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Abstract

Objective: Furosemide renal clearance is slow after very preterm (VP) birth and increases with 

postnatal maturation. We compared furosemide dose frequency and total daily dose between 

postmenstrual age (PMA) groups in VP infants.

Study Design: Observational cohort study of VP infants exposed to a repeated-dose course of 

furosemide in Pediatrix neonatal intensive care units (NICU) from 1997 to 2016.
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Results: We identified 6565 furosemide courses among 4638 infants. There were no statistically 

significant differences between PMA groups on the odds of receiving more frequent furosemide 

dosing. Furosemide courses initiated at < 28 weeks PMA were associated with a higher total daily 

dose than those initiated at a later PMA.

Conclusions: Furosemide dosing practices in the NICU are similar across PMA groups, despite 

maturational changes in drug disposition. Research is needed to identify and test rational dosing 

strategies across the PMA spectrum for this commonly used but unproven pharmacotherapy.

Introduction

Furosemide use is common in neonatal medicine. Between 2005 and 2010, furosemide 

rose from the ninth to the sixth most frequently prescribed medication in Pediatrix Medical 

Group neonatal intensive care units (NICU).(1–3) Use is particularly common in preterm 

infants with established severe bronchopulmonary dysplasia (BPD) beyond 36 weeks 

postmenstrual age (PMA). In this older preterm population, furosemide is the most common 

pharmacotherapy in United States children’s hospitals.(4)

Furosemide clearance depends on renal maturation. Pharmacokinetic studies in the 1980s 

identified slow furosemide clearance in very preterm infants, with elimination half-lives in 

excess of 24 hours among infants of PMA < 32 weeks.(5–7) These findings are reflected 

in the US Food and Drug Administration (FDA) label recommendation, which states the 

maximum intravenous furosemide dose in preterm infants should not exceed 1 milligram 

per kilogram per day (mg/kg/d) to avoid potentially toxic drug accumulation.(8) However, 

studies report a rapid increase in clearance and decrease in elimination half-life in preterm 

infants beyond 32 weeks PMA. This change is attributed to the maturation of renal tubular 

secretion driving renal clearance and furosemide elimination.(5,6) These developmental 

changes suggest a lower risk of drug accumulation with more frequent dosing in older 

preterm infants. Further, once daily dosing in older subjects may result in prolonged 

periods of subtherapeutic furosemide concentrations, facilitating rebound sodium and water 

retention between dose administrations.(9)

It is unknown if neonatal providers change their furosemide dosing practices with increasing 

PMA to account for these developmental changes in renal clearance. A recent descriptive 

study of infants discharged from Pediatrix Medical Group NICUs identified 1 mg/kg/d as the 

predominant intravenous dosing approach, consistent with the FDA label recommendation.

(8,10) Differences in dosing as a function of PMA were not described. The objective of 

this study was to compare furosemide dosing practices across PMA groups in very preterm 

infants. Our primary outcome was dose frequency; we hypothesized this would be similar 

across PMA groups, suggesting these prior findings have limited influence on observed 

clinical practice. Our secondary outcome was cumulative daily dose; we again hypothesized 

similar dosing across PMA groups.
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Methods

Study Design, Data Source & Study Population

We performed a cohort study and followed STROBE reporting guidelines.(11) Our data 

source was the Pediatrix Medical Group Clinical Data Warehouse. This database contains 

prospectively collected demographic and clinical data generated by clinicians and captured 

through integration with the electronic health record.(12) Approximately 20% of infants 

admitted to a NICU in the United States are represented in the database.(13) We included 

very preterm (gestational age (GA) < 32 weeks) infants discharged alive or deceased from 

NICUs managed by the Pediatrix Medical Group from 1997 to 2016 and prescribed a 

repeated-dose course of furosemide between admission and discharge. We excluded infants 

only prescribed single-dose or as needed furosemide, those with incomplete dosing data 

(e.g., missing route of administration, end date, or dose) and those receiving > 9 mg/kg/dose, 

as these were outlying values at risk of being reporting errors.(10) This was a convenience 

cohort without formal sample size calculation. This study was considered exempt from 

human subject research approval by the Duke University Institutional Review Board.

Variables

The primary predictor variable was PMA in completed weeks at the initiation of the 

furosemide course. We applied PMA as a categorical variable with 5 groups: <28, 28–31 

6/7, 32–35 6/7, 36–39 6/7, and ≥ 40 weeks. We chose to assess PMA as a categorical rather 

than a continuous variable to facilitate between-group comparisons. Specific groupings 

reflect the prior identification of 32 weeks PMA as a time-point coinciding with the lower 

inflection point of rapidly increasing furosemide renal clearance, 36 weeks PMA as the time 

point when BPD is commonly classified, and an effort to balance the number of weeks 

among the PMA groups.(5,14,15) The decision to collapse all PMA values below 28 and 

above 40 weeks PMA reflects the expected distribution of PMA at furosemide initiation 

across the cohort, and a desire to limit the overall number of comparisons.

A repeated-dose furosemide course was defined as more than one administration with 

consistent weight-based dose, route of administration and frequency. A change in any of 

these dosing parameters was classified as a new, distinct furosemide course. For example, 

an infant exposed to a consistent dose and route of administration of furosemide every 

24 hours, and then exposed to the same dose and route of administration every 12 hours 

contributed two distinct furosemide courses, with the second course initiated at the time of 

the dose frequency change. We focused on the PMA at course initiation (versus midpoint 

or cessation) as this reflects the infant’s developmental maturity when the dosage practice 

decision was made by the prescriber.

The primary outcome was furosemide dose frequency. We assessed dose frequency as a 

categorical variable with 5 groups: every 6 hours, every 8 hours, every 12 hours (q12h), 

every 24 hours (q24h) and every 48 hours. We chose these specific values based on 

preliminary data from a broader neonatal cohort showing these frequencies made up > 

99% of all prescribed courses.(10) We then dichotomized dose frequency groups into q12h 

or more frequent vs q24h or less frequent, as values other than q12h or q24h contributed 
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fewer than 10% of all courses in the cohort. Our secondary outcome was total daily dose, 

assessed for each course, as a continuous variable with units of mg/kg/d. Doses were 

rounded to the nearest 0.5 mg/kg/d value, and reported as intravenous-equivalent doses, 

assuming a bioavailability of 50% for enteral formulations, such that a 2 mg/kg enteral dose 

was reported as a 1 mg/kg intravenous equivalent.(8,16)

We identified candidate covariates that were plausibly associated with both the PMA at 

furosemide prescription and provider dosing decisions. All covariates were ascertained at 

the initiation of the furosemide course. These were postnatal age in days, exposure to 

furosemide in the seven days preceding the course, route of administration, and type of 

respiratory support as a surrogate measure of lung disease severity. We considered postnatal 

age because renal function matures with both PMA and postnatal age, and furosemide use 

may be guarded in the immediate postnatal period when renal function and furosemide 

clearance is most compromised.(17) For example, furosemide use may be less frequent in a 

1 day old infant born at 29 and 6/7 weeks GA than in a 6 week infant born at 24 weeks GA, 

despite an equivalent PMA of 30 weeks. We described postnatal age as both a continuous 

variable and as a dichotomous variable comprised of 0–3 days vs greater than 3 days, using 

the dichotomous variable for multivariable models. Three days reflects the typical postnatal 

age associated with improving renal function in preterm infants(18,19). We considered 

prior exposure to furosemide in the seven days preceding the course as furosemide diuresis 

may be subject to tolerance, such that greater effective drug concentrations are required 

to achieve the same diuretic response over time with sustained treatment.(20) As such, 

dosage selection for a new course, which would include a change in dose or frequency as 

defined in our methods, may be greater following recent furosemide exposure in an effort to 

compensate for the evolution of tolerance. We considered route of administration as enteral 

administrations likely increase with PMA as feed volumes increase and intravenous lines 

become less common, while more frequent dose intervals during intravenous administration 

may be discouraged by quality improvement efforts to limit the frequency of line accesses 

and risk for infection. Lastly, neonatal lung disease tends to improve with increasing 

PMA, and furosemide dosage practices may be influenced by the severity of lung disease 

motivating its use, with greater use in infants requiring higher levels of support. We reported 

respiratory support as a categorical variable with values of none, non-invasive and invasive, 

the latter reflecting tracheal intubation and mechanical ventilation of any type.

Statistical Analyses

We described cohort variables with summary statistics, such as counts (percentages) 

and medians [interquartile range (IQR)]. Logistic regression with cluster-robust variance 

estimates to account for multiple courses within the same subject were used for both 

unadjusted bivariable and adjusted multivariable statistical analyses. We first examined the 

unadjusted association between PMA and dose frequency. We then performed analogous 

bivariable analyses for each candidate covariate and the outcome of dose frequency, 

including characteristics associated with the outcome at p < 0.10 as covariates in a 

multivariable model testing the adjusted association between PMA and dose frequency. 

We used an analogous statistical approach for the secondary outcome of total daily dose 

but applying a linear regression model. To facilitate clinical interpretation, estimates of the 
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association between predictor variables and total daily dose were reported as post-estimation 

marginal means. We considered the unadjusted analysis after accounting for within-subject 

clustering to be our primary analysis, under the rationale that while included covariates 

may help explain provider dosage decisions, they do not obviate the developmental changes 

in furosemide pharmacology that influence drug disposition and motivate our study. For 

example, while greater severity of lung disease at a younger PMA may help explain more 

frequent furosemide use during these developmental periods, it does not directly alter 

the rate of furosemide clearance and potential appropriateness of less frequent dosing in 

younger preterm infants. We therefore presented adjusted multivariable models as secondary 

analyses exploring explanatory factors. In consideration of the 20 year study period, we 

conducted a post-hoc sensitivity analysis to assess whether the association between PMA 

and our primary outcome of dose frequency varied across two time period strata: 1997–2006 

and 2007–2016. We considered p < 0.05 to be statistically significant throughout without 

adjustment for multiple comparisons. All analyses were performed with Stata 16 (StataCorp, 

College Station, Texas, USA).

Results

A total of 1,249,466 infants were admitted to one of 392 participating NICUs during the 

study period. A total of 200,611 (16%) infants were <32 weeks. Of these, 38,183 (19%) 

received at least one dose of furosemide and 10,868 (28%) had complete dosing data. Our 

final cohort included 4,638 very preterm infants from 185 NICUs who received at least 

one qualifying multiple-dose furosemide course. The infants had a median birth GA of 27 

weeks, a median birth weight of 915 grams, and were predominantly exposed to a single 

course of furosemide (Table 1).

The 4,638 infants contributed a total of 6565 furosemide courses. Dosing practices as a 

function of PMA at course initiation are summarized in Table 2. Dose frequencies of q12h 

or more frequent (45% of courses) and q24h or less frequent (55% of courses) were both 

common. The dose frequency distribution was similar across PMA groups, with q12h or 

more frequent dosing present in a narrow range of 52% to 56% across all five PMA groups. 

The median intravenous dose was 1 mg/kg, as were both values describing the interquartile 

range. The median enteral dose, unadjusted for a presumed bioavailability of 50%, was 1.5 

mg/kg, with an interquartile range of 1 to 2 mg/kg. The median (intravenous equivalent) 

total daily dose was 1 mg/kg/d, though an exposure of 2 mg/kg/d or greater occurred in 

>25% of courses. The median value for total daily dose (1 mg/kg/day) was the same in all 

5 groups, with an interquartile range of 1 to 2 mg/kg/day for all groups except 32 – 35 6/7 

weeks PMA, in which a range of 0.5 to 1.5 mg/kg/day was identified.

Covariates characteristics as a function of PMA at course initiation are summarized in Table 

3. There were large differences in the proportion of courses administered enterally between 

the PMA groups, ranging from 16% at < 28 weeks to 70% in the 36–39 6/7 weeks PMA 

group. Similarly, furosemide was initiated during invasive respiratory support in 90% of 

courses at < 28 weeks versus 19% of courses in the 36–39 6/7 weeks PMA group.
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For our primary analysis, there were no statistically significant differences between PMA 

groups on the odds of receiving more frequent furosemide after adjusting for within-subject 

clustering. Point estimates suggested slightly lower odds of receiving more frequent dosing 

in higher PMA groups compared to < 28 weeks PMA as the reference group (Table 4). This 

finding was consistent when assessed for 1997–2006 versus 2007–2016 in separate strata 

(Table SA1). For the outcome of furosemide total daily dose, courses initiated at < 28 weeks 

PMA weeks were associated with higher mean values compared to all groups except > 40 

weeks PMA after adjusting for within-subject clustering.

In explanatory analyses, the odds of receiving more frequent furosemide dosing was slightly 

higher for all PMA groups relative to < 28 weeks PMA, with the differences reaching 

statistical significance for the 32 – 35 6/7 and 36 – 39 6/7 weeks PMA groups (Table 5). 

Furosemide exposure in the 7 days preceding the course and enteral route of administration 

were associated with significantly lower odds of receiving more frequent furosemide dosing 

in multivariable modeling. For the outcome of furosemide total daily dose, courses initiated 

at < 28 weeks PMA were associated with lower mean total daily doses compared to courses 

initiated at 36 – 39 6/7 weeks and > 40 weeks PMA, with no statistically significant 

difference noted between <28 weeks PMA and the remaining two groups. Enteral route of 

administration was associated with a statistically significant lower total daily dose compared 

to intravenous administration, while non-invasive and invasive respiratory support were 

associated with greater total daily doses compared to no respiratory support.

Discussion

The objective of this study was to compare furosemide dosing practices across PMA groups 

in very preterm infants. We found that furosemide dosing frequency was similar across PMA 

groups. In turn, total daily dose differed modestly across groups, with slightly higher values 

in the youngest (< 28 weeks) and oldest (> 40 weeks) PMA groups.

Our study was motivated by prior research describing maturational changes in furosemide 

clearance following preterm birth. These suggest the elimination half-life of furosemide 

may exceed 24 hours in preterm infants prior to 32 weeks PMA, but shortens beyond this 

developmental window as renal tubular secretion, the primary mechanism of renal clearance 

and furosemide elimination, matures.(5–7) In a longitudinal study evaluating changes in 

furosemide pharmacokinetics in 10 very low birth weight infants over 3 months, the 

elimination half-life was estimated to decline to 4 hours by term corrected age.(5) Among 

NICU populations, this is particularly relevant to infants with established severe BPD, who 

are older than 36 weeks PMA by definition and for whom furosemide is the most common 

pharmacotherapy.(4,14) Once daily dosing in this population may led to prolonged periods 

of subtherapeutic furosemide concentrations between dose administrations, challenging 

efforts to minimize edema by facilitating rebound sodium and water retention between 

dose administrations.(9) We did not find an association between increasing PMA and more 

frequent dosing, and paradoxically observed the highest mean total daily dose in the least 

mature PMA group.
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We speculate that disease severity may have a greater influence on furosemide dosing 

practices than maturation. In contrast to our primary analysis, our secondary explanatory 

analysis identified statistically significant greater odds of more frequent furosemide dosing 

at 32 – 35 6/7 and 36 – 39 6/7 weeks PMA compared to < 28 weeks PMA following 

multivariable adjustment, with point estimates in the opposite direction of those observed 

in our primary analysis. Similarly, the 36 – 39 6/7 weeks PMA group had a statistically 

significant higher mean total daily dose compared to the < 28 weeks PMA group following 

multivariable adjustment, again with a reversal in the direction of the point estimate 

observed in the primary analysis. Our interpretation of these findings is that while dosage 

practices are similar between PMA groups (Table 2), the 36 – 39 6/7 group is observed to 

receive greater than expected furosemide after adjusting for between-group differences in 

covariates reflecting disease severity. As summarized in Table 3, the 36 – 39 6/7 PMA group 

had the lowest proportion of courses initiated through intravenous administration and during 

invasive mechanical ventilation, suggesting greater clinical stability in this group. The strong 

association between enteral route of administration and both less frequent furosemide use 

and lower total daily dose suggests this variable may act as a surrogate of clinical stability. 

Though degree of respiratory support was less strongly associated with both furosemide 

dose frequency and total daily dose compared to route of administration, a statistically 

significant association between less respiratory support and lower total daily dose was 

observed in explanatory models. Lastly, an association between furosemide use and disease 

severity may help explain the seemingly paradoxical finding of greatest furosemide total 

daily dose at the extremes of the PMA group values: < 28 weeks and > 40 weeks (Table 

4). One interpretation is this reflects disease severity cohort enrichment beyond 40 weeks, 

when healthier preterm infants have been discharged. This possibility is supported by the 

observation that this group contributed the fewest number of furosemide courses to the 

study, yet the proportion of courses occurring via intravenous route and during invasive 

respiratory support increase considerably after consistently down-trending from < 28 weeks 

to 36 – 39 6/7 weeks PMA (Table 3). We recently observed a similar pattern in an analysis 

of loop diuretic exposure as a function of PMA in the Pediatric Health Information System 

database, with the percentage of exposed subjects decreasing between 35 and 40 weeks 

PMA and then gradually rising beyond this age.(21) Although the use of more furosemide 

with greater disease severity is understandable, the risk of drug accumulation and toxicity is 

not lower in sicker infants. Indeed, the opposite may often be true.

As expected, we found unadjusted furosemide doses to be greater for enteral versus 

intravenous administrations across the cohort (Table 2). However, our data suggest that an 

assumed 50% bioavailability and a 1:2 intravenous to enteral conversion is not consistently 

applied, with a 1 mg/kg unadjusted dose noted in over 25% of enteral courses. Our 

secondary outcome of total daily dose reports intravenous equivalent doses, such that a 

1 mg/kg enteral dose is adjusted to 0.5 mg/kg (8,16). As such, an inconsistent conversion 

practice would contribute bias to the association between PMA group and total daily dose, 

decreasing the overall estimates for PMA groups with higher enteral administrations. This 

may also help explain the lower total daily dose estimates observed among the 28 – 31 

6/7, 32 – 35 6/7 and 36 – 39 6/7 weeks PMA groups relative to < 28 weeks PMA group 

(Table 4), and the attenuation of these differences in multivariable explanatory models 
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(Table 5). This finding of inconsistent practice highlights the importance of research to 

better characterize furosemide bioavailability.

Our study has additional limitations. Several of these are common to large retrospective 

cohort studies that use real-world data from databases. Our study includes a large sample 

of very preterm infants from hundreds of NICUs across the United States. Although 

the statistical confidence allowed by this large sample is a strength, the population is 

likely heterogenous and inclusive of subjects exposed to furosemide for various reasons. 

Importantly, the indication for furosemide use was unavailable, and exposure may have 

been motivated by various conditions, including congestive heart failure, respiratory distress 

syndrome, bronchopulmonary dysplasia, oliguric renal failure and/or edema of various 

etiologies. It is possible that our estimates would have differed if restricted to more specific 

populations and indications. Further, 72% of furosemide exposures were excluded for a 

lack of complete dosing data, which reflects our conservative inclusion criteria. While this 

improved the accuracy of the included data, it limits the generalizability of our findings. It is 

possible that furosemide dosing practices differed among subjects that had complete dosing 

data and those that did not, raising the possibility of bias in our estimates. Nonetheless, 

our report is the first to describe furosemide dosing practices in preterm infants across 

a postnatal developmental spectrum, making our findings novel and valuable. Efforts to 

corroborate our findings with alternative data sources are needed.

Our findings suggest that furosemide dosing practices are not influenced by prior data 

reporting higher clearance and shorter elimination half-lives among older PMA infants. 

However, FDA labeling does not provide PMA-based dosage recommendations, and 

hesitancy to increase exposure among these groups may be justified. First, the existing data 

is sparse. Though a few studies have reported pharmacokinetics in very preterm subjects 

beyond 32 weeks PMA, all but Mirochnick et al. (n = 10) enrolled four or fewer such 

subjects.(5,6,22) Second, furosemide drug disposition is influenced by various factors and 

a risk of drug accumulation with frequent dosing may remain in some older PMA subjects. 

For example, Vert et al. reported elimination half-lives in excess of 30 hours in two of 

four very preterm subject evaluated beyond 32 weeks PMA.(6) Identifying appropriate 

individualized dosage regimens will likely require consideration of parameters beyond 

PMA. Further, these data are now more than 30 years old and may not reflect improved 

analytical techniques for pharmacokinetic studies nor contemporary neonatal populations. A 

recent Japanese study of 10 extremely preterm infants evaluated in the first two weeks of 

life reported faster furosemide clearance (16.5 ml/kg/h) and a shorter elimination half-life 

(15.3 hours) than older studies despite a lower PMA among study participants, emphasizing 

the importance of revisiting earlier estimates.(23) Lastly, though faster furosemide clearance 

may allow more frequent dosing with lower risk of drug accumulation in older PMA 

infants, the benefit-harm profile of this approach remains uncertain. Furosemide harm can 

result from toxic drug accumulation at off-target sites (e.g. ototoxicity) or from undesired 

sequalae of on-target effects, such as nephrocalcinosis or metabolic bone disease following 

antagonism of renal water and electrolyte reabsorption. As such, achieving a more consistent 

diuretic effect through more frequent dosing may also increase harms. Of note, despite 

common practice, evidence to support the routine use of furosemide in BPD is lacking, with 

sparse data from clinical trials and inconsistent conclusions from cohort studies.(21,24,25)

Bamat et al. Page 8

J Perinatol. Author manuscript; available in PMC 2022 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, our findings suggest that modern furosemide dosing practices in very preterm 

infants do not reflect prior studies describing rapid postnatal maturation of furosemide renal 

clearance beyond 32 weeks PMA. This underscores the importance of education to better 

inform providers of existing knowledge, as well as research to further characterize the 

developmental pharmacology of furosemide and translate rational dosage strategies to much 

needed trials of furosemide efficacy and safety in preterm populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

BPD bronchopulmonary dysplasia

FDA United States Food and Drug Administration

GA gestational age

IQR interquartile range

NICU neonatal intensive care unit

PMA postmenstrual age

q12h every twelve hours

q24h every twenty-four hours

VP very preterm
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Table 1.

Infant characteristics

(N = 4638)

Receipt of antenatal steroids, No. (%) 3475 (75)

Gestational age, median [IQR], weeks 27 [25–29]

Birth weight, median [IQR], grams 915 [735–1160]

Female, No. (%) 2059 (44)

Maternal race/ethnicity, No. (%) 
a

  White 2127 (47)

  Black 1142 (25)

  Hispanic 1078 (24)

  Other 163 (4)

Small for gestational age, No. (%) 694 (15)

Furosemide courses per infant, median [IQR] 1 [1–2]

Abbreviations: IQR, interquartile range

a
N = 4510, represents greatest degree of missingness for subject characteristics

J Perinatol. Author manuscript; available in PMC 2022 July 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bamat et al. Page 12

Table 2.

Furosemide dosing by postmenstrual age at course initiation

PMA at course initiation, weeks

Total < 28 28 – 31 6/7 32 – 35 6/7 36 – 39 6/7 ≥ 40

Courses, No. (%) 
a 6565 (100) 932 (14) 2545 (39) 2158 (33) 684 (10) 246 (4)

Dose frequency, No. (%)

 Every 24 hours or less frequent 3589 (55) 487 (52) 1379 (54) 1214 (56) 375 (55) 134 (54)

 Every 12 hours or more frequent 2976 (45) 445 (48) 1166 (46) 944 (44) 309 (45) 112 (46)

Dose, IV equivalent, mg/kg, median [IQR] 
b 1 [0.5–1] 1 [1–1] 1 [0.5–1] 1 [0.5–1] 1 [0.5–1] 1 [1–1]

 IV 
c 1 [1–1] 1 [1–1] 1 [1–1] 1 [1–1] 1 [1–1] 1 [1–1]

 Enteral, without IV equivalent adjustment 
d 1.5 [1–2] 1.5 [1–2] 1 [1–2] 1 [1–2] 2 [1–2] 1.5 [1–2]

Total daily dose, IV equivalent mg/kg/day, median [IQR] 
b 1 [1–2] 1 [1–2] 1 [1–2] 1 [0.5 – 1.5] 1 [1–2] 1 [1–2]

Course duration, days, median [IQR] 3 [2–8] 4 [2–10] 3 [2–9] 3 [2–5] 3 [2–5] 3 [2–8]

Abbreviations: PMA, postmenstrual age, IQR, interquartile range, mg, milligram; kg, kilogram; IV, intravenous

a
Subjects may contribute multiple courses to study cohort; data are descriptive across cohort without adjustment for within-subject clustering.

b
Includes both intravenous and enteral doses, reported as intravenous equivalents using a 1:2 intravenous to enteral ratio to convert for presumed 

bioavailability, and rounded to nearest 0.5 mg/kg increment.

c
Restricted to intravenous courses, n = 3743. Doses rounded to nearest 0.5 mg/kg increment

d
Restricted to enteral courses, n = 2822. Doses rounded to nearest 0.5 mg/kg increment as prescribed for enteral administration without intravenous 

conversion
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Table 3.

Furosemide course covariate characteristics by postmenstrual age at course initiation

PMA at course initiation, weeks

All < 28 28 – 31 6/7 32 – 35 6/7 36 – 39 6/7 ≥ 40

Courses, No. (%) 
a 6565 (100) 932 (14) 2545 (39) 2158 (33) 684 (10) 246 (4)

Age at course initiation, median [IQR], days 29 [15–50] 12 [8–17] 21 [12–30] 42 [29–54] 70 [58–84] 119 [101–137]

Age at course initiation, No. (%)

  0–3 days 
b 244 (4) 105 (11) 139 (5) 0 (0) 0 (0) 0 (0)

  > 3 days 6321 (96) 827 (89) 2406 (95) 2158 (100) 684 (100) 246 (100)

Furosemide exposure in prior 7 days, No. (%) 2000 (30) 293 (31) 846 (33) 625 (29) 165 (24) 71 (29)

Route of administration, No. (%)

  Intravenous 3743 (57) 779 (84) 1787 (70) 839 (39) 204 (30) 134 (54)

  Enteral 2822 (43) 153 (16) 758 (30) 1319 (61) 480 (70) 112 (46)

Respiratory support at course initiation, No. (%) 
c, 

d

  None 424 (7) 1 (0) 58 (2) 236 (11) 112 (17) 17 (7)

  Non-invasive 3193 (49) 100 (11) 1063 (42) 1470 (69) 436 (65) 124 (51)

  Invasive 2859 (44) 820 (90) 1385 (55) 427 (20) 125 (19) 102 (42)

Abbreviations: PMA, postmenstrual age, IQR, interquartile range

a
Subjects may contribute multiple courses to study cohort; data are descriptive across cohort without adjustment for within-subject clustering.

b
As cohort is restricted to very preterm infants born < 32 weeks gestational age, 0–3 days age group is not applicable to older PMA age groups.

c
N = 6476, represents greatest degree of missingness for course characteristics

d
Non-invasive respiratory support is inclusive of nasal cannula, continuous positive airway pressure and bilevel, irrespective of type or modality. 

Invasive respiratory support inclusive of all delivered through tracheal intubation and mechanical ventilation, irrespective of type or modality.

J Perinatol. Author manuscript; available in PMC 2022 July 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bamat et al. Page 14

Table 4.

Estimates of the association between furosemide course characteristics, dose frequency and total daily dose.

Odds ratio (95% CI) for more 

frequent furosemide dosing 
a P value

Marginal means (95% CI) for total 

daily dose (mg/kg/d) 
b P value

PMA in weeks at course initiation

 <28 (reference) - 1.42 (1.36 – 1.48) -

 28 – 31 6/7 0.93 (0.79 – 1.08) 0.33 1.26 (1.23 – 1.29) <0.001

 32 – 35 6/7 0.85 (0.72 – 1.00) 0.05 1.17 (1.13 – 1.20) <0.001

 36 – 39 6/7 0.90 (0.73 – 1.11) 0.33 1.20 (1.15 – 1.25) <0.001

 > 40 0.91 (0.80 – 1.23) 0.56 1.42 (1.29 – 1.55) 0.98

Age at course initiation

 0–3 days - 1.59 (1.42 – 1.75) -

 > 3 days 0.77 (0.59 – 1.00) 0.05 1.24 (1.22 – 1.26) <0.001

Furosemide exposure in prior 7 days

 No (reference) - 1.26 (1.24 – 1.28) -

 Yes 0.90 (0.8 – 1.00) 0.06 1.24 (1.20 – 1.28) 0.38

Route of administration

 Intravenous (reference) - 1.47 (1.44 – 1.50) -

 Enteral 0.51 (0.46 – 0.57) <0.001 0.97 (0.94 – 0.99) <0.001

Respiratory support at course initiation

 None (reference) - 1.06 (0.99 – 1.13) -

 Non-invasive 0.79 (0.65 – 0.98) 0.03 1.14 (1.12 – 1.17) 0.03

 Invasive 1.11 (0.90 – 1.37) 0.34 1.41 (1.37 – 1.44) <0.001

Abbreviations: PMA, postmenstrual age

a
Results of bivariable logistic regression analyses applying cluster-robust variance estimates to account for multiple courses within subjects, odds 

ratio of furosemide frequency of every 12 hours or more vs every 24 hours or less

b
Results of bivariable linear regression analyses applying cluster-robust variance estimates to account for multiple courses with subjects
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Table 5.

Estimates of the association between furosemide course characteristics, dose frequency and total daily dose in 

explanatory multivariable models

Odds ratio (95% CI) for more 

frequent furosemide dosing 
a P value

Marginal means (95% CI) for total 

daily dose (mg/kg/d) 
b P value

PMA in weeks at course initiation

 <28 (reference) - 1.23 (1.17 – 1.29) -

 28 – 31 6/7 1.08 (0.91 – 1.27) 0.39 1.18 (1.15 – 1.21) 0.17

 32 – 35 6/7 1.28 (1.06 – 1.54) 0.01 1.29 (1.25 – 1.32) 0.10

 36 – 39 6/7 1.44 (1.14 – 1.82) 0.002 1.38 (1.32 – 1.43) 0.001

 > 40 1.20 (0.88 – 1.64) 0.25 1.44 (1.31 – 1.56) 0.003

Age at course initiation

 0–3 days - 1.40 (1.23 – 1.56) -

 > 3 days 1.03 (0.79 – 1.35) 0.83 1.25 (1.23 – 1.27) 0.08

Furosemide exposure in prior 7 days

 No (reference) - - -

 Yes 0.79 (0.71 – 0.89) <0.001 - -

Route of administration

 Intravenous (reference) - 1.46 (1.43 – 1.49) -

 Enteral 0.47 (0.42 – 0.53) <0.001 0.97 (0.95 – 1.00) <0.001

Respiratory support at course initiation

 None (reference) - 1.13 (1.06 – 1.20) -

 Non-invasive 0.79 (0.64 – 0.98) 0.03 1.21 (1.19 – 1.24) 0.02

 Invasive 0.94 (0.74 – 1.19) 0.60 1.32 (1.28 – 1.35) <0.001

Abbreviations: PMA, postmenstrual age, IQR, interquartile range

a
Odds ratio of furosemide frequency of every 12 hours or more vs every 24 hours or less; results of multivariable logistic regression analyses 

applying cluster-robust variance estimates to account for multiple courses within subjects and adjusting for course characteristics included as model 
covariates following association with furosemide dosing frequency at p < 0.10 in bivariable analysis; all met criteria.

b
Results of multivariable linear regression analyses applying cluster-robust variance estimates to account for multiple courses within subjects 

and adjusting for course characteristics included as model covariates following association with furosemide cumulative daily dose at p < 0.10 in 
bivariable analysis; all but furosemide exposure in prior 7 days met criteria
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