eight selected genera. All parameters of IDBA-UD were

set as default. For MetaVelvet, we followed the recommendation in

its tutorial and used k-mer size of 55.

As displayed in Table 3, our assembly algorithms demonstrate

better performance in reconstructing 16S rRNA genes. EMIRGE

achieved the same sensitivity as our tool with the first database. But

it took much longer running time. For the second database, which

excluded all genes in the eight chosen genera as the training set for

our tool, it recovered many fewer genes. Thus, if a genus in a meta-

genomic dataset does not exist in the SSU candidate database at all,

it is possible that the genes from this genus cannot be recovered.

IDBA-UD was correct only on three genes and MetaVelvet only

identified one. The results show that generic de novo assembly tools

are not optimized for recovering 16S rRNA genes and thus are not

recommended for this task.

The performance of REAGO heavily relies on two key steps:

rRNA read homology search and de novo assembly. Our pipeline

allows the users to replace the assembly component with other gen-

eric assembly tools or rRNA construction tools. To evaluate

whether our assembly step contributes to the improvement of

REAGO over other tools, we applied EMIRGE, IDBA-UD and

MetaVelvet directly on true positive 16S reads. Compared to apply-

ing homology search to recognize rRNA reads, using only true posi-

tive rRNA reads ensures that the tested tools obtain the optimal

rRNA assembly/construction results. As summarized in Table 4,

even using this ideal input, the rRNA construction performance of

the three tools are not better than REAGO (Table 3), demonstrating

the advantages of the assembly stage of REAGO. Table 4 also shows

that the performance of all tools improve when using only rRNA

reads as input. As expected, they all run significantly faster and

produce fewer contigs. When using the database excluding 11 genes,

EMIRGE achieves similar performance to REAGO, except output-

ting four more wrong assemblies. However, when excluding all

genes in the eight genera as we did for REAGO, it is worse than

REAGO.

3.2 Experiment 2: synthetic metagenomic data
To further assess the performance of our assembly algorithms, we

applied REAGO to a metagenomic dataset (SRR606249) sequenced

from an archaeal and bacterial synthetic community (Shakya et al.,

2013), which contains 16 archaeal species and 48 bacterial species,

covering 50 different genera. The metagenomic dataset was

sequenced using Illumina HiSeq-2000 and contains �11.1 Gbp in

total. Reads in the dataset are all 101-base long and were sequenced

in pairs. The annotations of 16S rRNA genes in these species were

downloaded from NCBI. High sequence similarity exists among

genes in the same genus and genes across different genera. For in-

stance, species from Leptothrix, Bordetella, Burkholdera and

Nitrosomonas share sequence similarity above 97%. Three species

under Thermotoga share sequences similarity above 99%.

Additionally, the abundance of species is more skewed in this data-

set than in the first one. The most abundant species is over 20 times

more abundant than the least abundant species.

3.2.1 rRNA reads classification

We applied cmsearch for rRNA homology search. As this dataset

contains both archaeal and bacterial species, we trained two types of

CMs using genes in archaeal and bacterial species, respectively. In

addition, for each type of CM, we constructed two CMs using two

training sets. The first CM was trained on all 16S genes from RDP

excluding the exact copies of rRNA genes from the 64 species of the

synthetic community. Next, we further removed all genes belonging

to any of the 50 genera and trained the second CM. The read map-

ping results and the annotation of the 16S rRNA genes in the com-

ponent genomes enable us to determine whether a read is part of an

rRNA gene. In this dataset, there are 67 979 reads completely

sequenced from rRNA genes. Based on the known origins of the

reads, we can evaluate the performance of cmsearch on both CMs

using sensitivity, PPV and running time. Table 5 summarized the

combined performance of the archaeal and bacterial models.

cmsearch achieved both high sensitivity and PPV with both CMs.

Removal of all genes in the 50 genera only slightly decreased the sen-

sitivity and PPV. Table 5 also shows the significant reduction in

problem size by 99.87% (from 54 029 186 reads to less than 67 000

reads). The experiments were conducted using a 2.4 GHz CPU and

8 GB memory.

Table 3. Performance of 16S rRNA gene recovery

Tool # output

genes

genes

recovered

genera

recovered

incorrect

assemblies

Running

time

REAGO 12 11/11 8/8 1 4:53:19

EMIRGE, 16S DB,

excluding the

11 genes

16 10/11 7/8 6 96:12:1

EMIRGE, 16S DB,

excluding eight

genera

23 6/11 5/8 17 96:14:29

IDBA-UD 416 3/11 3/8 413 16:36:28

MetaVelvet 1 258 1/11 1/8 1 257 5:35:30

In all tables hereafter, ‘# output genes’ is the number of outputs longer

than 1 350 nts. The CM used in REAGO is trained on 16S rRNA genes

excluding all in the eight genera of the test data.

Table 4. Performance of 16S rRNA gene recovery using only true

positive reads as input

Tool # output

genes

genes

recover

genera

recovered

incorrect

assemblies

Running

time

REAGO 12 11/11 8/8 1 0:2:14

EMIRGE, 16S DB,

excluding the

11 genes

17 11/11 8/8 5 0:13:01

EMIRGE, 16S DB,

excluding the

8 genera

21 7/11 6/8 14 0:14:10

IDBA-UD 3 3/11 3/8 0 0:5:26

MetaVelvet 1 1/11 1/8 0 0:0:35

Reconstructing 16S rRNA genes in metagenomic data i41

3.2.2 Assembly

Next, we applied our assembly algorithms on the reads that are clas-

sified as rRNA reads by cmsearch. The overlap threshold of

REAGO was set to 70 (the default overlap threshold is 70% of the

read length). The CM training sequences contained none of the 64

genes nor any gene from the 50 genera. We compared the perform-

ance of REAGO with EMIRGE, IDBA-UD and MetaVelvet.

Parameters of IDBA-UD were all set as default. Following the rec-

ommendation of the tutorial, we run MetaVelvet using k-mer length

55. EMIRGE was run twice with two different 16S rRNA databases.

The first one is its 16S rRNA database excluding only exact copies

of the 64 genes, and the second one is its database excluding all

genes in the 50 genera. For all tools, we only consider assemblies

longer than 1350 nt as the final output.

We summarized the results in Table 6. Our tool correctly re-

covered more genes and genera with far shorter running time. Even

with all genes in the 50 genera removed from the training set of the

CM, REAGO can recover 58 out of 64 genes and 47 out of 50 gen-

era. For REAGO, most of the time was spent in running cmsearch

and the actual assembly procedure finished within a couple of mi-

nutes. The filtration with cmsearch can be greatly accelerated when

running in parallel. EMIRGE, on the other hand, recovered fewer

genes and genera with longer running time. With the removal of all

genes in the 50 genera, the performance of EMIRGE significantly

deteriorated, indicating its limited ability to recover 16S genes from

unknown genera.

It is worth noting that all tools may output highly similar but not

identical sequences. Thus, multiple outputs may be mapped to the

same rRNA gene with > 98% identity. Meanwhile, some rRNA

genes are highly similar and can be recovered by one assembly.

Thus, in Tables 6 and 7, the sum of incorrect and correct assemblies

may not be equal to the total number of output sequences.

Similar to the first experiment, we applied EMIRGE, IDBA-UD

and MetaVelvet directly on true positive 16S reads. As

summarized in Table 7, the number of recovered genes and genera

increased for all tools. Additionally, running time of each tool was

significantly reduced. Thus, using only ‘correct’ and relevant reads

as input can improve the assembly performance. However, even

with the ideal input, all the three tools recover fewer rRNA genes

than REAGO, demonstrating the advantage of the assembly stage in

REAGO.

4 Discussion and conclusion

We reported a set of algorithms, implemented as REAGO, to

reconstruct 16S rRNA genes from metagenomic data. REAGO is able

to accurately identify 16S rRNA from error-containing metagenomic

datasets at sequence level. The algorithms are robust even if the gen-

era of the underlying genes are not included in the CM training set. It

can be readily applied to any metagnomic dataset containing paired-

end reads. Several components in REAGO work better with increas-

ing read length. In particular, the homology search stage and the bad

edge removal part can all benefit from increased sequence length,

which is the trend for next-generation sequencing technologies.

Funding

This work was partially supported by NSF CAREER Grant DBI- 0953738.

Conflict of Interest: none declared.

References

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Benson,D.A. et al. (2010) GenBank. Nucleic Acids Res., 38, D46–D51.

Berg,R.D. (1996) The indigenous gastrointestinal microflora. Trends

Microbiol., 4, 430–435.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shot-

gun microreads. Genome Res., 18, 810–820.

Christen,R. (2008) Global sequencing: a review of current molecular data and

new methods available to assess microbial diversity. Microbes Environ.

JSME, 23, 253–268.

Cochrane,G. et al. (2009) Petabyte-scale innovations at the European nucleo-

tide archive. Nucleic Acids Res., 37, D19–D25.

Cole,J.R. et al. (2005) The Ribosomal Database Project (RDP-II): sequences

and tools for high-throughput rRNA analysis. Nucleic Acids Res., 33

(Suppl. 1), D294–D296.

Table 5. The performance of cmsearch on the synthetic community

data

CM Training set Training set size

(# archaeal and

bacterial genes)

output

reads

Sensitivity PPV Running time

(the sum of

archaeal and

bacterial CMs)

RDP training set,

excluding the

64 genes

2 384 66 755 0.982 0.962 11:56:52

RDP training set,

excluding the

50 genera

2 325 66 347 0.976 0.958 12:21:32

Table 6. The performance of rRNA recovery on synthetic commu-

nity data

Tool # output

genes

genes

recovered

genera

recovered

incorrect

assemblies

Running

time

REAGO 59 58/64 47/50 2 12:28:01

EMIRGE 16S DB,

excluding the

64 genes

76 42/64 33/50 42 120:30:11

EMIRGE 16S DB,

excluding the

50 genera

105 19/64 16/50 89 120:25:38

IDBA-UD 61 39/64 33/50 28 17:26:50

MetaVelvet 135 4/64 4/50 131 7:56:01

‘# output genes’ is the number of outputs longer than 1 350 nts. The CM

used in REAGO is trained on 16S rRNA genes excluding all in the 50 genera

of the test data.

Table 7. The performance of rRNA recovery on only true positive

16S rRNA reads from synthetic community data

Tool # output

genes

genes

recovered

genera

recovered

incorrect

assemblies

Running

time

REAGO 59 58/64 47/50 2 0:2:06

EMIRGE, 16S DB,

excluding the

64 genes

82 45/64 36/50 45 0:52:19

EMIRGE, 16S DB,

excluding the

50 genera

103 25/64 20/50 82 0:51:48

IDBA-UD 60 41/64 34/50 26 0:1:16

MetaVelvet 65 16/64 16/50 49 0:0:26

‘# output genes’ is the number of outputs longer than 1 350 nts.

i42 C.Yuan et al.

Durbin,R. (1998) Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge University Press, Cambridge, UK.

Fan,L. et al. (2012) Reconstruction of ribosomal RNA genes from metage-

nomic data. PloS One, 7, e39948.

Gonnella,G. and Kurtz,S. (2012) Readjoiner: a fast and memory efficient

string graph-based sequence assembler. BMC Bioinformatics, 13, 82.

Hamady,M. and Knight,R. (2009) Microbial community profiling for human

microbiome projects: tools, techniques, and challenges. Genome Res., 19,

1141–1152.

Jeffrey,A.M. and Zhong,W. (2011) Next-generation transcriptome assembly.

Nat. Rev. Genet., 12, 671–682.

Kolbe,D.L. and Eddy,S.R. (2009) Local RNA structure alignment with incom-

plete sequence. Bioinformatics, 25, 1236–1243.

Konings,W.N. et al. (2002) The cell membrane plays a crucial role in survival

of bacteria and archaea in extreme environments. Antonie Van

Leeuwenhoek, 81, 61–72.

Laserson,J. et al. (2011) Genovo: de novo assembly for metagenomes.

J. Comput. Biol., 18, 429–443.

Li,H. (2011) WGSIM-read simulator for next generation sequencing. https://

github.com/lh3/wgsim (11 May 2015 date last accessed).

Li,R. et al. (2010) De novo assembly of human genomes with massively paral-

lel short read sequencing. Genome Res., 20, 265–272.

Loreau,M. et al. (2001) Biodiversity and ecosystem functioning: current know-

ledge and future challenges. Science, 294, 804–808.

Luo,C. et al. (2012) Individual genome assembly from complex community

short-read metagenomic datasets. ISME J., 6, 898–901.

Miller,C.S. et al. (2011) EMIRGE: reconstruction of full-length ribosomal

genes from microbial community short read sequencing data. Genome

Biol., 12, R44.

Namiki,T. et al. (2012) MetaVelvet: an extension of Velvet assembler to de

novo metagenome assembly from short sequence reads. Nucleic Acids Res.,

40, e155–e155.

Nawrocki,E.P. et al. (2009) Infernal 1.0: inference of RNA alignments.

Bioinformatics, 25, 1335–1337.

Peng,Y. et al. (2011) Meta-IDBA: a de novo assembler for metagenomic data.

Bioinformatics, 27, i94–i101.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and meta-

genomic sequencing data with highly uneven depth. Bioinformatics, 28,

1420–1428.

Rothschild,L.J. and Mancinelli,R.L. (2001) Life in extreme environments.

Nature, 409, 1092–1101.

Salzberg,S.L. et al. (2008) Gene-boosted assembly of a novel bacterial genome

from very short reads. PLOS Comput. Biol., 4, e1000186.

Savage,D.C. (1977) Microbial ecology of the gastrointestinal tract. Annu. Rev.

Microbiol., 31, 107–133.

Shakya,M. et al. (2013) Comparative metagenomic and rRNA microbial di-

versity characterization using archaeal and bacterial synthetic communities.

Environ. Microbiol., 15, 1882–1899.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large gen-

omes using compressed data structures. Genome Res., 22, 549–556.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Tateno,Y. et al. (2002) DNA Data Bank of Japan (DDBJ) for genome scale re-

search in life science. Nucleic Acids Res., 30, 27–30.

Treangen,T. et al. (2013) MetAMOS: a modular and open source metage-

nomic assembly and analysis pipeline. Genome Biol., 14, R2.

Tringe,S.G. et al. (2005) Comparative metagenomics of microbial commun-

ities. Science, 308, 554–557.

Wang,Q. et al. (2007) Nave Bayesian classifier for rapid assignment of rRNA

sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73,

5261–5267.

Woese,C.R. and Fox,G.E. (1977) Phylogenetic structure of the prokary-

otic domain: the primary kingdoms. Proc. Natl. Acad. Sci., 74,

5088–5090.

Woese,C.R. et al. (1990) Towards a natural system of organisms: proposal for

the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U.S.A.,

87, 4576–4579.

Wu,Y. et al. (2012) Stitching gene fragments with a network matching

algorithm improves gene assembly for metagenomics. Bioinformatics, 28,

i363–i369.

Yuan,C. and Sun,Y. (2013) RNA-CODE: A noncoding RNA classification

tool for short reads in NGS data lacking reference genomes. PLoS One, 8,

e77596.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zhang,Y. et al. (2014) A scalable and accurate targeted gene assembly tool

(SAT-assembler) for next-generation sequencing data. PLoS Comput. Biol.,

10, e1003737.

Reconstructing 16S rRNA genes in metagenomic data i43

https://github.com/lh3/wgsim
https://github.com/lh3/wgsim

	l
	l
	btv231-TF1
	btv231-TF2
	btv231-TF3
	btv231-TF4

