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Virtual data augmentation method 
for reaction prediction
Xinyi Wu1,4, Yun Zhang1,4, Jiahui Yu1, Chengyun Zhang1, Haoran Qiao3, Yejian Wu1, 
Xinqiao Wang1, Zhipeng Wu1 & Hongliang Duan1,2*

To improve the performance of data-driven reaction prediction models, we propose an intelligent 
strategy for predicting reaction products using available data and increasing the sample size using 
fake data augmentation. In this research, fake data sets were created and augmented with raw data 
for constructing virtual training models. Fake reaction datasets were created by replacing some 
functional groups, i.e., in the data analysis strategy, the fake data as compounds with modified 
functional groups to increase the amount of data for reaction prediction. This approach was tested 
on five different reactions, and the results show improvements over other relevant techniques with 
increased model predictivity. Furthermore, we evaluated this method in different models, confirming 
the generality of virtual data augmentation. In summary, virtual data augmentation can be used as an 
effective measure to solve the problem of insufficient data and significantly improve the performance 
of reaction prediction.

Today, organic synthesis occupies a core position in the organic chemistry field and supports the research and 
development of other fields, such as material science, environmental science, and drug discovery. With increasing 
advancements in artificial intelligence, several successful applications have been devised in the fields of inte-
grated organic chemistry and artificial intelligence, such as reaction  prediction1–10. One of the most compelling 
approaches to predicting reactions is Nam and Kim’s proposal to view reaction prediction as a translation task; 
implemented based on a neural machine translation (NMT)  model5. Ahneman et al. successfully used machine 
learning to predict the synthetic reaction performance of Buchwald–Hartwig cross-coupling7. Schwaller et al. 
creatively used sequence-to-sequence models to aid predictions in organic  chemistry10.

Deep learning, a popular branch of artificial intelligence has considerably progressed in areas such as speech 
recognition, visual object recognition, and other fields such as organic reaction  prediction11–13. However, deep 
learning methods are generally determined using large datasets. In addition, previous research has demonstrated 
that focusing on massive reaction datasets requires considerable  effort14. Moreover, in all these studies, the 
amount of data considered for a particular reaction type was insufficient to support related applications because of 
high costs and time-consuming experiments. Therefore, deep learning methods must be able to comprehensively 
deal with small datasets to solve project-tailored tasks in the cross-domain with chemistry.

As such, many strategies have been designed for improving the poor performance in the small datasets of 
deep learning  methods15–20. An effective method is transfer learning, which transfers prior knowledge, learned 
from abundant data, to another domain task; this can subsequently be used in situations with less data but similar 
task  scenarios21–23. Reymond et al. performed transfer learning on carbohydrate reactions and showed better 
performance than a model trained only on carbohydrate  reactions23. Apart from the transfer learning method, 
data augmentation strategies are crucial for deep learning pipelines aiming at reaction prediction tasks, as the per-
formance of the model increases with the amount of training data. Data augmentation is the process of modifying 
or “augmenting” a dataset with additional data; this is a powerful strategy used in image  processing24–26. Tetko 
et al. proved that augmenting input and target data simultaneously can improve the performance of predicting 
new  sequences27. In general, augmenting training-set sequences allows deep learning methods to achieve bet-
ter accuracy according to the characteristic of the simplified molecular-input line-entry system (SMILES)28,29. 
Notably, all the augmented SMILESs are valid structures without changing their chemical meaning. Inspired by 
the work of Maimaiti et al., we propose an intelligent strategy for data augmentation; they manually created a 
batch of fake data to increase the target training set by deleting words, randomly sampling words, or replacing 
some words during text  generation30. In this manner, synthetic data augmentation was realized by transforming 
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the text into low-resource language scenarios. Based on the similarity of the SMILES representation to the text, 
we added fake data instead of “random SMILES” to the training dataset to improve model accuracy, terming it 
as virtual data augmentation. The fake data was generated by replacing substituents with equivalent functional 
groups in the reactants, which do not change the reaction sites and atom valences of the reactant molecules.

In this study, we applied and scrutinized virtual data augmentation. In addition, we show that the fake 
data can lead to better performance on the transformer model, which is state-of-the-art in natural language 
 processing27,31,32. Although the transformer model shows excellent performance in various reaction tasks, the 
data-driven model remains inefficient in the case of insufficient data resources. Our study was aimed at predicting 
the outcomes of reactions, as detailed in Fig. 1. The datasets used in this study are coupling reactions; an organic 
chemical reaction in which two chemical entities (or units) combine to form one molecule. When the virtual 
data augmentation method is trained on the transformer-baseline model, the accuracy of reaction prediction 
compared with the raw data is improved from 2.74 to 25.8%. Furthermore, combined with the transfer learn-
ing method, the performance of the transformer model increased from 1 to 53%, proving that this virtual data 
augmentation can improve the model performance. Overall, this virtual data augmentation aims to expand the 
density of sample data points in the chemical space already covered by the existing literature datasets. Moreover, 
we believe that this method can be a useful tool for solving tasks with small datasets using deep learning methods 
in low-resource scenarios.

Methods
Dataset preparation. In this study, we exported five coupling reaction datasets, i.e., those of Buchwald–
Hartwig, Chan–Lam, Kumada, Hiyama, and Suzuki’s, based on the name and structure search from the ‘Reaxys’ 
 database33. Each dataset was preprocessed as follows. First, irrelevant information (e.g., pressure, temperature, 
yield, etc.) was omitted from these datasets, retaining only reaction and reagent entries. Secondly, the reaction 
SMILES were canonized, and all the duplicated reaction entries were removed. Finally, the five reaction datasets 
were filtered using template screening based on the respective reaction rule (Supplementary Fig. S1).

Next, the virtual data augmentation method was divided into two types according to the general characteris-
tics of reactants in the five coupling reactions. The fake dataset was created by replacing some functional groups 
of the same kind, for example, if the reactants contain the functional group chlorine, our strategy was to replace 
it with bromine or iodine, which are also halogen functional groups. That is, the fake data are compounds with 
modified functional groups. Therefore, the first augmentation method replaces the functional group of one of 
the reactants, defined as a single augmentation in this study. As shown in Fig. 2a, for the Chan–Lam reaction, 
the virtual data augmentation was carried out in the reactants with the boron functional group, whereas the 
Buchwald–Hartwig reaction augmented the reactants with the halogen functional group. The other virtual data 
augmentation method involves the simultaneous substitution of functional groups for multiple reactants; this is 
termed simultaneous augmentation. By considering the Hiyama as an example (Fig. 2b), the reaction augments 
the reactants with the silicon and halogen functional groups simultaneously. Further, the Kumada reaction 
simultaneously augmented the reactants and Grignard reagents with the halogen functional groups, and the 
Suzuki reaction augmented the reactants with halogen and boron functional groups simultaneously.

In addition, Table 1 lists the statistical summary of the five coupling reactions before and after data augmen-
tation and describes the corresponding reaction formulas. The virtual data augmentation method significantly 
increased the amount of data by approximately two to six times that of the raw data.

Ultimately, for the augmented dataset and raw dataset, we randomly divided the datasets into training, valida-
tion, and test datasets at a ratio of 8:1:1. To avoid contingency, we augmented the training dataset of these five 

Figure 1.  Schematic illustration of the virtual data augmentation method.
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reactions without augmenting validation and test datasets. It is worth noting that the repeated reaction produced 
by the virtual data augmentation method has been deleted. In addition, all scripts are written in Python (version 
3.7) and using RDKit for  processing34.

The U.S. Patent and Trademark Office (USPTO) dataset. The data we used to pretrain the model 
were derived from Lowe’s patent mining work, in which the reactions were extracted from the USPTO patented 

Figure 2.  The schematic diagram of virtual data augmentation. (a) The single augmentation method of 
Buchwald-Hartwig and Chan-Lam coupling reactions. (b) The representative example of simultaneously virtual 
data augmentation method of Hiyama coupling reaction.

Table 1.  Statistical Summary of five coupling reactions before and after using virtual data augmentation 
method.

Name Depiction Raw dataset Virtual dataset

Hiyama 2067 19011

Buchwald-Hartwig 4419 7640

Chan-Lam 5276 9170

Kumada 9657 54062

Suzuki 92399 424194
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reactions granted between 1976 and 2016, as available to the  public35. Next, Coley et al. extracted 480k reactions 
from the USPTO-authorized  patents36. We processed these data, deleted reaction reagents and chirality, and 
filtered out incomplete or wrong reactions. Furthermore, after pretreatments, such as standardization and repeat 
removal, we recovered chirality from the USPTO for each reaction originally containing chirality. Note that we 
extracted only one product of the reaction, and the raw and augmented datasets were removed from the USPTO 
dataset. Finally, about 410k single-product reactions were obtained as a pretraining dataset.

Model. During the work, the transformer baseline and transformer transfer learning were mainly adopted to 
verify the validity of the augmentation method.

The proposed model is based entirely on the transformer model, which is a powerful model for handling 
natural language processing (NLP) tasks and was devised by Google in  201720. The reaction prediction model by 
Zhang et al. was selected as the baseline model in our  work37. This model solely relies on the attention mechanism 
to handle text tasks without the use of recurrent neural networks (RNNs) and convolutions, and it does not 
encounter the recursion problem that exists in encoder–decoder architectures. Moreover, the model contains 
several identical encoder–decoder layers. In addition, the application of multiheaded attention (MHA) in the 
decoder increases the computation speed and improves model performance. The reaction prediction process of 
the transformer model is as follows: (1) the reactants are transmitted to the encoder in the form of SMILE codes 
as input; (2) these codes are then transferred to the next encoder until the last encoder transmits them to the 
decoder; (3) finally, the decoder outputs the predicted results.

Furthermore, we selected two published reaction prediction models to verify the generality of this augmenta-
tion method. The first is the molecular transformer model proposed by Philips et al.38. Compared with the seq-
2-seq model used for reaction prediction, the RNN component of the molecular prediction model is completely 
removed and the model itself is based entirely on an attention mechanism, comprising a combination of an MHA 
layer and a position feedforward layer. The second is the RNN model by Liu et al., which is a fully data-driven 
model. This model is trained end-to-end and has an encoder–decoder architecture comprising two  RNNs2.

We also introduced the transfer learning strategy into the transformer model. During the pretraining process, 
a large chemical reaction dataset, USPTO-410k, was used to pretrain the model. The model transfers the general 
chemistry information learned from pretraining to the target task of predicting the outcomes of the five coupling 
reactions. In addition, transfer learning combined with virtual data augmentation further improves the model’s 
performance. With this new strategy, the model can abundantly learn chemical information from the USPTO-
410k dataset and fake data added to the training dataset.

The following hyperparameters were used by the baseline model for reaction predictions:

optimize adam:
beta1 = 0.9, beta2 = 0.997
epsilon = 1e−9
n_heads = 8
emb_dim = 256
num_layers = 6.

Result
In this study, the transformer model was used to predict the outcomes of several coupling reactions. As the vir-
tual data augmentation method has been efficiently used in transformer models, it is desirable to visualize the 
relation location of datasets in the chemical space and can determine how the model allows interpretation. We 
first visualized raw and augmented data among the five reactions by using uniform manifold approximation and 
projection (UMAP) and the tree-map (TMAP)39,40. In addition, the program for drawing the UMAP is publicly 
available on GitHub, and the map was drawn using the TMAP open-source  software41.

This section reports on how we generated the plots of reactant molecules of raw and augmented datasets 
using UMAP, which represents molecules as Morgan fingerprints to create a two-dimensional representation 
of high-dimensional data distributions. In the following text, we explicate our work by taking the Hiyama and 
Chan–Lam reactions as examples. As shown in Fig. 3a, the silicon- and halogen-containing molecules generated 
by virtual data augmentation in the training set of the Hiyama reactions (i.e., light pink and light blue, respec-
tively) are close to the Hiyama raw datasets (pink and blue), respectively. In addition, as shown in Fig. 3b, we 
generated the UMAP plot of Chan–Lam reactions, which displays only boron-containing molecules that can 
be augmented individually. The boron-containing molecules generated by virtual data augmentation (blue) are 
still near the raw datasets (light blue). The graphical analysis presented in the supplementary data (Figs. S2–S4) 
confirms the effectiveness of virtual data augmentation based on text replacement for maneuvering in a chemical 
space from the source to the objective.

Additionally, to further explore the relationship of the datasets we used, all the datasets except USPTO-410k 
were visualized by TMAP. TMAP is another powerful visualization tool to represent large high-diversional 
datasets as a two-diversional connected tree. In this TMAP plot, both raw and augmented reactions represent a 
point according to the reaction fingerprint, RXNFP, which is derived from a neural network trained to classify 
patent chemical reactions. Notably, the data we inserted into TMAP comprised 5000 reactions randomly selected 
from the data of five coupling reactions before and after amplification. If the raw dataset comprised less than 
5000 reactions, we placed all the data into the visualization tool. As shown in Fig. 3c, the raw and augmented 
datasets derived from the same type of reactions overlapped considerably, and reactions of different types could 
be separated, illustrating that the fake data produced by the proposed virtual data augmentation method is rela-
tively similar to the raw data. Overall, from the perspective of the training model, the addition of the fake data 
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derived from virtual data augmentation according to text replacement is effective and creates a positive effort in 
improving the performance of deep learning models.

To avoid the occurrence of overfitting or underfitting, the data were split using 10-fold cross-validation 
on the transformer-baseline model. The detailed accuracies of each experiment can be found in Supplemen-
tary Tables S1–S5, the virtual data augmentation method was first tested on the Hiyama coupling dataset, the 
smallest dataset of the five reaction datasets. As shown in Table 2, show the average accuracy of Hiyama, Buch-
wald–Hartwig, Chan–Lam, Kumada, and Suzuki reactions based on the transformer-baseline model. The model 
was trained with the raw dataset as the training set and we obtained accuracies of 24.96%, 30.09%, 60.99%, 
78.52%, and 94.33%, respectively. The use of the transformer model to predict the test set with the augmented 
training set resulted in higher top-1 predictions of 46.56%, 46.82%, 66.07%, 83.66, and 96.48%, respectively. 
Overall, although the proposed model achieved an unfavorable performance in predicting outcomes of these five 
reactions, a distinct increment was observed before and after the training dataset was augmented. We observed 
that the addition of fake data to expand the datasets can assist the model to improve its predictive performance.

To verify whether this virtual data augmentation is effective, the transfer learning method was integrated 
with the transformer-baseline model. In Table 3, we chose k = 1 to future analyze the difference between the 
transformer-baseline model and transformer-transfer model. Table 3 summarizes the accuracy of these five 

Figure 3.  UMAP plot of molecules from raw data and virtual augmented data and TMAP plot of rxnfp of 
reactions from raw data and virtual augmented data. (a) UMAP map of Hiyama coupling reaction before and 
after virtual data augmentation. (b) UMAP map before and after virtual data augmentation of Chan-Lam 
coupling reaction. (c) TMAP before and after virtual data augmentation of five classic coupling reaction.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17098  | https://doi.org/10.1038/s41598-022-21524-6

www.nature.com/scientificreports/

reactions in the transformer-transfer learning model. On the one hand, with the introduction of the transfer 
learning strategy, the overall accuracy of the transformer-transfer learning model was improved by nearly 20% 
on average compared with the transformer-baseline model. On the other hand, the accuracy gaps between the 
raw and augmented datasets showed considerable improvement with the combination of the transfer learning 
method, especially in the Buchwald–Hartwig dataset. These results indicate that the combination of fake-data 
addition and transfer learning can solve the problem of data scarcity. Moreover, the addition of fake data to the 
training dataset shows superior performance compared with those of raw datasets, indicating that this virtual 
data augmentation method is effective and can be generalized.

Next, we used the Chan–Lam reaction as an example to show a comparison with previously studied direct 
generative models. The Molecular Transformer model by Philippe et al. and the neural sequence-to-sequence 
model by Liu et al. were employed to evaluate the applicability of our virtual data augmentation  method2,38. As 
shown in Table 4, the overall performance of the transformer model is significantly higher than that of the RNN 
model. The accuracy of the two transformer models is nearly 10% higher than that of the RNN model, and the 
prediction performance of our proposed model does not differ much from that of Philippe et al. 

Discussion
We used attention weight to visualize the learning process of the transformer  model42. Attention weight is the 
key to accounting for long-distance dependencies and has been used in reaction predictions and other fields. To 
predict the outcomes of variable coupling reactions, specific reagents have a certain impact on the model output. 
Particularly, the use of attention weights can provide a straightforward explanation of how the model learns the 
inputs and outputs of SMILES. Figure 4a shows the visualization of the attention weight of a set of raw Hiyama 
reactions. The darker the token, the more noticeable it is in this layer or output step. As shown in Fig. 4, [F–] in 
the reagent activates the Si–R bond with low polarization in silicone, which exchanges with the R–X, resulting 
in a cross-coupling reaction. Figure 4b shows a set of reactions in Hiyama augmentation, where the weight of 
attention in a reaction is almost the same, mainly focusing on the locations where cross-coupling occurs. These 
results show that there was no difference between the reaction sites of the augmented Hiyama data and the raw 
data. This implies that our proposed fake data is meaningful for model training.

The virtual data augmentation method is divided into two types. In addition to augmenting both reactants 
in simultaneous augmentation (Table 1), we performed augmentation experiments based on the reactants in the 
reactions. For these reactions, we replaced the functional groups of one reactant, and then replaced the other. 
The results are shown in Table 5. For Hiyama reactions, the reactants were augmented with halogen, and the 
transformer-baseline model achieved 44.44% accuracy, and for reactants augmented with silicon, the accuracy 

Table 2.  Average accuracy comparison of several coupling reactions between raw data and augmented data 
based on the transformer-baseline model.

Dataset

Average accuracy (%)

Hiyama Buchwald–Hartwig Chan–Lam Kumada Suzuki

Raw data 24.96 30.09 60.99 78.52 94.33

Augmented data 46.56 46.82 66.07 83.66 96.48

Table 3.  Accuracy comparison of several coupling reactions between raw data and augmented data based on 
the transformer-baseline model and transformer-transfer model.

Model Dataset

Reaction types

Hiyama Buchwald–Hartwig Chan–Lam Kumada Suzuki

Transformer-baseline model
Raw data 23.67 41.63 64.71 78.99 95.05

Augmented data 49.47 49.32 68.50 85.40 97.79

Transformer-transfer model
Raw data 60.87 94.57 96.39 96.48 97.84

Augmented data 69.57 95.93 96.77 97.00 98.63

Table 4.  The reaction prediction accuracy of Chan-Lam reaction before and after augmentation was compared 
under different models.

Dataset

Accuracy (%)

RNN Molecular transformer Baseline transformer

Raw data 54.08 68.88 64.71

Augmented data 59.38 71.92 68.50
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is comparable with the former. While we performed the augmentations simultaneously, the performance of the 
transformer-baseline model increased by nearly 5%. A similar phenomenon was observed in the Kumada and 
Suzuki reactions. Specifically, for the Kumada reaction, the performance of the transformer-baseline model 
increased from 80.85 to 85.40% after simultaneous augmentation of the reactants. In the case of the Suzuki reac-
tion, it is the largest amount of data in the five response datasets; therefore, the accuracy rate did not improve 
considerably. However, the overall accuracy rate still improved to nearly 98%. After augmenting all the reactants, 
the transformer model can learn more chemical information about the reaction, thus achieving higher perfor-
mance in reaction prediction. This can be attributed to the transformer model’s ability to encode and decode 
text sequences. Moreover, to understand model training, we also conducted several experiments in which the 
different number of training datasets were randomly selected to monitor their predictive performance in the 
transformer-baseline model (Supplementary Table S6).

We further analyzed the incorrect predictions predicted by the transformer-baseline model for these five 
reactions before and after adding fake data to the training set to evaluate the validity of virtual data augmenta-
tion. Four main errors are listed in Table 6: invalid SMILES errors, the number of atom errors, chirality errors, 
and functional group isomerization errors. Figures 5 and 6 respectively list several representative examples of the 
Hiyama and Suzuki reactions. Among these four errors, regardless of whether the training was conducted on the 
raw or augmented datasets, the most common error besides other prediction errors was the SMILES error. The 
functional group isomerization error is ranked second, particularly for the Hiyama reaction. This is attributable 
to the fact that our proposed data augmentation method is based on the replacement variable functional group, 

Figure 4.  Visualization of attention weight before and after Hiyama reaction augmentation. The horizontal axis 
contains two reactants and reagents, and the vertical axis is the product. (a) SMILES:CC(=O)c1ccc(I)cc1.F[Si]
(c1ccccc1)(c1ccccc1)c1ccccc1.[F].[K+]>>CC(=O)c1ccc(c2ccccc2)cc1. (b) SMILES:CC[Si](Cl)(Cl)c1ccc(C)
cc1.N#Cc1ccc(Br)cc1.[F-].[K+]>>Cc1ccc(-c2ccc(C#N)cc2)cc1.

Table 5.  The comparisons of different augmented reactants.

Reaction types

Accuracy (%)

Augmented halogen Augmented silicon (or boron) Simultaneously augmented

Hiyama 44.44 48.31 49.47

Kumada 80.85 84.68 85.40

Suzuki 96.82 95.26 97.79
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which causes the functional groups to misunderstand the predictive performance of the model. The other two 
errors were observed in multiple reaction pre-projects. These errors result in the transformer-baseline model 
putting forward a modest performance in tackling small reactions. Furthermore, when comparing the amounts 
of wrong predictions of raw data to the errors of the augmented dataset, we found that the use of virtual data 
augmentation reduced the ratio of each error by nearly 20%. This indicates that our proposed method improved 
the model performance from the source.

Conclusion
This study reports that our innovative data augmentation method can improve the performance of a transformer 
model by augmenting the data size of the training set. The model was trained to learn more latent chemical 
information in organometallic coupling reactions by equivalently replacing groups in reactants corresponding 

Table 6.  The number of error types in reaction prediction for five coupling reactions.

Wrong type Hiyama lift rate (%) Suzuki lift rate (%)
Buchwald–Hartwig 
lift rate (%)

Cham–Lam lift rate 
(%) Kumada lift rate (%)

Chirality error 1.00 5.50 1.63 1.71 4.05

SMILES error 11.65 33.50 33.06 28.57 28.38

Group isomerism 
error 10.67 9.50 15.51 10.86 13.51

Number of carbon 
error 16.50 11.00 11.43 10.29 16.22

Other’s error 60.19 40.50 38.37 48.57 37.84

Figure 5.  Typical error analysis of Hiyama coupling reactions. (a) chirality errors, (b) SMILES errors, (c) the 
number of atom errors (d) functional group isomerism errors.
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to the raw datasets. This allowed the expansion of the training set and increased the predictive performance of 
the model. This concept has been intensively used in the field of image recognition; however, it is yet to be used 
in solving chemical  problems43,44.

This is the first study to report on the application of virtual data augmentation in the chemical reaction field. 
We determined that the addition of fake data at the chemical level boosts the predictive performance in reaction 
prediction. In addition, we verified that our proposed method can be generalized to other models. Moreover, we 
determined that the virtual data augmentation method combined with the transfer learning strategy can achieve 
better prediction accuracy. Additionally, we used visualization tools to represent the effectiveness of the virtual 
data augmentation method and applied attention weight to visualize the prediction process. The accurate visu-
alization demonstrated that virtual data augmentation is meaningful at the chemical level and that this model 
becomes more sensitive to the selection of reaction sites. In summary, this study demonstrates that the trans-
former model is suitable for small-scale reactions, and this work opens new possibilities for data augmentation 
methods. Moreover, this study provides an important milestone in improving the reaction prediction perfor-
mance on small datasets. Owing to the lack of available institutional data, the development of integrating deep 
learning methods with the chemical field may be limited. However, the above-mentioned results all confirm that 
the proposed virtual data augmentation strategy can contribute to reaction prediction based on small datasets. We 
believe that this method can be applied to other tasks with limited datasets by augmenting the training dataset.

Data availability
The dataset (pretraining and self-built) presented in this paper are publicly available on GitHub at https:// github. 
com/ hongl iangd uan/ Virtu al- data- augme ntati on- metho od- for- react ion- predi ction- in- small- datas et- scena rio.

Code availability
All scripts used to process the  data33 are publicly available on GitHub at https:// github. com/ hongl iangd uan/ 
Virtu al- data- augme ntati on- metho od- for- react ion- predi ction- in- small- datas et- scena rio. Python 3.7 version to 

Figure 6.  Typical error analysis of Suzuki coupling reactions. (a) Chirality errors, (b) SMILES errors, (c) the 
number of atom errors, (d) functional group isomerism errors.

https://github.com/hongliangduan/Virtual-data-augmentation-methood-for-reaction-prediction-in-small-dataset-scenario
https://github.com/hongliangduan/Virtual-data-augmentation-methood-for-reaction-prediction-in-small-dataset-scenario
https://github.com/hongliangduan/Virtual-data-augmentation-methood-for-reaction-prediction-in-small-dataset-scenario
https://github.com/hongliangduan/Virtual-data-augmentation-methood-for-reaction-prediction-in-small-dataset-scenario
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write the program. RDKit 2020.09.5 version to process  programs34. The map was drawn using the TMAP open-
source  software41.
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