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Abstract

Acute myeloid leukemia (AML) is one of the deadly cancers. Chemotherapy is the first-line

treatment and the only curative intervention is stem cell transplantation which are intolerable

for aged and comorbid patients. Therefore, finding complementary treatment is still an active

research area. For this, empirical knowledge driven search for therapeutic agents have

been carried out by long and arduous wet lab processes. Nonetheless, currently there is an

accumulated bioinformatics data about natural products that enabled the use of efficient and

cost effective in silico methods to find drug candidates. In this work, therefore, we set out to

computationally investigate the phytochemicals from Brucea antidysentrica to identify thera-

peutic phytochemicals for AML. We performed in silico molecular docking of compounds

against AML receptors IDH2, MCL1, FLT3 and BCL2. Phytochemicals were docked to AML

receptors at the same site where small molecule drugs were bound and their binding affini-

ties were examined. In addition, random compounds from PubChem were docked with AML

targets and their docking score was compared with that of phytochemicals using statistical

analysis. Then, non-covalent interactions between phytochemicals and receptors were

identified and visualized using discovery studio and Protein-Ligand Interaction Profiler web

tool (PLIP). From the statistical analysis, most of the phytochemicals exhibited significantly

lower (p-value� 0.05) binding energies compared with random compounds. Using cutoff

binding energy of less than or equal to one standard deviation from the mean of the phyto-

chemicals’ binding energies for each receptor, 12 phytochemicals showed considerable

binding affinity. Especially, hydnocarpin (-8.9 kcal/mol) and yadanzioside P (-9.4 kcal/mol)

exhibited lower binding energy than approved drugs AMG176 (-8.6 kcal/mol) and gilteritinib

(-9.1 kcal/mol) to receptors MCL1 and FLT3 respectively, indicating their potential to be lead

molecules. In addition, most of the phytochemicals possessed acceptable drug-likeness

and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Based

on the binding affinities as exhibited by the molecular docking studies supported by the
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statistical analysis, 12 phytochemicals from Brucea antidysentrica (1,11-dimethoxycanthin-

6-one, 1-methoxycanthin-6-one, 2-methoxycanthin-6-one, beta-carboline-1-propionic acid,

bruceanol A, bruceanol D, bruceanol F, bruceantarin, bruceantin, canthin-6-one, hydnocar-

pin, and yadanzioside P) can be considered as candidate compounds to prevent and man-

age AML. However, the phytochemicals should be further studied using in vivo & in vitro

experiments on AML models. Therefore, this study concludes that combination of empirical

knowledge, in silico molecular docking and ADMET profiling is useful to find natural product-

based drug candidates. This technique can be applied to other natural products with known

empirical efficacy.

Background

Leukemia is a group of cancers affecting early blood-forming cells. Acute myeloid leukemia

(AML) is an aggressive malignancy of myeloid blood cells, which annually affects more than a

million people globally and results in more than 100,000 deaths [1, 2]. According to American

Cancer Society’s estimates for leukemia in the US for 2020, AML is the deadliest subtype of

leukemia constituting 48% of Leukemia related deaths [3]. The first-line therapy for AML is

chemotherapy [4, 5] and the five-year survival rate is about 28% for all patients and overall sur-

vival rate of AML patients across the world is still dismal [6]. The result in older patients who

are unable to receive intensive chemotherapy is very bad with a median survival of only 5 to 10

months [7]. Although there has been some increase in survival for younger patients through

better management of therapy-related toxicities, stem cell transplantation and emergence of

some targeted drugs, AML’s therapy has largely remained unchanged for over four decades

[8] and is still an active topic of research. Recent advances in high-throughput technologies

enabled the elucidation of genetics and pathophysiology leading to detection of recurrent

molecular mutations [9] in AML. FLT3 (Fms-like Tyrosine Kinase 3) is a receptor tyrosine

kinase involved in hematopoiesis and reported to be the most commonly mutated in AML

patients [10, 11]. FLT3 inhibitors such as quizartinib and gilteritinib, are being used in combi-

nation with standard chemotherapy to treat AML patients [11]. MCL1 (myeloid cell leukemia-

1) is a closely related to BCL2 (B-cell lymphoma 2) and both frequently overexpressed in acute

myeloid leukemia and critical for the survival of AML cells and AML stem cells [12, 13]. Vene-

toclax (ABT-199) is a novel, orally bioavailable small-molecule inhibitor for selective targeting

of BCL2 [14]. AMG 176 is a potent, selective, and orally bioavailable MCL1 inhibitor that

induces a rapid apoptosis in models of hematologic malignancies. The synergistic combination

of AMG 176 and venetoclax demonstrates strong activity in models of AML at tolerated doses,

highlighting the promise of BH3-mimetic combinations in hematologic cancers [15]. IDH1

(Isocitrate dehydrogenase) and IDH2 are two enzymes located in the cytoplasm/peroxysomes

and mitochondria, respectively and point mutations of these enzymes are found in several

malignancies including AML [16]. IDH inhibitors have shown good clinical response in AML

patients and enasidenib and ivosidenib are approved by Food and Drug Administration

(FDA) in 2017 and 2018 for the treatment of adult relapsed or refractory (R/R) AML with

IDH2 and IDH1 mutations, respectively [17].

Natural products have long been a rich source for drug discovery. In four decades of 1981

to 2019, more than 40% (up to 85% with some criteria) of approved small-molecule anticancer

therapeutic agents were naturally inspired [18]. There has been a continuing search of natural

product or natural product inspired molecules for novel anticancer agents. The starting point
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of many of such natural product derived drugs is an empirical knowledge of their therapeutic

effects that passes through generations. Therefore, it would be beneficial to explore tradition-

ally known antileukemic agents as potential sources for treatment and management of AML.

One such potential source is Brucea antidysentrica (B. antidysentrica), a plant used to treat can-

cer in Ethiopia [19]. Inspired by this traditional and empirical knowledge, studies over the

decades have investigated B. antidysentrica and B. javanica (a closely related plant species used

in Chinese traditional medicine as an anticancer) for their anticancer activities both as crude

extracts and specific compounds [19–22]. Quassinoids from B. antidysentrica such as brucean-

tin, bruceantinol, bruceantinoside C, brusatol, and bruceantinol have been identified to have

antineoplastic activities in various cancers such as leukemia, breast carcinoma, melanoma,

myeloma, and colon cancer [23–28]. More specifically, spurred by discovery of bruceantin’s

anti-leukemic effect in 1973 by [24], other compounds of B. antidysentrica and B. javanica
such as bruceantinoside A, bruceantinoside B, bruceanol A, bruceanol B, brusatol, and Yadan-

zioside P were also reported to have antileukemic activities [29–32]. The compounds from B.

antidysentrica have even arrived on Phase II clinical trials for their anticancer activities [28,

33]. To this date, compounds from the B. antidysentrica and B. javanica are being investigated

for their anticancer activities [27, 34].

These previous studies on anticancer effect of B. antidysentrica have been performed by

extraction, identification of the plant’s compounds and testing them on various cancer cell

lines using the long and arduous wet lab processes. As it is known, extraction and testing of

compounds from natural products is a complicated and expensive process [35]. For example,

the whole process of conventional drug discovery from lead identification to drug develop-

ment is estimated to be 15 years [36] and it may cost around 800 million US dollars [37]. Even

when there is an empirical knowledge of a traditional medicine against specific disease, it is

difficult to identify all compounds from the plants/medicinal materials and test them for their

pharmacological activities. However, numerous compounds are extracted from different

medicinal materials at different times for various purposes. This resulted in buildup of numer-

ous databases of potential therapeutic phytochemicals constituting the medicinal materials.

These compound libraries can be screened for potential drugs using computational methods

such as virtual screening, which is time and cost effective. The traditional medicine inspired

reverse pharmacology is considered faster, economical and safe alternative because their safety

evidence is accumulated from ancestors, the availability could be secured and can be accessed

from mother nature with relatively low cost. Molecular docking is one of the widely used

computational method in which the disease associated target protein is docked with large

libraries of compounds using computer algorithms and their non-covalent binding strength is

characterized by scoring functions [38]. Although molecular docking is a relatively recent in

the field of natural products study, it has been extensively used in structure-based virtual

screening since the early 1980s [39]. It is initiated by identifying disease related targets and

attempts to predict the best interaction mode between target and candidate compounds to

form a stable complex [40]. It is achieved through two steps: first by prediction of ligand con-

formations as well and its position and orientation in the binding site of the protein (also called

binding poses) and then evaluating the binding affinity of each poses using a scoring function

[41].

Natural products, which are used to treat various kinds of diseases, are usually multi herb

or at least multi-compound concoctions. Although this multi-target polypharmacological

approach might be an important aspect of traditional medicines, it is beneficial to identify spe-

cific phytochemical(s) that are actually involved in interacting with the relevant receptors in

order to make targeted treatments, identify their action mechanisms and test their multi-tar-

geting attributes. Such in silico molecular docking studies have been utilized to this end in
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identifying specific natural products’ compounds involved in treating various diseases [42–

46]. In this work, we have demonstrated that empirical knowledge combined with in silico

molecular docking and ADMET profiling is an effective method to identify the anti-leukemic

potential of so-far identified B. antidysentrica phytochemicals. Since AML is morphologically

and genetically heterogenous disease, we approached our work from a multi-target multi-

ligand perspective. There are multiple investigational and approved AML drugs, which target

various receptors. We investigated how well B. antidysentrica compounds can bind to these

various targets and compared the values to the binding energy of the modern drugs, which we

believe can be used as a gold standard for their respective targets. We believe this method can

reveal the compounds, among phytochemicals of the plant, that might be bioactive and have

anticancer activities. To the best of our knowledge, there were no previous efforts to combine

empirical knowledge, in silico molecular docking, ADMET profiling and statistical analysis to

investigate the therapeutic effect of phytochemicals from B. antidysentrica.

Materials and methods

In this research, we used empirical knowledge combined with in silico molecular docking and

DMET profiling to investigate the phytochemicals from traditional medicine plant B. antidy-
sentrica for its potential therapeutic activity on AML. We identified the potential targets for

the B. antidysentrica phytochemicals from the knowledge of the approved small molecules

drugs which are currently being used to treat AML. Although there are multiple approved and

investigational drugs and targets for AML, we selected four of the drugs and targets because

their target-drug interaction complex has been elucidated using 3D crystallography and is pub-

licly available. These drugs are enasidenib, AMG176, gilteritinib and venetoclax with their

corresponding targets IDH2, MCL1, FLT3 and BCL2, respectively. The protein names of the

targets, respectively, are Isocitrate dehydrogenase, Myeloid cell leukemia-1, Fms-like Tyrosine

Kinase 3, and B-cell lymphoma 2. The 3 D Structure Data File (.SDF) file of the drugs are pro-

vided as supporting information (S1 File). The drug and target information were identified

from the DrugBank [47], Therapeutic Target Database [48], and literature searches [15, 49,

50]. The 3D structures of the compounds were acquitted from PubChem Database [51],

ChEMBL and/or ZINC database [52] and 3D structure of the targets were acquired from the

Protein Data Bank (PDB) [53]. We selected x-ray crystallographic structures of AML targets

with the small molecule drug complex. Then, in silico molecular docking was employed to pre-

dict the interactions between AML targets and compounds based on their poses and binding

free energies, which are expressed as ligand–protein binding forces in kilocalories per mole

(kcal/mol) [54]. We utilized AutoDock vina, which is one of the widely used bioinformatics

tools for docking. The schematic representation of the overall process used in this research is

shown in Fig 1.

Acquisition and preparation of phytochemicals

There has been long history of researches on anticancer activities of compounds from B. anti-
dysentrica. Phytochemicals from this plant were reported to be effective against various cancer

types such as leukemia, breast carcinoma, melanoma, pancreatic adenocarcinoma, and colon

cancer [23–28]. From an extensive literature searches and Ethiopian traditional medicine data-

base (ETM-DB) [55], we compiled compounds of B. antidysentrica (Fig 2A). The phytochemi-

cals 3D SDF were downloaded the PubChem Database, ChEMBL and/or ZINC databases.

The SDF of the phytochemicals were converted to PDB format using open babel [56, 57],

We then used MGL tools to convert the PDB files to PDBQT to prepare PDBQT for AutoDock

Vina, a molecular docking software [58]. Docking algorithms require each atom to have a
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charge and an atom type that describes its properties. Therefore, both ligands and targets

should be prepared properly to include these values. For each ligand, ADT automatically adds

gasteiger charges, non-polar hydrogen atoms and detects rotatable bonds [59].

Acquisition and preparation of molecular drug targets

Small molecule modern drugs and AML therapeutic targets were retrieved from Drug Bank

database [60], Therapeutic Target Database (TTD) [61] and literature searches. The AML che-

motherapeutic small molecule drugs used in this study were enasidenib, AMG176, gilteritinib

and venetoclax with their target proteins: Isocitrate dehydrogenase (IDH2), Induced myeloid

leukemia cell differentiation protein (MCL1), FLT3 and BCL2 respectively (Fig 2B). The

crystallographic structures of the target protein and small molecule drug complexes were

obtained from the Protein Data Bank (PDB) [62] with PDB IDs 5I96, 6O0F, 6JQR and 6O0K

respectively.

The crystallographic structures PDB file contains protein, ligand, water oxygen atoms.

Also, crystal structures normally lack polar hydrogen atoms which are required for appropriate

treatment of electrostatics during docking [59]. For each protein, all the water molecules were

removed, polar hydrogens and Kollman charges were added and the PDB files were converted

to PDBQT to prepare for docking using ADT [58, 59].

Fig 1. Schematic representation of the various processes used in the study. Briefly, AML targets and modern drugs (small molecule drugs) were

obtained from drug bank, therapeutic target database (TTD) and/or literatures sources. B. antidysentrica phytochemicals were compiled from Ethiopian

traditional medicine database (ETM-DB) and/or literatures. Then, the modern drugs, phytochemicals and random compounds (obtained from

PubChem) were docked with AML targets. Binding energies of small molecule drugs and phytochemicals were evaluated against that of random

compounds with statistical test. Finally, the candidate therapeutic phytochemicals were selected based on the statistical analysis and cutoff binding

energies. In addition, the candidate compounds were further evaluated for drug-likeness, physicochemical and ADMET properties.

https://doi.org/10.1371/journal.pone.0270050.g001
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Molecular docking study

The 3D structure of the targets were small molecule drug-target complexes. We removed the

small molecule drugs from the drug-target complexes using PyMol [63]. The positions of the

small molecule drugs were considered as binding sites of the targets. The small molecule drugs

were then re-docked to their corresponding targets and their binding scores were compared

with that phytochemicals and random compounds. The binding energies of the small molecule

drugs to their corresponding targets were much lower than the random compounds and most

of the phytochemicals binding energy (see Results) indicating the rationality of our binding

site identification method. Phytochemicals from B. antidysentrica and random compounds

Fig 2. 2D structures of the investigated compounds in this study. (A) Selected B. antidysentrica phytochemicals and (B) Small molecule drugs.

https://doi.org/10.1371/journal.pone.0270050.g002
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from PubChem were docked to AML receptors keeping all the docking parameters similar to

the parameters of the small molecule drugs.

AutoDock Vina was used to do molecular docking in this work. During the docking proce-

dure, both the protein and ligands were considered as rigid to minimize complexity that may

arise from the large size of proteins and their multiple degrees of freedom [41]. All ligands

(phytochemicals, small molecule drugs, and random compounds) were docked to individual

receptors with grid coordinates and grid boxes of certain sizes for each receptor. The dimen-

sion of the grid box was set to a default value of 30 and the grid box centers were defined as the

center of small molecule drug bound to the AML targets. The receptors and the grid center (x,

y, z) used were as follows: 5I96 (-1.396, 15.123, -28.458), 6O0F (-14.521, 8.041, -18.915), 6JQR

(-28.036, -10.299, -28.981), and 6O0K (-15.258, 2.212, -9.458) respectively. The exhaustiveness

parameter that controls the extent of the search was set to 32. For each ligand, the pose with

lowest energy of binding was retrieved and aligned with receptor structure for further analysis.

Eventually, compounds with computed docking energy of less than or equal to cutoff bind-

ing energy were selected as the candidate therapeutic phytochemicals. The cutoff binding

energy for each AML target was set to the mean of the binding energies of all the phytochemi-

cals minus their standard deviation (mean—SD in kcal/mol). The docking scores and the 2D

and 3D pose views were generated for further analysis.

Statistical analysis

In order to show that empirical knowledge combined with in silico molecular docking and

ADMET profiling is one of the effective methods to identify natural product-based medicines

and as an approach to validate our results, around 100 compounds from PubChem were

docked with AML targets keeping all the docking parameters similar to for small molecule

drugs and phytochemicals. Then a one-sample one-sided t-test was applied to measure the sta-

tistical significance (P� 0.05) of the binding affinities of the small molecule drugs and B. anti-
dysentrica phytochemicals compared to that of random compounds. We used python scripts

to download the random compounds and to automate statistical analysis as well as to plot the

docking scores for the compounds (small molecule drugs, phytochemicals, and random com-

pounds) for each AML targets.

Post docking analysis

The interactions between the compounds and the drug targets were examined in both 3D and

2D orientations. The docking poses were selected based on cutoff binding energies, which was

set to less than or equal to one standard deviation from the mean of the phytochemicals’ bind-

ing energies for each receptor. Post docking analyses were carried out using PyMOL [63] and

BIOVIA Discovery Studio [64]. PyMOL was used to visualize the docked protein and ligand

complex binding pose and to convert the PDBQT format of AutoDock Vina output to PDB

format. Then, the PDB format of the docked target protein and ligand complex were further

visualized and analyzed using BIOVIA Discovery Studio, which showed the locations of bind-

ing sites and nature of interactions between the target protein and the docked ligand. Further-

more, non-covalently interacting residues of the target protein with the compounds were

predicted using Protein-Ligand Interaction Profiler (PLIP) webserver [65].

Drug-likeness properties, ADMET properties, and interactions with P-gp

and CYP isoenzymes of the compounds

Evaluation of drug-likeness and ADMET properties, estimation for a compound to be sub-

strate of P-gp or inhibitor of the most important CYP isoenzymes of the compounds were
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calculated using a website SwissADME [66], which is a free web tool to evaluate pharmacoki-

netics, drug-likeness and medicinal chemistry friendliness of small molecules. Toxicity of the

phytochemicals and small molecule drugs were predicted using web interface of ProTox-II,

which is user friendly and can predict potential toxicities associated with a chemical structure

from user inputs of the name of the compound or the SMILES (Simplified Molecular-Input

Line-Entry System) string of the compound [67]. In this work, we evaluated the acute toxicity

of the compounds which are based on chemical similarities between compounds with known

toxic effects and the presence of toxic fragments [68].

Computation environment

All the locally installable software programs or scripts were implemented in an automatic fash-

ion using Windows Command Prompt Commands and Python 3.8 on windows 10. All simu-

lations were performed on a Windows 10 computer (Intel(R) Core (TM) i5-4690 CPU @

3.50GHz, 3501 Mhz, 4 Core(s), and 4 Logical Processor(s)). The configuration of the RAM: 4

slots, 3 of them each having 8 GB RAM and 1 slot 4 GB RAM giving a combined 28 GB, DDR3

and speed of 1600MHz.

Results and discussion

Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid blood cells, which

annually affects more than a million people globally and results in more than 100,000 deaths

[1, 2]. The major intervention is stem cell transplantation which is unbearable for elderly and

severe comorbid patients thereby necessitating for complementary and alternative therapies.

Recent advances in high-throughput technologies enabled the elucidation of genetics and

pathophysiology leading to identification therapeutic targets [9]. To this end, IDH2, MCL1,

FLT3 and BCL2 are identified as drug targets for treatment of AML patients [10, 12, 13, 16].

In this research, we used information on the identified drug targets and small molecule

drugs for treatment of AML to evaluate the therapeutic potential of phytochemicals from B.

antidysentrica targeting AML receptors. The X-ray crystallographic structures of the AML

receptors (IDH2, MCL1, FLT3 and BCL2) used in this research was downloaded from the

PDB with PDB IDs 5I96, 6O0F, 6JQR and 6O0K respectively. Hence, we proposed to identify

potential inhibitors of AML therapeutic target proteins by combining traditional empirical

knowledge and in silico molecular docking. AutoDock Vina was reported as the best software

to implement docking giving rise to poses that bind best deep inside the 5 Å of the binding

pocket [69]. The docking process returned top ten ranked docking poses for each compound.

In each case, we selected the topmost docking poses with Root Mean Square Deviation

(RMSD) values of 0 Å.

From the 38 phytochemicals identified from B. antidysentrica, 30 of them have 3D struc-

tures in PubChem, ChEMBL and/or ZINC databases. The 3 D SDF file of these phytochemi-

cals are provided as supporting information (S2 File). The remaining 8 compounds either lack

3D structures or their conformer generation were rejected. 3D representations for bruceanic

acids B, C, and D are not available. For bruceanic acid A, yadanziosides G and M, bruceantino-

sides B and C, conformer generation were disallowed because of too many undefined stereo

centers. In silico molecular docking was performed for phytochemicals with 3D structures.

The statistical analysis for testing the significance of the docking scores of B. antidysen-
trica phytochemicals compared to random compounds showed that most of the phytochemi-

cals have significant lower binding affinities (p-value � 0.05). The 3 D SDF file of random

compounds used are provided as supporting information (S3 File). In addition to 3D

structures, we provided 2D structures of all the investigated compounds as supporting
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information for reference (S4 and S5 Files). The binding energies of the of small molecule

drugs, phytochemicals and random compounds are visualized in Fig 3A and 3B as a scatter

plot indicating that the small molecule drugs and phytochemicals have lower binding ener-

gies than random compounds. The docking scores of the all investigated phytochemicals and

the p-values are available in supporting information (S6 File). This result is a step toward val-

idating the traditionally claimed empirical knowledge of the therapeutic potential of B. anti-
dysentrica and its compounds against AML. Furthermore, based on the chosen cutoff energy

(mean-SD), 12 phytochemicals showed substantial binding affinity compared to the standard

approved drugs. Especially, hydnocarpin and yadanzioside P exhibited better binding affin-

ity compared to the approved drugs which targets MCL1 and FLT3 receptors, respectively.

Hydnocarpin has lower binding energy (-8.9 kcal/mol) with MCL1 receptor compared to the

small molecule drug AMG176 (-8.6 kcal/mol) on the same receptor. Similarly, yadanzioside

P has lower binding energy (-9.4 kcal/mol) to FLT3 receptor compared with the small mole-

cule modern drug gilteritinib (-9.1 kcal/mol). Furthermore, phytochemicals bruceanol D

(-8.9 kcal/mol), bruceantin (-8.8 kcal/mol), hydnocarpin (-8.7 kcal/mol) also have closely

similar binding affinities to FLT3 receptor with approved drug gilteritinib. These results

demonstrated that numerous phytochemicals from B. antidysentrica has considerable bind-

ing affinities with AML targets signifying their therapeutic potential for treatment and man-

agement of AML.

The nature of interaction and interacting amino acid residues of the best docking poses in

the binding sites of the receptors with selected phytochemicals was predicted using Protein-

Ligand Interaction Profiler (PLIP) automated web tool and the results are summarized in in

Table 1. The 3D and 2D view of the interactions between the selected B. antidysentrica phyto-

chemicals and the AML receptors are shown in Figs 4–7.

Most of the interactions between the target proteins and ligands (small molecule drugs

and phytochemicals) (Table 1) are hydrophobic interactions. Analysis of marketed drugs

revealed that the average number of hydrophobic atoms is 16 [70], indicating the importance

of hydrophobic interactions in drug designing. Hydrophobic interactions increase the bind-

ing affinity between target-drug interfaces and enhance biological activity of complex mole-

cules as well as help in stabilizing the biochemical environments of target-drug complexes

[71]. Hydrophobic interactions are dominant for all receptors with both small molecule stan-

dard drugs and phytochemicals. However, for the receptor FLT3, there are also considerable

formations of hydrogen bond interactions compared with the other receptors. Previous

works done to understand the drug efficacy concluded that the binding affinity of the target-

receptor molecules were increased by optimizing the hydrophobic interactions by captivat-

ing hydrogen bonding [71].

2-methoxycanthin-6-one showed interactions with receptor IDH2 forming hydrophobic

interactions with Trp164B, Val279B, and Ile319 residues, with low binding energy of -11.9

kcal/mol next to the co-crystalized ligand pose with binding affinity score of −14.88 kcal/mol.

Similarly, canthin-6-one, 1-methoxycanthin-6-one, beta-carboline-1-propionic acid, brucea-

nol A, 1,11-dimethoxycanthin-6-one showed consecutive binding affinity with mainly hydro-

phobic interaction indicating good binding mode with important interactions. Similar

scenarios could be drawn for the remaining receptors. It is interesting to note that hydnocar-

pin showed more hydrophobic interactions and hydrogen bonds with receptor MCL1 and the

binding energy is also lower compared to standard drug AMG176. This indicates that hydno-

carpin can be considered a lead compound targeting MCL1 receptor. Similarly, Yadanzioside

P showed more hydrophobic interactions and hydrogen bonds with lower binding energy to

receptor FLT3 compared to standard drug gilteritinib, signifying its potential as a lead com-

pound targeting FLT3.
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Fig 3. Scatter plots of the docking scores of compound-target interactions for each AML therapeutic targets. (A)

compound—target docking score visualization for each AML targets, (B) compound—target docking scores combined

for all the four AML targets.

https://doi.org/10.1371/journal.pone.0270050.g003
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In silico analysis should be complemented with other pharmacological profiling [72]. Com-

pounds such as those that contain reactive groups, insoluble compounds, compounds that are

too large/less extendable, or highly flexible compounds [66] should be screened.

Drug-likeness is related to molecular properties affecting pharmacodynamics and pharma-

cokinetics of the molecules. These molecular properties are related to some basic structural or

Table 1. Binding affinity energies, nature of interaction and interacting amino acid residues between the compounds (small molecule drug and phytochemicals)

and AML receptors.

Small molecule drug and

phytochemicals

Target (PDB

ID)

Docking score (kcal/

mol)

p-value Hydrophobic interaction Hydrogen bonds

Enasidenib IDH2 (5I96) -14.8 1.21E-

66

Leu160B, Trp164, Ile290, Val297, Val297B, Leu298,

Trp306B, Val315

NA

2-methoxycanthin-6-one IDH2 (5I96) -11.9 9.44E-

43

Trp164B, Val279B, Ile319 NA

Canthin-6-one IDH2 (5I96) -11.5 2.16E-

38

Leu298, Ile319 NA

1-methoxycanthin-6-one IDH2 (5I96) -11.1 1.09E-

33

Leu160, Leu298, Trp306B Gln316

Beta-carboline-1-propionic acid IDH2 (5I96) -10.9 1.87E-

32

Trp164B, Val279B, Ile319 NA

Bruceanol A IDH2 (5I96) -10.7 3.37E-

31

Val147, Arg149, Arg172 Arg149, Arg172, Asp314

1,11-dimethoxycanthin-6-one IDH2 (5I96) -11.0 1.28E-

28

Leu160, Trp164, Trp164B, Val297B NA

Hydnocarpin IDH2 (5I96) -10.1 2.15E-

20

NA Arg149B, Lys299

AMG176 MCL1(6O6F) -8.6 2.91E-

13

Phe228, Met231, Val253, Thr266 NA

Hydnocarpin MCL1(6O6F) -8.9 1.85E-

18

Met250, Val253, Phe254, Leu267, Phe270, His224B NA

Beta-carboline-1-propionic acid MCL1(6O6F) -8.5 1.43E-

11

Leu246, Phe270, Gly271, Leu290 Arg263

2-methoxycanthin-6-one MCL1(6O6F) -8.4 6.34E-

10

Leu235, Leu246, Phe270, Leu290 NA

Bruceanol F MCL1(6O6F -8.4 1.73E-

05

Met231, Phe270 His 224B, His224B,

Arg263

Gilteritinib FLT3 (6JQR) -9.1 1.23E-

16

Val675, Phe830 Leu616

Yadanzioside P FLT3 (6JQR) -9.4 2.53E-

21

Leu616, Ala642, Tyr693, Asp698, Leu818, Phe830,

Tyr842

Gln575, Leu616, Arg815

Bruceanol D FLT3 (6JQR) -8.9 1.62E-

13

Leu616, Gly617, Gly619, Val624, Leu818, Phe830 Val624, Asp698, Phe830,

Tyr842

Bruceantin FLT3 (6JQR) -8.8 5.54E-

12

Leu616, Gly617, Gly619, Val624, Leu818, Phe830 Asp698, Phe830, Tyr842

Hydnocarpin FLT3 (6JQR) -8.7 1.75E-

10

Val675, Phe691, Arg815, Leu818, Cys828, Phe830 Arg815

Venetoclax BCL2 (6O0K) -11 2.01E-

52

Phe104, Tyr108, Val133, Leu137, Tyr202 NA

Bruceantarin BCL2 (6O0K) -8.6 2.24E-

17

Phe104, Met115, Leu137, Lew137, Ala149, Phe153 Asp140

Hydnocarpin BCL2 (6O0K) -8.4 8.84E-

14

Phe104, Arg146, Val148, Ala149 Arg146

Bruceanol A BCL2 (6O0K) -8.3 5.16E-

12

Phe104, Met115, Val133, Glu152, Val156 NA

Bruceantin BCL2 (6O0K) -8.1 1.22E-

08

Asp111, Met115, Leu137, Ala149, Phe153, Val156 Asp140

https://doi.org/10.1371/journal.pone.0270050.t001
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Fig 4. Molecular docking analysis of enasidenib and selected B. antidysentrica phytochemicals against IDH2 AML

receptor. (1) 3D pose views of interaction of compounds with AML receptor IDH2. (2) 2D pose views of interaction of

compounds with AML receptor IDH2.

https://doi.org/10.1371/journal.pone.0270050.g004
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physicochemical properties such as log p (partition coefficient), molecular weight (MW),

Topological polar surface area (TPSA), hydrogen bond acceptors and donors count in a mole-

cule. There are several sets of criteria to select ligands for a potential drug. Most notably,

Lipinski [73] identified common properties that are frequently observed in approved com-

pounds. They present a “rule of 5” for drug-like molecules (less than 5 hydrogen bond donors,

less than 10 hydrogen bond acceptors, less than 500 dalton molecular weight, and less than 5

Fig 5. Molecular docking analysis of AMG176 and selected B. antidysentrica phytochemicals against MCL1 AML receptor. (1) 3D pose views of

interaction of compounds with AML receptor MCL1. (2) 2D pose views of interaction of compounds with AML receptor MCL1.

https://doi.org/10.1371/journal.pone.0270050.g005
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Fig 6. Molecular docking analysis of gilteritinib and selected B. antidysentrica phytochemicals against FLT3 AML receptor. (1) 3D pose views of interaction of

compounds with AML receptor FLT3. (2) 2D pose views of interaction of compounds with AML receptor FLT3.

https://doi.org/10.1371/journal.pone.0270050.g006
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log p (partition coefficient between organic and aqueous phases). In addition, Veber’s rule [74]

suggested that compounds which meet only the two criteria of 10 or fewer rotatable bonds and

polar surface area equal to or less than 140 Å2 will have a high probability of good oral bioavail-

ability in the rat. However, many of the most successful drugs do not fit these guidelines, and

care should be taken in application of these guidelines [72].

Fig 7. Molecular docking analysis of venetoclax and selected B. antidysentrica phytochemicals against BCL2 AML receptor. (1) 3D pose views of

interaction of compounds with AML receptor FLT3. (2) 2D pose views of interaction of compounds with AML receptor BCL2.

https://doi.org/10.1371/journal.pone.0270050.g007
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Most of the investigated B. antidysentrica phytochemicals obeys most of the Lipinski’s and

Veber’s rule similar to that of approved small molecule drugs as shown in Table 2. We used

compounds with two or more Rule of 5 violations being used in drug development by medici-

nal chemists and industries [75] as a reference for drug-likeness evaluation of the phytochemi-

cals in this work. Especially over the past two decades, the increasing significance of drugs not

conforming to this rule is illustrated by the increase in molecular mass of approved oral drugs,

compelling evidence to contradict the suggestion that molecular weight is a “drug-like” prop-

erty [76, 77], Since natural products contain enormous scaffold diversity and structural com-

plexity and typically possesses high molecular weights, a larger number of sp3 carbon atoms

and oxygen atoms but fewer nitrogen and halogen atoms, higher numbers of H-bond accep-

tors and donors, lower calculated octanol–water partition coefficients (cLog P values, indicat-

ing higher hydrophilicity) and greater molecular rigidity compared with synthetic compound

libraries, they are a main source of oral drugs ‘beyond Lipinski’s rule of five’ [76, 78], In addi-

tion, most of the compounds contain acceptable molecular weight and convenient TPSA val-

ues as shown in Table 3. In order to investigate majority of compounds for drug development

purpose, compound with molecular weight of greater than 500 dalton and less than 3000 dal-

ton are being used [78]. Therefore, the selected B. antidysentrica phytochemicals possesses suf-

ficient drug-likeness and physicochemical properties suggesting their potential as therapeutic

drug as shown in Tables 2 and 3.

The predicted log p value and Abbott bioavailability score (greater than zero) revealed that

the compounds have a substantial bioavailability and cross the cell membrane efficiently [78].

Gastrointestinal absorption (GIA) and blood–brain barrier (BBB) permeation of the phyto-

chemicals are also comparable to that of standard small molecule approved drugs (Table 3).

Table 2. Lipinski’s rule of five and Veber’s rule for drug-likeness analysis of selected phytochemicals and small molecule drugs.

Compounds Molecular

weight (g/mol)

Lipophilicity

(log p)

Hydrogen bond

donors

Hydrogen bond

acceptors

TPSA ROTB Number of Lipinski’s

rule violations

Number of Veber’s

rule violations

Phytochemicals

1,11-dimethoxycanthin-

6-one

280.28 2.12 0 4 107.59 2 0 0

1-methoxycanthin-6-one 250.25 2.39 0 3 43.6 1 0 0

2-methoxycanthin-6-one 250.25 2.73 0 3 43.6 1 0 0

Beta-carboline-1-propionic

acid

240.26 2.11 2 3 65.98 3 0 0

Bruceanol A 542.53 0.7 3 11 165.89 5 2 1

Bruceanol D 548.58 1.25 3 11 165.89 6 2 1

Bruceanol F 548.58 2.28 3 11 165.89 6 2 1

Bruceantarin 542.53 1.11 3 11 165.89 5 2 1

Bruceantin 548.58 1.66 3 11 165.89 6 2 1

Canthin-6-one 220.23 2.42 0 2 34.37 0 0 0

Hydnocarpin 464.42 3.73 4 9 138.82 4 1 0

Yadanzioside P 710.72 -0.14 6 16 245.04 9 2 1

Small molecule drugs

Enasidenib 473.4 3.5 3 14 109 8 2 0

AMG176 613.2 6.8 1 6 93.3 1 2 0

Gilteritinib 552.7 3.5 3 10 121 9 1 0

Venetoclax 868.4 8.2 3 11 183 14 3 2

TPSA: topological polar surface area, ROTB: number of rotatable bonds

https://doi.org/10.1371/journal.pone.0270050.t002
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The phytochemicals exhibited acceptable gastrointestinal absorption which is an important

property of a drug that is intended for mass treatment. In addition, phytochemicals 1-methox-

ycanthin-6-one, 2-methoxycanthin-6-one, beta-carboline-1-propionic acid and Canthin-

6-one can cross the blood-brain barrier. The remaining compounds do not cross blood-brain

barrier similar to that of small molecule approved drugs. The Brain Or Intestine EstimateD

(BOILED-Egg) model prediction of GIA and BBB permeation for small molecule drugs and B.

antidysentrica phytochemicals is presented in Fig 8. The compounds 2-methoxycanthin-6-one

Table 3. Calculated physicochemical properties and toxicity class of selected B. antidysentrica phytochemicals and small molecule drugs.

Compounds Molecular weight (g/

mol)

log p Water solubility Silicos-IT

class

GI

absorption

BBB

permeant

Abbott bioavailability

score

Toxicity

class

Phytochemicals

1,11-dimethoxycanthin-6-one 280.28 2.12 Moderately soluble High No 0.55 4

1-methoxycanthin-6-one 250.25 2.39 Moderately soluble High yes 0.55 4

2-methoxycanthin-6-one 250.25 2.73 Moderately soluble High yes 0.55 3

Beta-carboline-1-propionic

acid

240.26 2.11 Moderately soluble High yes 0.85 3

Bruceanol A 542.53 0.7 Soluble Low No 0.17 2

Bruceanol D 548.58 1.25 Soluble Low No 0.17 2

Bruceanol F 548.58 2.28 Soluble Low No 0.17 2

Bruceantarin 542.53 1.11 Soluble Low No 0.17 4

Bruceantin 548.58 1.66 Soluble Low No 0.17 2

Canthin-6-one 220.23 2.42 Moderately soluble High yes 0.55 4

Hydnocarpin 464.42 3.73 Poorly soluble Low No 0.55 5

Yadanzioside P 710.72 -0.14 Soluble Low No 0.17 2

Small molecule drugs

Enasidenib 473.4 3.5 Poorly soluble Low No 0.55 4

AMG176 613.2 6.8 Poorly soluble Low No 0.55 4

Gilteritinib 552.7 3.5 Poorly soluble High No 0.17 4

Venetoclax 868.4 8.2 Insoluble Low No 0.17 4

Toxicity class: Class 1: fatal if swallowed (LD50� 5); Class 2: fatal if swallowed (5 < LD50� 50); Class 3: toxic if swallowed (50 < LD50� 300); Class 4: harmful if

swallowed; (300 < LD50� 2000); Class 5: may be harmful if swallowed (2000 < LD50� 5000); Class 6: non-toxic (LD50 > 5000)

https://doi.org/10.1371/journal.pone.0270050.t003

Fig 8. BOILED-Egg model of small molecule standard drugs and selected B. antidysentrica phytochemicals.

https://doi.org/10.1371/journal.pone.0270050.g008
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from phytochemicals and Venetoclax from the small molecule drugs were out of range of the

BOILED-Egg model diagram.

Toxicity class of the phytochemicals range from class 2 (fatal) to 5 (may be harmful) and

that of small molecule drugs are class 4 (harmful) which indicates that the phytochemicals

have comparable to the acute toxicity to approved modern small molecule drugs.

Permeability glycoprotein (P-gp) is an ATP-binding cassette (ABC) membrane transporter,

which limits cellular uptake, distribution, excretion and toxicity of compounds by acting as a

unidirectional efflux pump to extrude its substrate from inside to outside of cells thereby

obstructing cell internalization of chemotherapeutic agents [79, 80], From Table 4, it can be

seen that 50% of the phytochemicals and small molecule drugs are not substrates of P-glyco-

protein, demonstrating their desirable properties as potential chemotherapeutic agents. On the

other hand, the remaining half of the phytochemicals and small molecule drugs are substrates

of P-glycoprotein, suggesting that various strategies should be used to tackle this curb in the

field of drug delivery and targeting.

Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze

the metabolism of multitudes of substrates including chemotherapeutic agents. Therefore,

strategies to inhibit the enzymes are one approaches for the treatment and prevention of can-

cer [81]. The phytochemicals 1,11-dimethoxycanthin-6-one, 1-methoxycanthin-6-one,

2-methoxycanthin-6-one, beta-carboline-1-propionic acid, canthin-6-one inhibits CYP1A2

enzyme activity and that these inhibitory effects may contribute towards the cancer preventive

action of the compounds. Similarly, phytochemicals 1,11-dimethoxycanthin-6-one, 1-methox-

ycanthin-6-one and hydnocarpin are inhibitors of CYP3A4 indicating their potential as che-

motherapeutic agents.

Conclusions

When a specific target gene or protein that is differentially expressed in cancer is found, the

search for small molecules targeted therapies is usually performed using high throughput

Table 4. Interaction of selected B. antidysentrica phytochemicals and small molecule modern drugs with P-glycoprotein and cytochrome P450 isoenzymes.

Phytochemicals Pgp substrate CYP1A2 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor CYP2D6 inhibitor CYP3A4 inhibitor

Phytochemicals

1,11-dimethoxycanthin-6-one No Yes No Yes Yes Yes

1-methoxycanthin-6-one No Yes No No No Yes

2-methoxycanthin-6-one No Yes No No No No

Beta-carboline-1-propionic acid No Yes No No No No

Bruceanol A Yes No No No No No

Bruceanol D Yes No No No No No

Bruceanol F Yes No No No No No

Bruceantarin Yes No No No No No

Bruceantin Yes No No No No No

Canthin-6-one No Yes No No No No

Hydnocarpin No No No Yes No Yes

Yadanzioside P Yes No No No No No

Small molecule drugs

Enasidenib No Yes No Yes Yes Yes

AMG176 Yes No No No No No

Gilteritinib No No Yes No No No

Venetoclax Yes No No No No No

https://doi.org/10.1371/journal.pone.0270050.t004
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screening. Although this is the gold standard, it is a time consuming and expensive process.

Therefore, computational drug discoveries have been extensively employed in assisting the

process of finding lead compounds in such targeted therapies. In addition, starting this search

from the empirical traditional knowledge of natural products in treating some ailments can

therefore help in saving cost and time. Combining the computational approach with the

empirical knowledge of natural products can even make the process faster and cheaper. There-

fore, in this work, starting from empirical knowledge and using computational methods, we

set out to find the compounds of B. antidysentrica involved in potentially treating AML. Based

on the binding affinities as exhibited by the molecular docking studies and supported by the

statistical analysis, the current study concludes that the 12 phytochemicals from B. antidysen-
trica can be considered as possible agents against IDH2, MCL1, FLT3 and BCL2 receptors.

Hence, this study has partially recognized the traditionally claimed anti-leukemic activity

of the plant. In addition, most of the phytochemicals were found to have acceptable drug-

likeness and ADMET properties showing their potential as drug candidates. Similar in silico

approaches can be applied the study of other traditional medicinal materials to identify new

potential therapeutic compounds.
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4. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and manage-

ment of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;

129: 424–447. https://doi.org/10.1182/blood-2016-08-733196 PMID: 27895058
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