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An immediate–late gene expression module
decodes ERK signal duration
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Abstract

The RAF-MEK-ERK signalling pathway controls fundamental, often
opposing cellular processes such as proliferation and apoptosis.
Signal duration has been identified to play a decisive role in these
cell fate decisions. However, it remains unclear how the different
early and late responding gene expression modules can discrimi-
nate short and long signals. We obtained both protein phosphory-
lation and gene expression time course data from HEK293 cells
carrying an inducible construct of the proto-oncogene RAF. By
mathematical modelling, we identified a new gene expression
module of immediate–late genes (ILGs) distinct in gene expression
dynamics and function. We find that mRNA longevity enables these
ILGs to respond late and thus translate ERK signal duration into
response amplitude. Despite their late response, their GC-rich
promoter structure suggested and metabolic labelling with 4SU
confirmed that transcription of ILGs is induced immediately. A
comparative analysis shows that the principle of duration decod-
ing is conserved in PC12 cells and MCF7 cells, two paradigm cell
systems for ERK signal duration. Altogether, our findings suggest
that ILGs function as a gene expression module to decode ERK
signal duration.
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Introduction

The RAF-MEK-ERK signalling pathway controls different cellular

programmes such as proliferation, differentiation and cell death

(Oda et al, 2005). It has been shown that these cell fate decisions

are encoded by signal duration of its final kinase in the pathway,

ERK (Marshall, 1995). Cells commonly interpret transient ERK

signalling as a proliferative signal. When exposed to sustained ERK

signalling, cells can differentiate or undergo cell death in a cell line-

dependent manner. In rat PC12 cells and in human breast cancer

MCF7 cells, sustained ERK activity results in cellular differentiation,

whereas transient activity elicited by epidermal growth factor (EGF)

results in proliferation (Traverse et al, 1992; Nagashima et al,

2006). Similarly, hamster lung fibroblasts (CCL39) and mouse

hippocampal cells (HT22) can discriminate transient and sustained

ERK signalling. In both cell types, only prolonged ERK activity

accompanied by ERK nuclear retention causes cell death, whereas

transient nuclear translocation of ERK is insufficient (Lenormand

et al, 1998; Stanciu & DeFranco, 2002).

Ultimately, both transient ERK signalling and sustained ERK

signalling induce a multitude of early and late responding genes

(Amit et al, 2007; Tullai et al, 2007; Dijkmans et al, 2009;

Nagashima et al, 2009; Saeki et al, 2009; Stelniec-Klotz et al, 2012).

First, primary response genes (PRGs) are induced which in turn

mediate expression of secondary response genes (SRGs; Yamamoto

& Alberts, 1976). This dependency delays SRG induction and at the

same time allows decoding of signal duration, as only prolonged

ERK activity ensures sufficient production of required primary

factors. In accordance, primary response gene and transcription

factor FOS were described to function as a molecular sensor for

ERK signal duration (Murphy et al, 2002, 2004). When ERK signal-

ling is sustained, FOS protein is stabilised and can promote tran-

scription of specific SRGs. In contrast, when ERK activity is

transient, its signal declines before FOS protein can accumulate

(Whitmarsh, 2007).

However, the protein sensor model and the concept of PRGs and

SRGs cannot explain the ample observation of late primary response

genes. When induction of SRGs is blocked with help of the protein

biosynthesis inhibitor cycloheximide (CYHX), not only immediate-

early primary response genes have been found to be differentially

regulated, but also an extensive set of delayed primary response

genes (Amit et al, 2007; Tullai et al, 2007). More precisely, mRNA

expression of immediate–early genes (IEGs) peaks within 30–

60 min post-EGF stimulation. They are succeeded by delayed–early

genes (DEGs), peaking about 120 min post-stimulation (Avraham &

Yarden, 2011). Both IEGs and DEGs are primary response genes
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(PRGs), as they do not require de novo protein biosynthesis.

However, composition and RNA dynamics of these temporal gene

clusters may differ upon short and prolonged ERK activity,

respectively.

Two important questions emerge from this observation. How can

primary genes respond late? And how can late primary genes decode

signal duration? It has been shown that late induction of gene

expression can be caused by restrained splicing of pre-mRNA (Zeisel

et al, 2011; Hao & Baltimore, 2013; Feldman & Yarden, 2014; Rabani

et al, 2014) and by long mRNA half-lives (Yang et al, 2003; Shalem

et al, 2008; Hao & Baltimore, 2009; Elkon et al, 2010; Nagashima

et al, 2015; Porter et al, 2016; Cheng et al, 2017). Interpretation of

signal duration on the other hand has been linked to feed-forward

regulation of mRNA stability in late response genes (Nagashima

et al, 2015).

In this study, we present evidence for a new, distinct class of

primary response genes that can function in signal duration decod-

ing. Paradoxically, these genes share properties with both IEGs and

DEGs. We therefore term them immediate–late genes (ILGs), as they

are induced immediately like IEGs, but respond late like DEGs. We

demonstrate that long mRNA half-lives dominate mRNA dynamics

of ILGs and that this characteristic intrinsically enables them to

respond late and to decode signal duration at the same time,

without any need for additional regulation. This is in contrast to

short-lived IEGs, which do not decode but relay signal duration,

postponing the task of duration decoding. The principle of signal

duration being translated into response amplitude is conserved in

rat PC12 cells and human MCF7 cells, two cell systems which serve

as paradigm models for cell fate decisions based on signal duration.

In general, mRNA half-life is a strong predictor for response dynam-

ics in these systems. Gene term enrichment analysis furthermore

proposes a potential role of ILGs in positive regulation of apoptosis.

As IEGs are found to be involved in negative regulation of apoptosis,

we speculate that the two opposing modules together could serve

as a fail-safe mechanism upon prolonged versus transient ERK

signalling.

Results

A highly controllable synthetic cell culture system allows
modelling of ERK downstream targets

Signals received at the cell surface propagate through a network

of signalling proteins (Oda et al, 2005; Kholodenko et al, 2010).

Eventually, signalling events activate complex gene expression

programmes. However, it is difficult to address how signalling

input dynamics are translated into gene expression output

dynamics, as different signalling pathways can be activated by

the same receptor and different receptors can activate the same

pathway (Kholodenko et al, 2010). Activated pathways can inter-

twine, counteract each other or converge on the same down-

stream promoters (Parikh et al, 2010). Negative feedback loops

allow for adaptation to constant signal exposure and complicate

the attempt to link gene expression programmes to signalling

inputs even further. In epidermal growth factor receptor (EGFR)

signalling, the activated RAF-MEK-ERK and PI3K-AKT signalling

pathways cross talk extensively (Mendoza et al, 2011;

Aksamitiene et al, 2012; Fritsche-Guenther et al, 2016). They

share downstream transcription factors (Tullai et al, 2004) and a

multitude of feedback loops act on both pathways (Kolch et al,

2015). To distinctively characterise the gene expression program

specifically elicited by ERK signalling, we hence used a synthetic

cell culture system that allowed for tight control of ERK activity.

In contrast to growth factor-induced systems, this ERK signalling

model system is uncoupled from the upstream G protein RAS,

avoiding pathway divergence and feedback mechanisms.

More precisely, we used human embryonic kidney (HEK293)

cells constitutively expressing an inducible form of RAF (ΔRAF1:ER;

Samuels et al, 1993; McMahon, 2001; Cagnol et al, 2006; Fig 1A) to

generate a wide range of different gene expression time course data

sets (Fig EV1). It was previously reported that constant exposure to

estrogen receptor (ER) antagonist 4-hydroxytamoxifen (4OHT)

causes sustained activation of ERK signalling and results in Caspase-

8-mediated induction of apoptosis in these cells, whereas parallel

treatment with small molecule MEK inhibitor U0126 does not

(Cagnol et al, 2006). In addition, the system mimics oncogenic RAF

signalling and therefore provides insights into early onset of RAF-

driven malignancies and the decisive competition between anti-

apoptotic and pro-apoptotic signals elicited by the RAF-MEK-ERK

signalling network. In this work, we used this synthetic system to

generate pulses of ERK signalling with defined duration, by stimulat-

ing RAF activity with 4OHT and subsequently blocking it using

U0126. Using transcriptomics time series, it serves as an excellent

model system to study mRNA dynamics of downstream targets upon

different ERK signalling durations.

Gene expression time course data unveiled sustained induc-

tion of 189 target genes (at FDR = 1%) upon constant exposure

to 4OHT (ON scenario, Fig 1B). In contrast, subsequent inactiva-

tion with U0126 two hours post-induction resulted only in tran-

sient induction of these target genes (ON/OFF scenario). To

distinguish primary and secondary response genes, protein

biosynthesis inhibitor cycloheximide (CYHX) was applied in

parallel to 4OHT treatment. 102 genes were still induced upon

parallel CYHX treatment (ON/CYHX scenario) and considered

primary response genes (PRGs). The remaining 87 genes were

no longer significantly induced in the presence of CYHX and

therefore not considered PRGs. However, a multitude of different

mRNA dynamics was observed among PRGs with immediate,

delayed and late responses. As elaborated above, these transcrip-

tional waves have been termed immediate–early genes (IEGs)

and delayed–early genes (DEGs). So far, classification of IEGs

and DEGs has only been based on peak expression time points

(Amit et al, 2007; Tullai et al, 2007). In this study, we based

distinction of IEGs and DEGs on mathematical modelling. This

approach allowed us to quantify transcriptional delays in our

experimental data and to distinguish temporal gene clusters in a

sustained signalling scenario where peak expression cannot be

defined.

Mathematical modelling of mRNA dynamics

We based our mathematical model on a minimal model of gene

expression (Gorini & Maas, 1957) with basal transcription rate k0
and degradation rate c. We extended the minimal model with two

additional parameters to account for dynamics in ERK activity and
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to model transcriptional delays. Mathematically, we allowed for an

additional ERK activity-dependent transcription rate k and a delay

parameter Dt:

d½mRNA�ðtÞ
dt

¼ k0 þ k�pERKðt � DtÞ � c½mRNA�ðtÞ

Biologically, the additional delay parameter Dt here accounts for

all steps that need to take place before transcription can start, like

chromatin remodelling, transcription factor recruitment and poly-

merase recruitment.

In silico analysis predicts that RNA half-lives and transcriptional
delays shape mRNA dynamics

Sustained, pulsed and transient signalling kinetics elicit different

mRNA dynamics (Fig 2A). But mRNA dynamics are not solely

determined by signalling inputs. It is different combinations of

RNA half-lives and transcriptional delays that enlarge the

number of possible gene expression profiles. Mathematical

modelling of RNA production and degradation suggests (Yang

et al, 2003) and experimental data confirm (Shalem et al, 2008;

Hao & Baltimore, 2009; Elkon et al, 2010; Nagashima et al,

2015; Porter et al, 2016; Cheng et al, 2017) that short-lived tran-

scripts can be induced more rapidly than long-lived transcripts.

In consequence, pulse or transient signalling inputs are sufficient

for induction of short-lived mRNAs, whereas long-lived mRNAs

require sustained signalling inputs to exceed their half maximum

response amplitude (Fig 2A). In addition, transcriptional delays

can shift gene induction, leading to expression peaks of target

genes hours after signal inputs lapsed (Fig 2A).

In silico exploration of RNA half-life and transcriptional delay

parameter space showed that immediate–early genes (characterised

by short half-life and short transcriptional delay) consistently reach

at least 50% of their response amplitude in all simulated input

scenarios (sustained, pulse, transient, Fig 2B). Likewise, simula-

tions predicted that short-lived delayed–early genes are also capable

to exceed this level of response amplitude, but in a delayed fashion.

Lastly, simulations confirmed that only long-lived mRNAs require

sustained signalling to reach at least 50% of their response

amplitude.

It is important to note that response amplitudes are presented as

relative values normalised to steady-state expression. Such normal-

ised values ease the comparison of the timing between different

genes during their transition from one steady state to another. At

the same time however, this representation cannot reflect absolute

changes in mRNA concentration. Hence, we present relative

changes in expression (noted as amplitude [%]) when describing

the relation between mRNA half-life and signal duration decoding

and absolute changes in expression (noted as log2 fold change),

when we focus on quantitative aspects of mRNA expression.

Altogether, simulations suggested that both short-lived and

long-lived transcripts can discriminate different signal durations.

However, only long-lived genes truly decode signal duration by

translating it to response amplitude, whereas short-lived genes

relay signal duration to response duration, postponing the task

of decoding.
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Figure 1. Expression kinetics from a synthetic model system for ERK signal duration.

A HEK293 with a stably transfected ΔRAF1:ER fusion protein were treated with ER antagonist 4-hydroxytamoxifen (4OHT, ON scenario in B). To generate pulses, ERK
signalling was turned off using the MEK inhibitor U0126 (ON/OFF scenario in B). To distinguish between primary and secondary response genes, translation was
blocked with cycloheximide (CYHX) in parallel to 4OHT stimulation (ON/CYHX scenario in B). In addition, we used actinomycin D (ActD) to determine mRNA half-lives
via transcriptional shutdown and 4-thiouridine (4SU) to determine mRNA half-lives via metabolic labelling.

B Log2 gene expression fold changes of significantly induced genes (FDR = 1%) across different treatment scenarios. Gene induction of immediate, delayed and late
responding genes is sustained upon constant activation (ON scenario) and transient upon two-hour pulse activation (ON/OFF scenario). Genes still significantly
induced upon parallel CYHX treatment were considered primary response genes. Genes were ranked by their model-derived response time.
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Identification of IEGs, DEGs and a new temporal cluster of
immediate–late genes (ILGs)

To train our mathematical model of gene expression and to infer

gene-wise model parameters for all induced primary response genes,

we used the ON condition as a training set. For this, we integrated

stimulus-dependent phosphorylation of ERK measured in a multi-

plex immunoassay (Bio-Plex) and gene expression data obtained

from Affymetrix Human Gene 1.0 ST microarray time course experi-

ments (Fig 3A).
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Figure 2. Simulation of primary response gene dynamics upon different signalling durations.

A Different activation patterns of signalling molecules (input functions, left) can elicit multiple different response profiles (right) with different response times (r)
depending on mRNA half-lives (t1/2) and transcriptional delays (Δt). Rapid induction requires short half-lives (red lines). Late induction can be caused by
transcriptional delays (blue lines), long half-lives (yellow lines) or combinations thereof. Decoding of signal duration depends on mRNA half-life. Short-lived mRNAs
relay signal duration to response duration, whereas long-lived mRNAs decode signal duration to response amplitude (yellow lines).

B Response amplitude for all simulated combinations of mRNA half-life and transcriptional delay. Response amplitude is shown over time (columns) and in respect to
input function (rows). For sustained signalling, all primary response genes exceed their half maximum response amplitude. Pulse and transient signalling inputs are
only sufficient for immediate–early genes and short-lived delayed–early genes. Long-lived mRNAs with half-lives greater 120 min require sustained signalling inputs
to exceed their half maximum response amplitude. Example parameter sets displayed in (A) are marked with asterisks in (B). Dashed lines indicate cluster borders.
IEG: immediate–early genes, t1/2 ≤ 120 min and Δt ≤ 30 min. ILG: immediate–late genes, t1/2 > 120 min and Δt ≤ 30 min. DEG: delayed–early genes, Δt > 30 min.
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Figure 3. Model fitting and classification of primary response genes.

A HEK293ΔRAF1:ER cells were treated with 4OHT for constitutive induction of ERK signalling. Phosphorylation levels of ERK2 were measured with bead-based ELISA
(Bio-Plex). RNA time course expression data were measured using microarrays. These data were the basis to train gene-wise model parameters.

B pERK2 log2 fold change upon sustained activation (left) and deduced input function (right) used for model fitting. Average pERK2 log2 fold change upon 4OHT
treatment equals 100% signalling amplitude.

C Measured gene expression kinetics and the resulting maximum-likelihood fit of the gene expression model of all significantly induced primary response genes (FDR = 1%).
Gene expression is shown as percentage of response amplitude. Mean error is calculated as the mean of absolute residuals serving as a goodness of fit measure.

D Classification of primary response genes. For each gene, response time r is calculated as the sum of deduced transcriptional delay Δt and mRNA half-life t1/2 and used for
ranking. In general, immediate–early genes (IEGs) have short response times, whereas both immediate–late genes (ILGs) and delayed–early genes (DEGs) have longer
response times. For ILGs, long response times are due to long mRNA half-lives. For DEGs, long response times are mainly due to long transcriptional delays (cf. boxplots).

E Response times for IEGs, DEGs and ILGs. Genes on the same trajectory have the same response time, but response times are composed differently. For IEGs and ILGs,
response times are solely determined by mRNA half-life, whereas DEGs have response times that are mixtures of half-life and transcriptional delay.

Source data are available online for this figure.

ª 2017 The Authors Molecular Systems Biology 13: 928 | 2017

Florian Uhlitz et al Immediate–late genes decode ERK signal duration Molecular Systems Biology

5



Across all treatment durations for the ON condition, pERK was

reliably induced with mean log2 fold change of 3.89 � 0.42 (Fig 3B).

We therefore deduced a simplified input function of pERKðtÞ ¼
1 for t[ 0 and incorporated it into our extended model of gene

expression. We then fitted basal transcription rate k0, pERK-dependent

transcription rate k, degradation rate c and transcriptional delay Dt for
each of the 102 significantly induced primary response genes consider-

ing an error model to account for expression level-dependent variance

(Fig 3C). In a simplified model, we left out transcriptional delay

parameter Dt and fitted all remaining parameters again. Using a likeli-

hood ratio test (Kreutz & Timmer, 2009), we compared the sum of

weighted squared residuals (wRSS) of the complete and simplified

model (Fig EV2). The complete model was only accepted for genes

with significantly enhanced fits (P-value <0.05). For the remaining

genes and for genes with Dt < 30 min (to reflect sampling intervals),

half-life estimates (t1=2 ¼ lnð2Þ=c) were based on the simplified model.

All fitted parameter values are listed in Table EV1.

Genes were ranked according to their model-derived response time

r, which was calculated as the sum of model-derived half-life and tran-

scriptional delay (r = Dt + t1/2, Fig 3D). For each gene, the response

time r corresponds to the time when it reaches its half maximum

response amplitude. Based on this, we identified 21 rapidly induced

IEGs with median response time of 53 min. About half of all induced

PRGs (54/102) were classified as DEGs with Dt > 30 min and median

response time of 160 min. Lastly, we identified 27 immediate–late genes

with median response time of 204 min and half-lives greater 120 min.

Scatter plotting of half-lives and transcriptional delays allowed

visualisation of response time composition, the temporal order of

gene clusters (Fig 3E). IEGs defined the first wave of response with

model-derived half-lives ranging from 10 (DUSP1) to 117 min

(EGR2). Both DEGs and ILGs subsequently responded after several

hours (2–48 h) with few exceptions (6 DEGs showed r\2 h:

UBALD2, MXD1, KLF10, ARRDC4, PMAIP1, ZFP36). DEGs showed

median half-life of 70 min and median transcriptional delay of

102 min. Responding ILGs showed half-lives ranging from 124 min

(DUSP6) up to 561 min (QSOX1). For one DEG (PPP1R15A) and

three ILGs (BAIAP2, NR4A1, AKIRIN2), model-derived response

times were >10 h, the time span covered in the experiment. All

summarising values assigned to particular gene clusters like here

need to be considered bearing in mind the continuous nature of gene

expression parameters apparent in our analysis (Fig 3D and E).

Model-derived parameters allow semi-quantitative prediction of
mRNA log2 fold changes elicited by different signalling scenarios

In a next step, we could demonstrate that the parameter knowledge

we gained about PRGs induced upon sustained ERK signalling can

be used to semi-quantitatively predict their behaviour upon different

signalling scenarios (Fig 4). We compared sustained ERK signalling

elicited by 4OHT with a 2-h pulse (4OHT followed by U0126) and

with EGF and fibroblast growth factor (FGF) treatment. Bead-based

ELISAs confirmed that these stimuli indeed result in sustained, 2-h

pulse and native growth factor-induced pERK dynamics, respec-

tively (Fig 4B). EGF caused transient ERK activation (max. log2 fold

change: 5.43 � 1.05) and FGF caused attenuated but sustained ERK

activation (mean log2 fold change: 2.83 � 0.50) (Fig 4B). Growth

factor-mediated input functions required for prediction were gener-

ated from linear interpolations of pERK2 log2 fold changes relative

to mean induction in test condition. Deduced input functions were

then incorporated into our mathematical model of gene expression.

Strikingly, trained parameters allowed for semi-quantitative

prediction of mRNA log2 fold changes upon two-hour pulse signal-

ling as well as upon EGF and FGF treatment (Fig 4C). Mean relative

prediction error was 18.1% � 11.8% for 2-h pulse, 19.1% � 15%

for EGF and 20.5% � 12.3% for FGF (cf. Fig EV3 for cluster-wise

boxplots of mean prediction errors). The predictive power of the

model trained on the on-kinetics underlined that a minimal model

of gene expression is sufficient to describe mRNA dynamics in our

cell system for ERK signal duration with high accuracy.

Transcriptional shutdown data confirms short mRNA lifespan of
IEGs and longevity of ILGs

To verify our half-life estimates based on modelling of gene induc-

tion for the different temporal gene clusters, we determined mRNA

half-lives upon actinomycin D (ActD)-mediated transcriptional shut-

down and upon metabolic labelling of RNA with 4-thiouridine (4SU)

(Fig 5A, cf. Fig EV1 for sampling). ActD-derived half-lives were

determined in both 4OHT-pretreated and untreated HEK293ΔRAF1:

ER cells (Fig 5A, ON and OFF panels). 4SU-derived half-lives were

only determined in untreated HEK293ΔRAF1:ER cells (Fig 5A, OFF

panel), since this approach assumes steady-state gene expression. In

general, ActD-derived mRNA half-lives in 4OHT-pretreated and

untreated samples correlated well (Fig EV4A, Spearman’s rho =

0.74). Also, estimates from the two different methods correlated

well (Fig EV4B, Spearman’s rho = 0.57). Moreover, median mRNA

half-life estimates based on all three data sets showed good correla-

tion with published data on human mRNA half-life [Fig EV4C,

Spearman’s rho = 0.60 with Friedel et al (2009) and rho = 0.66 with

Yang et al (2003)]. All mRNA half-life estimates are provided as

supplementary data in Table EV2.

ActD-derived mRNA half-life estimates from 4OHT-pretreated

HEK293ΔRAF1:ER cells confirmed short mRNA half-lives for IEGs

(median = 60 min) and longer mRNA half-lives for ILGs (me-

dian = 230 min, Fig 5A, ON panel). Data from untreated cells

yielded highly reproducible half-life estimates for uninduced genes,

but resulted in different half-life estimates for induced genes

(Fig 5A, OFF panel). Most prominently, mRNA half-life estimates

for all IEGs were smaller in 4OHT-pretreated than in untreated data.

This could hint either at destabilisation of IEGs in response to ERK

signalling or at difficulties in determination of half-lives from tran-

scriptional shutdown experiments for induced genes under baseline

conditions.

Notably, all three independent measurements identified half-lives

for DEGs in range of ILGs (> 120 min), whereas estimates based on

modelling of gene induction had suggested shorter half-lives for

DEGs in range of IEGs (< 120 min). We therefore concluded that

half-lives of IEGs and ILGs can certainly be estimated from gene

induction kinetics, whereas half-lives of DEGs are more reliably

determined in transcriptional shutdown experiments.

ILGs are transcribed immediately and have GC-rich promoters
like IEGs

Our mathematical model predicted that ILGs respond late like DEGs,

but are induced immediately like IEGs. It has been reported

Molecular Systems Biology 13: 928 | 2017 ª 2017 The Authors
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Figure 4. Semi-quantitative prediction of mRNA log2 fold changes upon different signalling scenarios.

A Gene expression upon different stimulations was predicted based on fitted model parameters and measured pERK2 levels. Predictions were verified with gene
expression time course data.

B Signalling input conditions (left side shows deduced input function, and right side shows pERK2 measurements): Sustained ERK signalling (4OHT), 2-h pulse ERK
signalling (4OHT + U0126), growth factor signalling (EGF: epidermal growth factor, FGF: fibroblast growth factor). Deduced input functions: 100% signalling
amplitude corresponds to mean induction in training condition (4OHT). Growth factor-induced input functions are linear interpolations of pERK2 log2 fold changes
relative to mean induction in test condition.

C Predictions are verified with actual gene expression data. Heat maps show log2 fold changes of induced mRNAs. P: model prediction. D: gene expression data. E: mean
error = mean of absolute residuals.

Source data are available online for this figure.
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previously that IEGs and DEGs differ in their promoter architecture

(Tullai et al, 2007; Ramirez-Carrozzi et al, 2009; Avraham &

Yarden, 2011). IEGs commonly possess GC-rich promoters, allowing

for instant activation independent of nucleosome remodellers,

whereas genes that respond with a delay commonly possess GC-

poor promoters, facilitating their dependence on remodellers and

thereby delaying their induction (Ramirez-Carrozzi et al, 2009).

Given our model-based classification of temporal gene clusters, we

could confirm that IEGs show GC-rich promoters (TSS � 1,000 bp),

and DEGs show GC-poor promoters (Fig 5B). Based on the model,

we hypothesised immediate transcription of ILGs and that therefore

their promoters should be similar to those of IEGs. And indeed, we

found that ILG promoters (TSS � 1,000 bp) are likewise GC-rich.

Their GC content is in the same range as of IEG promoters, and

significantly higher (Wilcoxon P-value = 1.4 × 10�4) than GC

content of DEG promoters (Fig 5B). Hence, immediate induction

of ILGs is potentially facilitated by their permissive promoter

architecture.

To directly confirm that ILGs are immediately induced, we used

1-h pulses of metabolic labelling with 4SU followed by RNA

sequencing and compared changes in nascent transcripts as proxy

of the transcription rate across clusters. Indeed, median transcrip-

tion rate of ILGs was approximately doubled just one hour after

induction of ERK signalling with 4OHT (Fig 5C), suggesting immedi-

ate transcription. DEGs in contrast required 2 h of 4OHT treatment

until median transcription rate was doubled, suggesting delayed

transcription. Overall, IEGs showed the steepest changes in tran-

scription rate. As mRNA levels are determined by the ratio of mRNA

production and decay rate, this suggests that IEGs compensate their

short half-lives with high transcription rates and may therefore

reach similar steady-state levels as ILGs. Indeed, absolute transcrip-

tion rate (TPM/h = transcripts per million per hour) showed anti-

correlation with model-derived half-life estimates for IEGs and ILGs

(Fig EV5A). Comparison of nascent mRNA and total mRNA levels

further confirmed that IEGs can reach high total mRNA levels after

both short and prolonged ERK activity (total RNA in Fig EV5B), by

compensating their short half-lives with very high transcription

rates (nascent RNA in Fig EV5B). Interestingly, total mRNA levels

further showed that ILGs are low expressed before stimulation, but

reach similar levels as IEGs and DEGs after prolonged activation

(total RNA in Fig EV5B).

ILGs translate ERK signal duration into response amplitude

Having quantitatively characterised and validated the parametric

properties of IEGs, DEGs and ILGs, we moved on to validate our

main hypothesis, the capacity of ILGs to translate ERK signal dura-

tion into response amplitude. First, we compared response ampli-

tudes upon constant ERK signalling elicited by 4OHT with response

amplitudes upon two-hour pulse (4OHT followed by U0126) and

transient signalling (EGF treatment) in our transcriptome time

course data (cf. Fig EV1A for sampling).

Median induction curves of the different proposed PRG clusters

nicely reflected their different kinetic properties (Fig 6A). Again, the

rapid induction of IEGs and the subsequent response of DEGs and

ILGs were apparent. However, overall accumulation of DEGs was

delayed first but rapid later, whereas overall accumulation of ILGs

was immediate but steadily slow. Remarkably, when considering

shortened ERK signal durations, some genes were still rising in

expression hours after signalling inputs lapsed (Fig 6A). This beha-

viour was predominantly observed among DEGs and more

pronounced upon EGF-mediated ERK signalling than upon two-hour

pulse signalling. In contrast, expression of IEGs and ILGs nearly

instantly declined once signalling inputs lapsed. This observation

was very much in accordance with our in silico data (Fig 2).

When systematically comparing the capacity of IEGs and ILGs to

decode signal duration based on this data, we saw that IEGs gener-

ally relayed signal duration to response duration. Response ampli-

tude however was only partially affected for a fraction of IEGs. For

all IEGs, a two-hour pulse was sufficient to exceed 50% of response

amplitude (Fig 6B). Remarkably, even transient activation with EGF

was sufficient to induce half of IEGs (11/21) to this extend.

In contrast, response amplitude of ILGs was strongly linked to

ERK signal duration. Upon sustained signalling, the majority of ILGs
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Figure 5. Immediate–late genes (ILGs) have long mRNA half-lives, are
transcribed immediately and have GC-rich promoters.

A Boxplot comparison of mRNA half-life estimates based on modelling of
gene induction (model-derived), transcriptional shutdown (ActD-derived)
and metabolic labelling (4SU-derived). Estimates from 4OHT-pretreated
HEK293ΔRAF1:ER cells (ON panel) are more appropriate to characterise
induced genes than estimates from unstimulated cells (OFF panel). Genes
not assigned to any cluster are shown in grey.

B Promoter GC content in IEGs, DEGs and ILGs. Calculated for
TSS � 1,000 bp in hg19. Wilcoxon rank sum was used to check for
significant differences (n.s.: not significant, ***: P-value < 0.001).

C Log2 fold changes of transcription rate in 4OHT-treated HEK293ΔRAF1:ER
cells derived from metabolic labelling (4SU) RNA-sequencing data
document immediate transcription of IEGs and ILGs but delayed
transcription of DEGs. Dashed horizontal line indicates doubling of
transcription rate.

Data information: Boxplots show median and inter-quartile range. IQR is
extended with whiskers to the largest and smallest value respectively, but no
further than 1.5× IQR from hinges.

Molecular Systems Biology 13: 928 | 2017 ª 2017 The Authors

Molecular Systems Biology Immediate–late genes decode ERK signal duration Florian Uhlitz et al

8



A
Sustained Pulse EGF

0

50

100

150

0 1 2 3 4 6 8 10 0 1 2 3 4 6 0 1 2 3 4
Time [h]

A
m

pl
itu

de
 [%

]

cluster
IEG
DEG
ILG

��

�

�
�
�

���
���

�
�

�

�

�
�

��

�

�

�
�
�

���
���

�
� �� �

� �

��
��

�

�
�

�� �
�

�
�

0
2
4
6

 lo
g 2

 fc
pE

R
K

2

B
Sustained Pulse EGF

0
20
40
60
80

100

0
20
40
60
80

100

IE
G

IL
G

0 50 10
0 0 50 10
0 0 50 10
0

Relative gene count [%]

A
m

pl
itu

de
 [%

]

C

E

D

F

50

75

100

0.5 1.0 2.0 4.0 8.0

Signal duration [h]

M
ed

ia
n 

am
pl

itu
de

 [%
]

Temporal
cluster

IEG, n = 6

ILG, n = 6CLU FOSL1

EGR1 FOS

0 1 2 4 8 0 1 2 4 8

0
2
4
6

0
2
4
6
8

0
2
4
6

0

1

2

Time [h]

m
R

N
A

 lo
g 

  f
c

Temporal
cluster

IEG

ILG

Signal
duration [h]

0.5

1

2

4

8

CLU FOSL1

EGR1 FOS

0 2 4 6 8 0 2 4 6 8

0
1
2
3
4

0

1

2

3

0
1
2
3
4

0
1
2
3

Time [h]

P
ro

te
in

 lo
g 

  f
c

Treatment
4OHT

EGF

PC12
NGF / EGF

MCF7
HRG / EGF

0

1

2

3

IEG
n=7

ILG
n=6

A
m

pl
itu

de
 r

at
io

 (
lo

g 
 )

0

1

2

3

IEG
n=10

ILG
n=6

*

2

2
2

Figure 6. Immediate–late genes (ILGs) translate signal duration into response amplitude.

A Upper panel: pERK2 log2 fold changes upon different input scenarios (sustained: 4OHT; 2-h pulse: 4OHT + U0126). Lower panel: response amplitude across temporal
clusters and signal durations. Bold lines show median cluster amplitude at each time point.

B Capacity to decode signal duration. ILGs translate ERK signal duration into response amplitude. IEGs are only partially able to do so, as many of these genes are still
strongly induced upon shortened signal durations.

C qPCR validation to test different ERK signal durations. HEK293ΔRAF1:ER cells were treated with 4OHT and U0126 for different periods of time to generate signal
duration scenarios of 0.5–8 h (cf. Fig EV1C). mRNAs of IEGs EGR1 and FOS relay signal duration to response duration, whereas ILGs CLU and FOSL1 decode signal
duration to response amplitude (qPCR data for all 17 validated mRNAs is shown in Fig EV6A).

D Relation between signal duration and response amplitude for IEGs and ILGs derived from qPCR validation data. Median amplitude is based on six qPCR-validated
ILGs and six qPCR-validated IEGs.

E Quantification of Western blots to present protein log2 fold changes of sample genes upon sustained ERK signalling (4OHT-induced) and transient ERK signalling
(EGF-induced) in HEK293ΔRAF1:ER cells.

F Conservation of signal duration decoding to response amplitude in two prominent model systems for ERK signal duration: NGF and HRG cause more sustained ERK
signalling compared to EGF treatment in PC12 and MCF7 cells, respectively. Decoding of signal duration to response amplitude is clearly governed by ILGs.
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reached response amplitudes between 80 and 100%, similar to IEGs.

However, upon two-hour pulse signalling, the majority of ILGs

reached response amplitudes only between 40 and 60%, and upon

transient EGF-mediated signalling, the majority of ILGs did not

exceed 20% response amplitude. Thus, ILGs clearly distinguished

sustained and short signalling by translating signal duration into

response amplitude. Supporting our hypothesis that long mRNA

half-lives enable this decoding mechanism, we found that a fraction

of long-lived DEGs with model-derived half-lives greater 120 min

was also capable of decoding ERK signal duration in a similar

manner (ARL5B, BHLHE40, C2orf42, CDKN1A, GADD45A, GPR50,

HOMER1, KDM6B, KRT8, PPP1R15A, SERPINB9, TFPI2, TNFRSF12A,

TXNL4B).

Next, we investigated in detail the relation between signal dura-

tion and response amplitude in a qRT–PCR expression panel consist-

ing of seventeen highly regulated IEGs, ILGs and long-lived DEGs

(Fig EV6A). Using our synthetic system, we activated ERK signalling

for five different durations ranging from half an hour to eight hours,

and measured the time kinetics of these seventeen genes (cf.

Fig EV1C for sampling). The resulting time series shows that IEGs

like EGR1 and FOS relay signal duration to response duration, that is

longer pulses lead to longer expression with the same amplitude

(Fig 6C). ILGs like CLU and FOSL1 on the contrary decode signal

duration by translating it into response amplitude, that is maximal

expression increased with longer signal duration. The principle was

not only apparent when looking at individual genes, but also in the

average response amplitude for all qRT–PCR-validated genes

(Fig 6D). For IEGs, the median amplitude of IEGs increases only

slightly from 0.5 to 1 h and remains at 100% for longer durations.

In contrast, the median amplitude of ILGs increases steadily with

higher signal duration. Taken together, these data confirm that IEGs

relay signal duration, whereas ILGs decode signal duration into

response amplitude.

We were also interested if such decoding is also apparent at

the protein level and tested the proteins EGR1, FOS, CLU and

FOSL1 (Fig 6E). For EGR1, we find that also the protein relays

signal duration but does not decode it. FOS protein levels, in

contrast, did show strong duration decoding. This is in accor-

dance with the literature (Murphy et al, 2002, 2004), as the FOS

protein is stabilised in an ERK-dependent fashion. Therefore,

IEGs can decode signal duration on the protein level if the

protein itself is stable or stabilised (Fig 6E). For both tested ILGs

CLU and FOSL1, we find that also their proteins show strong

differences in response amplitude for the different input stimuli,

and can therefore decode signal duration.

ILG decoding of ERK signal duration is conserved in PC12
and MCF7

So far, our analyses were focussed on a synthetic cell culture system

that allows for precise control of ERK signal duration. To provide

evidence that the principle of how ILGs decode signal duration is

conserved in more physiological conditions, we examined two other

paradigm model systems for ERK signal duration. As elaborated

above, PC12 cells undergo proliferation or differentiation when

exposed to transient or sustained ERK signalling elicited by EGF or

neuronal growth factor (NGF), respectively. Likewise, MCF7 cells

undergo proliferation or commit to apoptosis when exposed to

transient or sustained ERK signalling elicited by EGF or heregulin

(HRG), respectively. We calculated amplitude ratios for significantly

induced IEGs and ILGs in MCF7 and for homologues in PC12 using

publicly available data sets (Shiraishi et al, 2010; Offermann et al,

2016). Both NGF/EGF amplitude ratio in PC12 and HRG/EGF ampli-

tude ratio in MCF7 were higher for ILGs when compared to IEGs.

To further provide evidence that mRNA half-lives dominate gene

expression timing and hence translation of signal duration into

response amplitude, we compared genes induced in both 4OHT-

treated HEK293ΔRAF1:ER and PC12 or MCF7 cells, respectively.

Whereas maximum log2 fold changes showed poor correlation, both

our model-derived response times and median mRNA half-life esti-

mates correlated nicely with peak expression time points in both

PC12 and MCF7 (Spearman’s rho between 0.60 and 0.70, Fig EV6C

and D). This suggested that gene expression timing is highly

conserved in all three tested models for ERK signal duration.

ILGs might serve as a fail-safe mechanism to control aberrant
ERK signalling in HEK293

Previous studies have suggested that IEGs and DEGs are distinct in

function and that they can regulate each other. Whereas IEGs have

been described as feed-forward elements predominantly encoding

transcription factors (boosting the expression of DEGs and inducing

the expression of SRGs), DEGs have been described as a module of

negative feedback regulators (Amit et al, 2007; Tullai et al, 2007;

Kholodenko et al, 2010; Avraham & Yarden, 2011). These negative

feedback regulators include phosphatases (DUSPs), which inactivate

MAP kinases (Fritsche-Guenther et al, 2011); RNA binding proteins,

which mediate degradation of IEGs (e.g. ZFP36, which binds FOS

mRNA); and other negative feedback elements, such as tumour

suppressors (Amit et al, 2007).

To check whether our classification of different PRG subclasses

is consistent with known functional annotations, we performed

Gene Ontology (GO) term enrichment analysis (Fig EV7A). In accor-

dance with the literature, IEGs were enriched for positive regulators

of transcription from PolII promoter (9 out of 21: CYR61, EGR1,

EGR2, ETV5, FOS, FOSB, INSIG1, JUNB, RBM14). Among induced

DEGs, we identified aforementioned RNA binder ZFP36, negative

receptor feedback elements ERRFI1 and SPRY2, and other negative

feedback regulators of protein kinase activity (GADD45A,

GADD45B, CDKN1A, TNFAIP3). Moreover, the top upregulated DEG

was tumour suppressor tissue factor pathway inhibitor 2 (TFPI2).

Having confirmed the different functional roles of IEGs and

DEGs, we moved on to functionally characterise our newly defined

gene cluster of ILGs. Strikingly, GO term enrichment analysis

suggested a distinct role of ILGs in positive regulation of apoptosis,

putatively opposing involvement of IEGs in negative regulation of

apoptosis. This finding suggests that the capability of ILGs to decode

ERK signal duration might serve as a potential fail-safe mechanism

to control aberrant ERK signalling, as these positive regulators of

apoptosis only come into play, when ERK is activated in a prolonged

fashion.

In general, it has been shown that RAF-MEK-ERK signalling is

involved in positive and negative regulation of both intrinsic (mito-

chondrial) and extrinsic (receptor) pathway of apoptosis (Thiel

et al, 2009; Cagnol & Chambard, 2010). Induction of mitochondrial

apoptosis pathway involves Caspase-9 activation, whereas extrinsic
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apoptosis pathway is triggered by tumour necrosis factors (e.g.

TNF-a or FasL) binding to death domain receptors, in turn causing

subsequent activation of Caspase-8 (Fulda & Debatin, 2006). Inter-

estingly, both anti-apoptotic effects of RAF-MEK-ERK signalling

(Erhardt et al, 1999; Lehmann et al, 2000; Schulze et al, 2001; Thiel

et al, 2009), and pro-apoptotic effects (Wang et al, 2000; Zhuang &

Schnellmann, 2006; Cagnol & Chambard, 2010; Martin & Pognonec,

2010; Subramaniam & Unsicker, 2010; Teixeiro & Daniels, 2010)

have been reported for several cellular contexts. However, pro-

apoptotic effects were more often reported in lymphocytes and cells

of neuronal origin (Cagnol & Chambard, 2010). This is remarkable

since HEK293 cells have been identified as of neuronal origin (Shaw

et al, 2002).

As mentioned, HEK293ΔRAF1:ER cells in particular undergo

Caspase-8-mediated apoptosis upon constant activation with 4OHT.

However, the regulatory mechanism controlling Caspase-8 activity

in these cells remains to be determined (Cagnol et al, 2006). As it

was shown that Caspase-8 activation in these cells is independent

of Fas-associated death domain (FADD) signalling (Cagnol et al,

2006), it was later speculated that the observed Caspase-8 activa-

tion might be regulated via genes from the TNF receptor super

family (Cagnol & Chambard, 2010). In our data, TNFRSF12A has

been identified as an upregulated DEG with model-derived tran-

scriptional delay of 46 min and mRNA half-life of 183 min. Inde-

pendent of its delay, its long half-life enables it to translate ERK

signal duration into response amplitude. We therefore speculate

mRNA upregulation of TNFRSF12A could account for apoptosis in

HEK293ΔRAF1:ER cells exposed to prolonged ERK activation

(Fig EV7B).

Discussion

The idea of mRNA half-life being important for the kinetics of gene

induction is as old as the discovery of the messenger RNA itself

(Jacob & Monod, 1961). Yet only the advent of high-throughput

technologies allowed to test this hypothesis in a genome-wide

manner. Since that time, several studies have specifically demon-

strated that short-lived transcripts respond early and that long-lived

transcripts respond late to external stimuli. For example, the tempo-

ral order of gene expression was shown to be governed by mRNA

half-life upon H2O2-induced stress in yeast (Shalem et al, 2008),

upon NF-kB signalling in mouse 3T3 fibroblasts (Hao & Baltimore,

2009) and upon IL-2 signalling in murine T cells (Elkon et al, 2010).

Using reporter constructs, it was further revealed that timing of

mRNA dynamics is an intrinsic feature of the half-life encoded in

the 3’UTR sequence (Hao & Baltimore, 2009).

It has been noted that protein function correlates with mRNA

half-life, and in those mRNAs that need to be quickly regulated like

transcription factors and other regulatory proteins tend to be short-

lived (Wang et al, 2002; Yang et al, 2003; Legewie et al, 2008;

Schwanhäusser et al, 2011). In agreement with these observations,

we also found many transcription factors among the short-lived, fast

responding mRNAs.

Interestingly, immediate–late genes (ILGs) are enriched for genes

that are involved in positive regulation of apoptosis, which is the

cell fate for sustained ERK signalling in our model system, suggest-

ing that the mRNA half-life is important to functionally decode

signal duration. Very recently, the idea that mRNA half-life is

involved in signal decoding has been shown for signal frequency

decoding of p53 signalling (Porter et al, 2016). Here, short-lived

transcripts relay the oscillatory pattern of p53 signalling pulses to

response pulses, whereas only long-lived transcripts decode the

pulses by translating them into response amplitude (Porter et al,

2016). In this study, we demonstrated that this principle also trans-

fers to decoding of signal duration in ERK signalling.

Using a synthetic model system for ERK signalling combined

with computational modelling of transcript kinetics, we demon-

strated that mRNA longevity enables genes to translate signal dura-

tion into response amplitude. This is opposed to short-lived mRNAs

that only relay signal duration to response duration. In accordance

with previous research (Shalem et al, 2008; Hao & Baltimore, 2009;

Elkon et al, 2010; Porter et al, 2016), we find that mRNA half-life is

the dominating feature of expression kinetics for different input

stimuli. Among primary response genes, we introduced a new clus-

ter of immediate–late genes (ILGs) that makes use of this principle

to decode ERK signal duration. In particular, response amplitude of

ILGs precisely reflects ERK signal duration, as opposed to immedi-

ate–early genes (IEGs) that show no difference in response ampli-

tude. While ILGs share similar promoter characteristics with IEGs

and are also immediately induced, they differ by their mRNA half-

life. We found this principle to be conserved in two different model

systems for ERK signal duration (PC12 and MCF7), where long-

lived genes dominate decoding of signal duration to response

amplitude.

It is somewhat surprising that a simple model of gene expres-

sion that combines transcription and RNA processing into a single

step of mRNA synthesis describes the data with reasonable accu-

racy (when complemented with a delay parameter). Over the last

years, several mathematical frameworks with varying degree of

complexity have been presented to estimate the contribution of

processing, transcription and degradation rates from measured

RNA dynamics (Zeisel et al, 2011; Rabani et al, 2014; de Pretis

et al, 2015; Cheng et al, 2017). Two main conclusions arise from

these studies. First, ordinary differential equations with only few

parameters can accurately reflect mRNA dynamics. Secondly,

changes in mRNA expression are mainly governed by changes in

mRNA transcription, whereas processing and degradation rates are

only altered for a minority of regulated genes (4 and 10% of genes,

respectively) (Rabani et al, 2014). By the extension of a basic

model of gene expression with a simple delay parameter, we were

able to quantitatively dissect gene expression dynamics for

sustained signalling where peak expression cannot be defined.

Thereby, we identified temporal subclasses of PRGs (IEGs, DEGs

and ILGs) with distinct functions. However, the analysis also

shows that the gene expression parameters are continuous (Fig 3D

and E), and therefore decode duration to varying extend. It is

hence of great importance to view gene cluster definitions as a

heuristic to aid interpretation and to ease comparison of results

across literature.

In our study, we used a synthetic model system that mimics the

activation of the oncogene RAF. Oncogenic hyperactivation of

RAF1/BRAF is a pro-survival signal in many contexts. However,

many cell types activate fall-back programmes to oppose the overac-

tive signalling of RAF. Like DEGs, ILGs may serve as such a fall-

back module to counteract pro-survival signals sent out by
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sustained RAF activation. When benign tumours progress into

malignant ones, many negative feedback mechanisms that conferred

robustness before are lost (Friday et al, 2008). A deep understand-

ing of feedback modules or fail-safe mechanisms in the cluster of

ILGs that decode sustained oncogenic signalling is therefore crucial

to better understand what distinguishes proto-oncogenic from onco-

genic signalling.

Materials and Methods

Cell culture, microarray hybridisation and phosphoprotein assay

HEK293ΔRAF1:ER cells (Samuels et al, 1993; reviewed in

McMahon, 2001) were cultured in complete DMEM high glucose

without phenol red with 10% foetal calf serum supplemented with

antibiotics (pen/strep). Before stimulation, cells were starved in

serum-free medium overnight. Cells were stimulated with 4-hydroxy

tamoxifen (Sigma-Aldrich H7904; 0.5 lM), U0126 (20 lM), EGF

(25 ng/ml), FGF1 (50 ng/ml) or IGF (100 ng/ml). Translation was

inhibited with cycloheximide (10 lM), and transcription was inhib-

ited with actinomycin D (5 lM). RNA for microarray hybridisation

was isolated with TRIzol� reagent. cDNA was fragmented, labelled

and hybridised to Affymetrix Human Gene 1.0 ST Arrays. Phospho-

protein levels were assessed with Bio-Plex� (Bio-Rad) as described

previously (Klinger et al, 2013). Metabolic labelling of RNA with

200 lM 4SU 1 hour before harvesting followed by RNA-Seq was

performed as described previously (Schueler et al, 2014).

Identification of differentially expressed genes from
microarray data

Fluorescence intensities from scanned microarrays were processed

and analysed in R. Background correction, quantile normalisation,

probe set summarisation and log2 transformation were performed

with help of robust multichip average algorithm (RMA) (Irizarry,

2003). Probe sets were annotated with R package hugene10sttran-

scriptcluster.db. All probe sets mapping to a HUGO symbol identifier

were considered. For transcripts represented by multiple probe sets,

the probe set with highest mean expression across samples was

considered. Transcripts expressed below median expression in all

samples were excluded from analysis. Log2 fold changes were calcu-

lated with respect to mean expression in untreated samples (UT_1

and UT_3). UT_2 was excluded due to strong dissimilarity to UT_1

and UT_3 in cluster analysis of correlation values and putative

contamination. Log2 fold changes for independently obtained EGF,

and FGF time course data were calculated with respect to mean

expression in corresponding untreated samples (UT_1_n, UT_2_n,

UT_3_n). To account for expression level-dependent variations, an

empirical null model was based on replicates for 2-h 4OHT treat-

ment. For this, transcripts were ranked by their mean expression

across replicates and a moving average with window size k = 2,000

was calculated to serve as an expected variance measure for a given

expression level. Z-scores for each transcript pi in each sample j

were calculated accordingly:

zi;j ¼ pi;j � pi;UT

hsd pi;j�pi;UT
2

� �i

Genes exceeding an absolute z-score of 5.6 in 4OHT time course

data were considered regulated (1,490 upregulated, 2,037 downregu-

lated). This corresponded to an average false discovery rate (FDR) of

1% in 4OHT time course data. Here, false positives were estimated

by counting transcripts detected differentially expressed between

one replicate and the mean of the two other replicates of the 2-h

4OHT treatment samples. For all downstream analyses, 4OHT-regu-

lated genes were further filtered in two steps. First, regulated genes

were tested against a random set of unregulated genes (of the same

size) for their log2 fold change standard deviation (SDlog2fc) across

all samples. This was done to filter out a large fraction of

erroneously detected genes, which were unaltered across all

samples when the untreated condition was left out. Here, a SDlog2fc

cut-off was defined at FDR of 5% (253 upregulated, 234 down-

regulated genes remained). Secondly, genes induced in a non-

monotonic fashion that could not be fitted to our one-step model

were excluded from the analysis. All remaining genes (189 upregu-

lated, 146 downregulated) are referred to as differentially expressed

in the main text.

RNA-sequencing data generation and preprocessing

Total RNA was extracted with TRIzol. Labelled and unlabelled frac-

tions were separated as described previously (Baltz et al, 2012).

Sequencing libraries were prepared using Illumina TruSeq mRNA

Library Prep Kit v2 and sequenced on Illumina HiSeq 2000. Read

files were demultiplexed, and sequencing adapters were trimmed

using flexbar (Dodt et al, 2012). Reads were mapped with STAR

aligner v2.4.1 (Dobin et al, 2013) on hg19 using GENCODE v19 for

annotation and counted with subread featureCounts (Liao et al,

2014). Raw read counts were normalised with edgeR TMM

(Robinson et al, 2010) and eventually analysed with R package DTA

(Miller et al, 2011). The entire preprocessing pipeline was written in

Snakemake (Köster & Rahmann, 2012).

Identification of primary response genes

Differentially expressed genes were checked for significant z-scores

in CYHX samples. Differentially expressed genes also significantly

induced in any sample of parallel CYHX treatment (z-score > 5.6,

corresponding to FDR = 1%) were considered primary response

genes.

Modelling of mRNA dynamics

Gene expression data were fitted to complete and simple model for

mRNA dynamics as described in the main text using Nelder–Mead

method implemented in R package optimx. For a given expression

of a gene at time t, relative amplitude was deduced from gene-wise

parameter estimates of k0, k and c:

relative amplitude ðtÞ ¼ expression ðtÞ � k0
c

� ��
k0 þ k

c
� k0

c

� �

To obtain semi-quantitative log2 fold change predictions for

growth factor-induced gene expression, gene-wise fitted model

parameters and input functions for ERK-dependent transcription rate

k were fed to the complete model.
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Determination of mRNA half-lives based on transcription
blockage with actinomycin D and metabolic labelling
with 4-thiouridine

Half-life estimates based on ActD-mediated transcriptional shut-

down were derived from microarray gene expression time course

data (Fig EV1A). Since quantile normalisation assumes constant

total RNA levels across samples (Bar-Joseph et al, 2012), RMA was

performed without quantile normalisation for ActD samples.

Samples were instead normalised to median expression of 61 long-

lived mRNAs (t1/2 > 16 h) consistently identified in two published

data sets on human mRNA half-life (Yang et al, 2003; Friedel et al,

2009). Both time series were than fitted to an exponential decay

function of form MðtÞ ¼ M0 þ e�ct to infer decay rates c.
Half-life estimates based on metabolic labelling with 4SU

followed by RNA sequencing were calculated using all three frac-

tions of RNA, that is total RNA, labelled RNA (eluate) and unla-

belled RNA (flow-through). Dynamic transcriptome analysis (DTA)

was used for quantification (Miller et al, 2011).

Median, mean and standard deviation of half-lives for all

expressed genes were calculated from the three different data sets

(ActD ON, ActD OFF, 4SU) and are provided as supplementary data

(Table EV2).

Analysis of PC12 and MCF7 data

Published time course expression raw data on PC12 (Offermann

et al, 2016) and MCF7 (Saeki et al, 2009) were downloaded from

Gene Expression Omnibus (accession numbers: GSE74327 and

GSE13009). Data were preprocessed and analysed analogously to

HEK293ΔRAF1:ER microarray data presented in this work.

qRT–PCR primers, Western blot antibodies and flow cytometry

cDNA was synthesised using High-Capacity RNA-to-cDNATM Kit

(Applied Biosystems #4387406). qRT–PCR was performed using

Taqman gene expression assay (Thermo Fisher #4304437) with

following Taqman primers (Thermo Fisher): Hs01045540_g1 (ARC),

Hs00156548_m1 (CLU), Hs00610256_g1 (DUSP1), Hs01044001_m1

(DUSP6), Hs00152928_m1 (EGR1), Hs00166165_m1 (EGR2),

Hs00170630_m1 (FOS), Hs00171851_m1 (FOSB), Hs04187685_m1

(FOSL1), Hs00357891_s1 (JUNB), Hs00374226_m1 (NR4A1),

Hs00943178_g1 (PGK1), Hs00169585_m1 (PPP1R15A), Hs00153

133_m1 (PTGS2), Hs04334126_m1 (TFPI2), Hs00959047_g1

(TNFRSF12A), Hs00381614_m1 (ZCCHC12), Hs00185658_m1

(ZFP36).

Protein was extracted using Bio-Rad Cell Lysis Buffer (#171-

304006M). Concentration was determined using Thermo Fisher

Pierce BCA Protein Assay (#23228). 25–50 lg of purified protein

was used for blotting. Images were acquired using Li-Cor Odyssey

Scanner. Western blot antibodies were as follows: EGR1 (Santa Cruz

sc-110), FOS (Cell Signaling #2250), CLU (Santa Cruz sc-8354),

FOSL1 (Santa Cruz sc-376148).

For flow cytometry, cells were harvested 48 h after treatment

and fixed in 2% paraformaldehyde (PFA) for 10 min at RT. Cells

were permeabilised in methanol and incubated on ice for 30 min.

For immunostaining, cells were incubated for 1 h with Cleaved

Caspase-3 rabbit mAb (Cell Signaling #9602).

Data availability

Both microarray gene expression data and metabolic labelling RNA-

Seq data are accessible from gene expression omnibus (GEO) under

SuperSeries accession number GSE93611.

Expanded View for this article is available online.
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