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ABSTRACT: The Edmond−Ogston model for phase separation
is extended to ternary polymer mixtures in a common solvent (de
facto a quaternary mixture). The model assumes a truncated virial
expansion of the Helmholtz free energy up to the second-order
terms in the concentration of the polymers, and the second virial
coefficients (B11, B22, B33, B12, B13, B23) are the six parameters of
the model. New results from this model are presented in relation to
earlier work on binary mixtures: a necessary condition for the virial
coefficients for the occurrence of phase separation in two or three
phases, an analysis of the different regions of (local) thermody-
namic instability using the Descartes sign rule, an expression for
the critical curves, a relation between the tangents in points along
the critical curve, a relation between the concentration of
components in the different phases according to the so-called Lambert-W function, and a consistency check for the composition
of coexisting phases in ternary mixtures. The obtained results are evaluated in the maximally symmetric version of the model, where
(B11, B22, B33) are equal and (B12, B13, B23) are equal, which leads to two remarkable observations: the concentration range over
which two phases are formed is relatively narrow; not all phase separation occurs within a Gibbs triangle, but also, “out-of-Gibbs-
triangle” binodals are observed. These results lead to a deeper insight into the phase behavior of ternary mixtures and show promise
as a stepping stone toward modeling phase separation in mixtures with many components.

■ INTRODUCTION
Phase separation is a phenomenon where multiple components
in solution do not fully mix at a molecular scale. It occurs when
the concentrations of the components are too high to ignore
their interactions, eventually leading to liquid−liquid phase
separation. Phase separation has applications in fields as
diverse as archaeology, forensics, hematology, wastewater
treatment, food technology, and cell biology.1−6 The present
paper will specifically consider situations where the compo-
nents are polymers, even though the formalism will be
applicable more generally.
In previous work,7−11 phase separation in binary polymer

mixtures was investigated in terms of the mean-field Edmond−
Ogston model,12 which is based on a virial expansion of the
Helmholtz free energy up to the second order in concen-
tration. It should be stressed that “binary” refers here to the
number of polymers involved and that these mixtures would be
considered as ternary mixtures if the common solvent was
counted as a component too. The Edmond−Ogston model
allows one to make a fair prediction of the experimentally
observed segregative phase behavior of a mixture while needing
only three (positive) virial coefficients as input parameters in
the case of a binary mixture. As part of that previous work, a
number of analytical expressions were derived for binary
mixtures, e.g., for the coordinates of the critical point. It was
shown that larger sets of experimental binary phase diagrams

with shared components can be used to determine the virial
coefficients in a consistent way.13

Binary phase diagrams should be considered as an
idealization of the real complex situation at hand, as most
real-life mixtures contain multiple components and are
polydisperse. It is therefore of interest to extend the
Edmond−Ogston model to polydisperse, multicomponent
mixtures. As a first step, the present paper aims to generalize
this model to ternary mixtures. Historically, Edmond and
Ogston themselves made the first attempt,14 but without
making general predictions on phase behavior. Ternary
mixtures also provide a natural system to test the
determination of virial coefficients from phase diagrams for
mixtures with shared components.13 In general, work on phase
behavior of multicomponent polymer mixtures is limited. Mace
et al. presented an experimentally obtained database for
multicomponent systems ranging from two to five phases.3

Phase separation of ternary mixtures without a common
solvent was studied by Huang et al.15 Zhou et al. investigated
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the kinetics of the phase separation for polymer/colloid
mixtures in a common solvent.16 Mao et al. calculated the
phase behavior of multicomponent liquid mixtures.17 Poly-
disperse systems were discussed by Warren,18 Sear and
Frenkel,19 Sollich,20 Edelman et al.,21 and Sturtewagen and
van der Linden.22,23

Here, the theory will be presented for systems with three
components (N = 3) in a common solvent forming one, two,
or three phases (P = 1, 2, or 3), where the common solvent is
not explicitly counted as a component. It is noted that this
makes these systems de facto quaternary mixtures. An explicit
criterion is derived for the occurrence of phase separation in
two or three phases in terms of the virial coefficients. Also,
analytical expressions for the spinodal surfaces are obtained,
and a simple relation for the critical curve in terms of the
tangents along the critical curve is derived. Explicit expressions
for binodal surfaces are obtained in some special cases. Several
numerical results are included for the so-called (maximally)
symmetric mixtures where (B11, B22, and B33) are equal and
(B12, B13, and B23) are equal. A mapping is obtained between
the parameters of the Edmond−Ogston and Flory−Huggins−
de Gennes models for ternary mixtures in the limit of
(maximally) symmetric mixtures. The line of thought is
presented in the main text, and the mathematical details of the
derivations are given in Appendices A.1-6.

■ METHODS: THEORY
Expressions for the Helmholtz Energy, Chemical

Potentials, and Osmotic Pressure. The starting point for
this work is an expression for the Helmholtz free energy F for a
three-component mixture (not counting the solvent) where
only terms up to the second order in concentration are taken
into account
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with T (K) the absolute temperature, R (J/(K · mol)) the gas
constant, V (m3) the total volume of the system, ci (mol/m3)
the concentration of polymer i (i = 1, 2, or 3) in molar units,
Bii (m3/mol) the second virial coefficient of polymer i (i = 1, 2,
or 3), and Bij the second cross-virial coefficient for polymers i
and j (i,j = 1, 2, or 3; i ≠ j). The analysis is limited to phase
separation where all second virial coefficients Bij (i,j = 1, 2, or
3) are positive. The formal definition for the virial coefficients
involves an averaging of the interaction potentials between the
different components where the contributions of the solvent
molecules are integrated out and can be found, e.g., in the work
of McMillan and Mayer.24 It should be noted that therefore,
second virial coefficients in the Edmond−Ogston model
include the interaction of the polymer with the solvent
(which differs from, e.g., Flory−Huggins theory, where this
interaction is captured in a separate parameter). From eq 1
expressions for the osmotic pressure Π and chemical potential
μi of component i can be derived as
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where ni (mol) is the number of moles of component i and ci =
ni/V the molar concentration. Note that eq 2 is related to the
expression for the chemical potential of the solvent, through
the relation μs = − υsΠ, with υs the partial volume of the
solvent. These equations form the basis of the thermodynamic
description of phase equilibria and can be used to describe
one-phase, two-phase, and three-phase systems. If N is the
number of components and P the number of phases, two cases
are of particular interest here: two-phase (N = 3, P = 2) and
three-phase (N = 3, P = 3) ternary systems.
Hessian Matrix M1. To analyze the local stability of the

mixture against phase separation, it is convenient to introduce
the so-called Hessian matrix M1 with matrix elements M1(i, j).
The Hessian matrix characterizes the local curvature of the
Helmholtz free energy surface. The matrix elements are
defined as

= = +
i

k

jjjjjjjjjj
i
k
jjjjjj

i
k
jjj y

{
zzz

y
{
zzzzzz

y

{

zzzzzzzzzz
M i j

c c
F

RTV c
B( , ) 2

i j T V c
T V c

ij

i
ij1

, ,
, ,k j

k i

(6)

where δij corresponds to the Kronecker delta (δii = 1, δij = 0 for
i ≠ j). In the above equations, i, j, and k = 1, 2, or 3. Since the
Helmholtz free energy F is a state variable, the Hessian matrix
M1 fulfills the symmetry relation M1(i, j) = M1(j, i) (i.e., the
Maxwell relations). In matrix notation, M1 reads
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Since the matrix M1 reflects the local curvature of the free
energy surface, it relates to the local stability against phase
separation.
Stability Criteria. Since the matrix M1 is symmetric and all

its elements are real, it can be diagonalized in terms of its
eigenvalues and eigenvectors. Each of the three eigenvalues
reflects the local curvature of the surface: positive eigenvalues
indicate a convex curvature and negative eigenvalues indicate a
concave curvature. Convex surfaces are associated with regions
in the phase diagram that are locally stable against phase
separation, and the opposite is valid for concave surfaces. The
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eigenvalues λ and associated eigenvectors can be determined
by the so-called characteristic equation

=M IDet( ) 01 (8)

where I represents the unit matrix. Furthermore, since matrix
M1 is real and symmetric, it follows that Det(M1) = λ1λ2λ3,
where λ1, λ2, and λ3 are three real eigenvalues. In case all three
eigenvalues are positive, the system is locally stable against
concentration fluctuations, the system will not phase separate,
and Det(M1) > 0. However, the system can still be metastable
against concentration fluctuations that are large enough. If one
of the eigenvalues is negative, the system is unstable against
concentration fluctuations and Det(M1) < 0. If two of the
eigenvalues are negative, the system is unstable against
concentration fluctuations and Det(M1) > 0. It will be
shown later that for the present model, it is impossible to
have three negative eigenvalues. The requirement from eq 8 in
terms of λ is obtained as
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Using the sign rule of Descartes, it is possible to identify the
maximum number of positive and negative roots for the
characteristic polynomial (eq 9) for positive virial coefficients.
It is noted, that since all roots are real, the maximum number
of roots equals the actual number of roots. In Table 1 the

numbers of positive and negative roots are listed for the
possible combinations of the signs of the coefficients of the
characteristic polynomial. It is noted that this approach can be
readily generalized for mixtures with more than three
components since it is not needed to explicitly determine the
roots of the characteristic equation to find the respective
regions of instability.
When coefficients a0 < 0 ∧ a1 > 0, all three λ are positive,

when a0 > 0, there is one negative λ, and when a0 < 0 ∧ a1 < 0,
there are two negative λ.
The requirement for a0 > 0 (one negative λ) reads
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The two requirements that a0 < 0 ∧ a1 < 0 (two negative λ)
read
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It is stressed that phase separation may still occur outside
the unstable regions since there are metastable regions in the
phase diagram. Such metastable regions are located between
the so-called spinodal and binodal surfaces. The binodal
surface will be discussed later but consists of all possible
coexisting phases and can obtained by solving the coexistence
equations (eqs 37−40). The spinodal surface separates the
unstable and (meta-)stable regions in the phase diagram. In the
unstable region, phase separation takes place spontaneously by
spinodal decomposition, where concentration fluctuations
grow unhindered. In the metastable region, there is a free
energy barrier against phase separation, which takes place only
when the concentration fluctuations are large enough,
following a nucleation and growth mechanism.
Spinodal Surface. The spinodal surface can be calculated

from DetM1 = 0 (i.e., eq 8 with λ = 0), which can be written as
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where it should be noted that all spinodals satisfy eq 13, but
not all solutions to eq 13 are spinodals because solutions to eq
13 sometimes separate two unstable regions.25 Note that the
right-hand side of this expression is equal to the coefficient a0
in eq 10 and reduces to the expression for the spinodal for a
binary polymer mixture7,8 when setting c3 = 0 in eq 13

+ + + =B B B c c B c B c4( ) 2 2 1 011 22 12
2

1 2 11 1 22 2 (14)

and similar limits are obtained for c1 = 0 or c2 = 0. It can be
shown that the points on the spinodal surface can be written in
the form

Table 1. The Number of Positive (+) and Negative (−)
Roots for a3λ3 + a2λ2 + a1λ + a0 = 0 (Equation 9) According
to the Descartes Sign Rule

sign a3 + + + +
sign a2 − − − −
sign a1 + + − −
sign a0 + − + −
number of sign changes 2 3 2 1
number of positive roots 2 3 2 1
number of negative roots 1 0 1 2
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by substitution of eq 15 into eq 13. Note that it may be
necessary to multiply the numerator and denominator by a
factor Ssp,ji if Ssp,ij goes to infinity. The Ssp,ij can be interpreted as
minus the tangent to the spinodal surface parallel to the (ci, cj)-
plane,10 and the range of the Ssp,ij’s is determined by the
requirement that the coordinates in eq 15 are all real and
positive. Alternatively, eq 15 can be considered to be a
parametrization of the spinodal surface in terms of the
parameters Ssp,ij. There are only three independent values for
Ssp,ij since the following relations hold

S
S S S

1 1
sp ij

sp jk sp ki sp ji
,

, , , (16)

with k ≠ i,j since the Ssp,ij’s are tangent to the spinodal surface,
parallel to the (ci, cj)-plane. Equation 15 is a natural extension
of the use of tangents to the spinodal in the case for binary
mixtures (ref 10; eq 33 in combination with the procedure
followed in Appendix III of that paper). Note that by
definition, Ssp,ii ≡ − 1.
Critical Curves. The critical points (sometimes also

referred to as plait points) defining the critical curve can be
calculated from the following two conditions.26−29

=MDet 01 (17)

=MDet 02 (18)

where the matrix M2 can be obtained by replacing any of the
rows in matrix M1 by the row vector
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For example, the 3x3 matrix M2 in which the third row is
substituted by eq 19 (referred to as M2‴) reads
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with p,q =

1,2,3 but p,q ≠ j. The explicit expressions for the three versions
of the determinant of matrix M2 where different rows of matrix
M1 are replaced are given by
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where DetM2′, DetM2″, and DetM2‴ refer to the matrices with
substitution in the first, second, and third row, respectively
(where expressions for DetM2′ and DetM2″ are given in
Appendix A.2). These three determinants are not the same
but identical under cyclic permutation of their indices. It is
noteworthy that the determinants for the ternary polymer
mixtures contain the expression for the spinodal for the binary
polymer mixtures (cf. Figure 1 in ref 8).
It is convenient to introduce the orientation of the tangent

plane to the spinodal surface in the critical points (c1,c, c2,c, c3,c)
in terms of the tangents Sc,21 and Sc,31 to the (c1, c2)-plane and
(c1, c3)-plane, respectively.
The points on the critical curve must take the form of eq 15

since they need to fulfill eq 17 for the spinodal surface
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The other requirement for points on the critical curve is given
by eq 18 and can be expressed as (Appendix A.2)
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By substituting eq 21 into eq 22 and using the equivalent of eq
16 for the relation between the Sc,ij’s, it is found that
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Equations 22 and 23 are generalizations of eq 3 in ref 11.
Figure 1 shows possible combinations of Ssp,21 and Ssp,31 for

an arbitrary set of virial coefficients. The black dotted regions
correspond to combinations of tangents that give rise to
physical solutions (i.e., positive concentrations) for the
spinodal surface, using

+ >B S B S B 0sp sp12 ,21 13 ,31 11 (24)

+ >B S B S B 0sp sp12 ,12 23 ,32 22 (25)

+ >B S B S B 0sp sp13 ,13 23 ,23 33 (26)
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where Ssp S S S,32
1 1

sp sp sp,21 ,13 ,23
. It can be easily shown that the

boundary of the area with physical solutions (eqs 24−26)
consists of lines. Figure 1 also shows the combinations of Sc,21
and Sc,31 that fulfill eq 23 (solid black curves). The parts where
the black curves cross the black dotted areas correspond to
physical solutions for the critical point (eq 21). Black solid
circles indicate the (physical and unphysical) solutions for
binary mixtures, when either Sc,21 or Sc,31 are zero and eq 22
reduces to eq 3 in ref 11. All the coordinates for the spinodal
surface and critical curve can be obtained by substituting valid
combinations of Ssp,21and Ssp,31 or Sc,21 and Sc,31 in eqs 15 and
21, respectively.
Necessary Conditions for the Virial Coefficients for

Phase Formation. The criterion for the virial coefficients
allowing for two negative eigenvalues at sufficiently high
concentrations (i.e., c1, c2, c3 → ∞) can be derived from eqs 11
and 12, although it should be stressed that the metastable
region may extend over a much wider range than the unstable
region.30 These two negative eigenvalues require that a0 < 0
and a1 < 0. The criterion for a0 in eq 11 can be rewritten as
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Taking the limit for infinitely high concentrations c1, c2, c3 →
∞ leads to
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which can be rewritten as
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Analogously, the criterion for a1 in eq 12 can be written as
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Taking the limit for infinitely high concentrations c1, c2, c3 →
∞ results in
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In Appendix A.3, it is shown that criteria of eqs 29 and 31
imply that two negative eigenvalues can occur only if
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i.e., each of the binary mixtures is able to phase separate
individually (cf. refs 10 and 31).
The criterion for the virial coefficients allowing for one

negative eigenvalue at sufficiently high concentrations (i.e., c1,
c2, c3 → ∞) can be derived from eq 10, again stressing that the
metastable region may extend over a much wider range than
the unstable region. One or two of the criteria in eq 32 need to
be satisfied simultaneously, but not all three
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(33)

The formation of three phases is not predicted by having two
negative eigenvalues (although two negative eigenvalues always
coincide with the occurrence of three phases). Three phases
are obtained if there are at least two (intersecting) binodals in
the three-dimensional phase diagram. In that case, there are
pairs of concentrations of coexisting phases on each of the two
binodals, where one of the concentrations is shared. As a
consequence, there are three coexisting phases in equilibrium if

Figure 1. Regions indicating the physical relevant solutions for the
spinodal and critical coordinates in terms of the tangents Sz,21 and Sz,31
(with z = sp, c or m, where m will be introduced later in this paper)
and the relations between the critical tangents Sc,21 and Sc,31. ( ___ ):
relation between Sc,21 and Sc,31 according to eq 22/23; (dotted
region): physically relevant solutions, i.e., positive coordinates for the
critical point or the spinodal surface (or the coordinates in eqs
46−48). The white regions indicate the parameter space where not all
three critical point coordinates are positive, and where concentrations
are unphysical; (....): bounds to the physically relevant regions
representing c1, c ≥ 0 (eq 24), c2, c ≥ 0 (eq 25), and c3, c ≥ 0 (eq 26);
(●) the (physical and unphysical) solutions for binary mixtures (for
Sc,21 = 0.253,0.636,0.969 or Sc,31 = 0.331,1.21,6.00), that are located
on the gray dash-dotted line that represent either Sc,31 = 0 or Sc,21 = 0.
The plot was generated for an asymmetric ternary mixture with B11 =
1.43, B22 = 3.62, B33 = 0.92, B12 = 2.5, B13 = 1.77, B23 = 3.45 (m3/
mol).
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at least two out of three components of the mixture satisfy the
binary phase separation criterion:
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Coexistence Equations for N = 3 and P = 2. In the case
of two phases, I and II, the osmotic pressure and all three
chemical potentials need to be the same in each phase

=
RT RT

I II

(35)

=
RT RT

i i
I II

(36)

with i = 1, 2, or 3. This gives in total 4 equations with 6
unknowns, and the requirement of mass balance adds another
3 equations with 1 unknown (the ratio of the two phase
volumes), leading to a total of 7 equations with 7 unknowns.
Using eqs 2−5, the explicit expressions for osmotic pressure
and chemical potentials are
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Solving the above equations will give all pairs (c1I , c2I , c3I ) and
(c1II, c2II, c3II) of coexisting phases that together define the binodal
surface. Similar to an earlier approach,10 it is convenient to
introduce the following definitions for the minus the slope of
the tie-lines

=S
c c
c c S S S
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j j m jk m ki m ji
,

II I

II I
, , , (41)

with k ≠ i,j, and ci
I and ci

II represent the concentration of
component i in coexisting phases and I and II. Because of Sm,ii
≡ − 1 and eq 41, there are only two independent Sm,ij.
Substituting the above expressions into the coexistence
equations (eqs 37−40) results in
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Defining the auxiliary constants ci,s (with i = 1, 2, or 3) as
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(again noting that it may be necessary to multiply the
numerator and denominator by a factor Sm,ji if Sm,ij goes to
infinity). The structure of eqs 46−47 is the same as eqs 15 and
21. This allows rewriting eq 42 as
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and eqs 43−45 as
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(i = 1, 2, or 3), which have the so-called Lambert-W function
as solutions.8,10,32 This expression links the concentration of
each individual component in phase I to that in phase II.
Generally, the concentrations can be on the same branch of the
Lambert-W function (i.e., the component is evenly distributed
over both phases), or they can be on separate branches (i.e.,
the component has a high concentration in one phase and a
low concentration in the other). The ci,s should be positive to
warrant real values in eq 50, setting a range for Sm,ij that is
identical to the range for Ssp,ij in Figure 1. To find additional
conditions needed to calculate the coexisting phases, eq 41 can
be rewritten as
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(i,j = 1, 2, or 3; i ≠ j) and can be combined with eq 49. After

some rearrangement, eqs 49 and 51 can be combined in matrix

notation
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From eq 50 it follows that all the column vectors in eq 50
can be expressed in terms of Lambert-W functions of the
concentrations in phase I (cf. eq 52 for binary mixtures in ref
10). This implies that instead of six concentration coordinates,
there are only three of them in this problem.
Coexistence Equations for N = 3 and P = 3. In the case

of three phases, I, II, and III, the osmotic pressure and all three
chemical potentials need to be the same in each phase.

= =
RT RT RT

I II III

(53)

= =
RT RT RT

i i i
I II III

(54)

with i = 1, 2, or 3. This gives in total 8 equations with 9
unknowns, which are similar in structure to eqs 37−40 (adding
the equations for phase III). The requirement of mass balance
adds another 3 equations with 2 unknowns (the ratio of the
two phase volumes), leading to a total of 11 equations with 11
unknowns. Solving the above equations will give all triplets (c1I ,
c2I , c3I ), (c1II, c2II, c3II), and (c1III, c2III, c3III) of coexisting phases that
together define the binodal surface. The coexistence equations
to be solved are in principle similar to eq 52, but with a second
matrix to relate the concentrations in phase I to those in phase
III. The increased number of phases makes this calculation
numerically more challenging.
However, for large concentrations, the problem simplifies

again, and for the remainder of this paragraph, we limit
ourselves to this case. For binary mixtures composed of
components 1 and 2, it was found that the slope S∞,21 of the
tie-lines approaches B B/11 22 .

10 For ternary mixtures,
similar expressions hold for S∞,31 and S∞,23. If three phases
are formed, the coexisting phases are positioned in a plane. At
large concentrations, this plane extends to the ci = 0 (i = 1, 2,
or 3) axes, and therefore, the slopes in these intersections need
to be identical to those in the binary planes. From these
requirements, one can conclude that the three phases can be
found in the plane

+ + =B c B c B c c11 1 22 2 33 3 0 (55)

with the parameter c0 ≫ 0 (mol1/2/m1/2). It is noted that this
expression does not contain the cross-virial coefficients, as was
to be expected because three phases consist of essentially pure
components 1, 2, or 3 in this limit. Furthermore, this plane has
the normal vector B B B( , , )11 22 33 , which differs from the
normal vector (1, 1, 1) of the Gibbs triangle. This illustrates
that representation in terms of Gibbs triangles is optimal only
in the case of symmetric mixtures. Equation 55 is strictly valid
only for large concentrations, where c1, c2, c3 → ∞, but is
expected to be a reasonable approximation also at lower
concentrations (cf. eq 66 in ref 10).
Consistency Check for Coexisting Phases in Ternary

Mixtures. Following a similar approach as in previous work on
binary mixtures,11 it can be shown that the coexistence
equations can be simply combined in expressions that solely
depend on the concentrations of the coexisting phases and that
do not contain the virial coefficients anymore (see Appendix
A.6). For case N = 3, P = 2
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and for case N = 3, P = 3

+ + + +

+ + + +

=

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

c c c c c c c c
c
c

c c
c
c

c c
c
c

( ) ( ) ( )
1
2

( )ln

1
2

( )ln
1
2

( )ln

0

1
I

1
II

2
I

2
II

3
I

3
II

1
I

1
II 1

II

1
I

2
I

2
II 2

II

2
I 3

I
3
II 3

II

3
I

(57)
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The above equation can replace any of the three coexistence
equations without affecting the solutions. As such, it is a
necessary but insufficient condition to determine the coexisting
phases: all solutions to the coexistence equation fulfill eqs 56
(P = 2) or 57 and 58 (P = 3) but not the other way around.
Even stronger, a combination of (c1I , c2I , c3I , c1II, c2II, c3II) that does
not fulfill eq 56 for P = 2 or (c1I , c2I , c3I , c1II, c2II, c3II, c1III, c2III, c3III) that
does not fullfil eqs 57 and 58 for P = 3 will not be a solution to

Figure 2. Examples of phase diagrams for ctot = 1.1, 1.3, 1.35, 1.3728..., 1.5 and 1.6 mol/m3 for the symmetric ternary mixture with B = 1 m3/mol, C
= 2 m3/mol. At ctot = 1.1 mol/m3, the binodal for phase separation for binary mixtures starts to extend in the three-component region, but the three
regions are still quite distinct. At ctot = 1.3 mol/m3, the spinodal curves separating the regions with zero and one negative eigenvalues are lines. The
graph also shows the critical curve, where open green circles indicate critical points above the plane of constant ctot, and solid green circles critical
points below the plane of constant ctot (the short green solid lines indicate the projection of the tangent to the critical surface to the Gibbs triangle
according to Appendix A.5). At ctot = 1.35 mol/m3, the dark gray region becomes continuous. At ctot = 1.3728... mol/m3, the binodals touch and a
three-phase equilibrium appears. At ctot = 1.5 mol/m3, the tops of the binodals meet in the center of the triangle and a minimum in the free energy
start to develop near to the vertices leading to a three-phase equilibrium. At ctot = 1.6 mol/m3, the overlapping binodals give rise to a region with
two negative eigenvalues. Yellow lines: triangle with three phases in equilibrium; Cyan solid lines: binodals; Cyan dotted lines: tie-lines; Light gray:
two negative eigenvalues; Dark gray: one negative eigenvalue; Black region: zero negative eigenvalues. Note that a more extensive sequence of
phase diagrams as a function of ctot is available in the Supporting Information, Figures S3-S22.
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the coexistence equations for any combination of virial
coefficients.

■ RESULTS: EXAMPLE FOR THE (MAXIMALLY)
SYMMETRIC TERNARY MIXTURE (B = B11 = B22 =
B33; C = B12 = B13 = B23)

The starting point for this discussion is the simplest condition
for the symmetric ternary mixture, in which B = B11 = B22 = B33
and C = B12 = B13 = B23. The features of the ternary phase
diagram will be discussed as a function of increasing total
concentration. The discussion here will focus mainly on the
physical aspects of the phase diagram, whereas the technical
aspects of calculating the solutions will be dealt with in the
Appendices.
The solutions to the coexisting equations for the symmetric

ternary mixture have three symmetry planes, ci = cj (i,j = 1, 2,
or 3, with i ≠ j). It is noted that the coexistence equations (eqs
35−38) for (in-Gibbs-triangle) maximally symmetric mixtures
can be written in terms of (C − B)ci (see Appendix A.4).
In order to represent the three-dimensional (c1, c2, c3) phase

diagram in two dimensions, the phase diagrams for these
symmetric mixtures will be mostly represented using the so-
called Gibbs triangles33 (and the plane in which the Gibbs
triangles lie will be referred to as “in-Gibbs-triangle” here).
These are cross sections of the three-dimensional phase
diagram with the plane

= + +c c c ctot 1 2 3 (59)

with the total molar concentration ctot acting as a parameter.
Next xi for i = 1, 2, or 3 can be defined as the molar fraction of
each component

=x
c

ci
i

tot (60)

The variables xi are used to plot the Gibbs triangles at a fixed
ctot. Due to the symmetry of the mathematical problem, the
phase diagram presented in the Gibbs triangles should be
invariant under a 2π/3 rotation. Figure 2 shows the phase
diagram for different ctot for B = 1 m3/mol and C = 2 m3/mol.
Figure 2 is also available in the form of a short movie in the
Supporting Information, featuring much smaller steps in
concentration ctot.
One-Phase Region. At concentrations <c

C Btot
1 , all

components are miscible because for the binary symmetric
mixture, any plane with <c

C Btot
1 will lay below any of the

three critical points, e.g., ( ), , 0
C B C B

1
2( )

1
2( )

(cf. refs 8 and

10. The ci = 0 planes correspond to the sides of the Gibbs
triangle. At ctot=1 mol/m3, where the critical points for the
binary mixture just appear as indicated by the solid green
circles in the middle of the sides of the Gibbs triangle (see
Supporting Information, Figure S4). The open green circles
will be discussed later. All eigenvalues λ > 0, represented by the
black background, correspond to a region that is stable or
metastable against concentration fluctuations. In this particular
case, the black region in the Gibbs triangle refers to a stable
region because the binodal was determined explicitly.
Two-Phase Region. For < < +

+
c

C B
B C

C B B C
1

tot
3 5

4 2 ( )2 (see

Appendix A.4 for the explanation of the upper limit), the two-
phase regions are bound by three binodals that develop as the
semimoonlike features from the sides of the triangle (cf. refs 15

and 34), and the black region is continuous (see Figure 2a for
ctot= 1.1 mol/m3 and the Supporting Information for some
additional ctot values, Figures S5−S9). The three binodals lay in
the Gibbs triangle, where ctot is constant, and were calculated
analytically (see Appendix A.4) and confirmed by solving eqs
37−40 numerically. It was found that for each of these
binodals, one of the three components is evenly distributed
over both phases, which is also reflected in eqs 95 and 96 in
Appendix A.4. The tops of the three binodals in Figure 2a
move toward the center of the Gibbs triangle with increasing
ctot. The tie-lines in the semimoonlike features run parallel to
the sides of the Gibbs triangle. The region indicated by the
dark gray background and corresponds to a concave region in
the free energy that is unstable against one type of
concentration fluctuation (one λ < 0), so that phase separation
will occur. This case corresponds with the following equation
(cf. eq 10)

+ + + +

+ +

>

C B C c c c C B c c c c c c

B c c c

( )( 16 4( )( ))

2 ( ) 1

0

2
1 2 3 1 2 2 3 1 3

1 2 3

(61)

The curve separating the black and dark gray regions
corresponds to the spinodal. It is also of importance to note
that the critical curve starts to intersect with the Gibbs triangle
in this concentration range, as shown by the open green circles
(above the Gibbs triangle) changing in solid green circles
(below the Gibbs triangle). The significance of the critical
curve will be discussed later in this section. An interesting
situation occurs at

= +
+

c B C
C B B C

3 5
4 2 ( )tot 2 (62)

(see Figure 2b for ctot=1.3 mol/m3), which shows straight
spinodals at mole fractions

= +
+

x
B C
B C3 5i (63)

for which the sum of the other two mole fractions xj + xk = 1 −
xi is constant (xi= 3/13 in Figure 2b). This can be verified by
substituting eq 63 in expression 10 for a0. For a more detailed
discussion, see Appendix A.4.
For < <+

+
cB C

C B B C C B
3 5

4 2 ( ) tot
3

2( )2 , the stable/metastable

black regions become isolated features, and the unstable dark
gray regions become interconnected (see Figure 2c,d for
ctot=1.35 and 1.3728... mol/m3 and diagrams for a number of
additional concentrations in the Supporting Information,
Figures S11−S15).
Three-Phase Region. A special case is shown in Figure 2d

(at ctot= 1.3728... mol/m3) where adjacent binodals meet in
three points leading to three local minima in the free energy
surface (see Appendix A.4). These three local minima can be
connected to form a triangle (yellow triangle in Figure 2d−f)
in which any mixture will separate in three phases with a
composition corresponding to the vertices of this triangle. The
black region inside this triangle is metastable against phase
separation, while the dark gray region represents an unstable
region. Both regions will eventually phase separate, and
therefore, the details of the local stability analysis are
superfluous. However, the kinetics of phase separation may
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reflect some aspects of the local stability landscape (Zhou et
al.16).
T h e b l a c k r e g i o n d i s a p p e a r s w h e n

= + + =c c c cc c c C Btot 1, 2, 3,
3

2( )
(see Figure 2e with ctot=1.5

mol/m3), where the tops of the three binodals coincide in one
point. Previously, it was demonstrated that critical points of the
form of eq 21 always satisfy the requirements that Det(M1) = 0
and Det(M2) = 0, provided that eq 23 applies (Appendix A.2).
For the symmetric mixture, the requirement in eq 23 for the
critical curve can be shown to result in the relation Sc,21 + Sc,31
= 1 (see Appendix A.4), which has multiple solutions and
therefore does not represent a single tie-line but a plane in the
(c1, c2, c3)-space. Since the normal vector to this plane is
unique, it is more convenient to characterize the plane by the
normal vector.
Next, the critical curve is discussed, which is represented as

open or filled green circles in Figure 2. For both regions,
< < +

+
c

C B
B C

C B B C
1

tot
3 5

4 2 ( )2 and < <+
+

cB C
C B B C C B

3 5
4 2 ( ) tot

3
2( )2

, eq 23 can be written as

= + +

+ + +

+ + +
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(64)

In Figure 3 solutions to eq 23 are plotted, where the black solid
lines represent valid combinations for the critical tangents Sc,21
and Sc,31. The intersection of the solid black line with the gray
dash-dotted lines features the solutions for the binary polymer
mixture (black solid circles). The black dotted lines and gray
dash-dotted lines demarcate boundaries where c1,c, c2,c, and c3,c
switch signs (according to eqs 24−26) and Sc,21 = 0 and/or
Sc,31 = 0, respectively). Physical solutions indicated by black
dotted regions occur when c1,c, c2,c, c3,c all are positive, which is
determined by the position of black dotted lines. Note that
only a part of the (Sc,21,Sc,31) range is shown. These (Sc,21,Sc,31)
combinations give rise to points on the critical curve shown in
Figure 2 as green circles (open symbols: above the ctot plane;
filled symbols: below the ctot plane). Points on the critical curve
with a negative Sc,ij indicate associative phase separation.
This critical curve also explains the dark gray regions of

instability outside the semimoonlike in-Gibbs-triangle binodals
in Figure 2b. The points on this critical curve are associated
with out-of-Gibbs-triangle spinodals (and binodals) (see
Appendix A.5). An example is shown in Figure 4, which can
be found in the (c1, c3)-plane, and similar solutions can be
found in the (c1, c2) and (c2, c3)-planes. Numerically, the
solutions are found to converge slower than the in-Gibbs-
triangle solutions because the free energy surface is almost
completely flat in this region. Note that the binodal and
spinodal are located slightly below the solid gray line at
concentrations just below the critical point because the slopes
of the tie-lines are not parallel to the Gibbs triangles.
Consequently, the spinodal and binodal may appear at lower
ctot than the critical point itself.

Increasing the concentration >c
C Btot

3
2( )

leads to the

appearance of a white region (see Figure 2f with ctot=1.6 mol/
m3 and Supporting Information, Figures S17−S22), which
corresponds to the case where two λ < 0 is given by the
inequalities (cf. eqs 11 and 12)

Figure 3. Regions indicating the physical relevant concentrations for
the spinodal and critical coordinates in terms of the tangents Sz,21 and
Sz,31 (with z = sp, c or m) and the relations between the critical
tangents Sc,21 and Sc,31. ( ___ ): relation between Sc,21 and Sc,31
according to eq 22/23; (dotted region): physically relevant solutions,
i.e., positive coordinates for the critical point or the spinodal surface
(or the coordinates in eqs 46−48). The white regions indicate the
parameter space where not all three critical point coordinates are
positive, and where solutions are unphysical; (....): bounds to the
physically relevant regions representing c1, c ≥ 0 (eq 24), c2, c ≥ 0 (eq
25), and c3, c ≥ 0 (eq 26); (●) the (physical and unphysical) solutions
for binary mixtures (for Sc,21 = 0.146,1,6.85 or Sc,31 = 0.146,1,6.85),
which can be found on the gray dash-dotted line that represent either
Sc,31 = 0 or Sc,21 = 0. The plot was generated for maximally symmetric
ternary mixture with pure virial coefficients B = Bii = 1 (m3/mol), and
cross virial coefficients C = Bij = 2 (m3/mol).

Figure 4. Out-of-plane binodal in the (c1, c3)-plane (or c1 = c2 plane)
for the symmetric ternary mixture with pure virial coefficients B = Bii
= 1 m3/mol, and cross virial coefficients C = Bij = 2 m3/mol: (gray ...
lines) tie-lines; (*) end points of tie-lines at the binodal; (○)
intersection of the binodal with the Gibbs triangle for ctot=1.325 mol/
m3; (black and gray - - - line) spinodal, except for the vertical part of
this curve; (gray -.-.- line) tangent to the spinodal and binodal in the
critical point; (●) critical point; (gray ___ line) intersection with a
Gibbs triangle through the critical point at ctot=1.3 mol/m3; The
slopes of the tie-lines are not parallel to the Gibbs triangles. Therefore,
the binodal and spinodal may appear at lower ctot than represented by
the solid gray line.
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corresponds to the white region that is unstable against two
types of concentration fluctuations.
A stability analysis for a comparable model was published by

Heidemann,34 resulting in qualitatively similar figures (but
without tie-lines): the above Figure 2a and the diagram for ctot
= 1.25 mol/m3 (see Supporting Information, Figure S9) are
comparable to Figures 1 and 2 by Heidemann (using

=c C/tot ).34 With C = 2 m3/mol and α= 2.5 and 3.5
mol/m3, this leads to ctot= 1.1 (Heidemann’s Figure 1) and
1.32 mol/m3 (Heidemann’s Figure 2), respectively. These
conditions compare to Figure 2a and a situation in-between
Figure 2b and c in the present paper. Note that Figure 2c
illustrates the topic of the discussion by Beegle et al.35 and
Heidemann34 that in general the local curvature of the free
energy surface is insufficient to predict global stability of the
system. This is echoing statements made during the develop-
ment of the theory of phase separation in the early 1900s.30

Huang et al.15 also presented a phase diagram for a ternary
mixture based on the Flory−Huggins−de Gennes mean-field
theory. By comparing this model to the Edmond−Ogston
model and equating the parameters for the critical point, the
following relation is found

=c
N

C B2( )tot
(67)

linking the parameters for both models. Substituting eq 67 in
their eq II.1b leads to a result identical to eq 1 for B = 0 and C
= 1 (m3/mol), leading to ctot = Nχ/2 (Appendix A.1). It was
found that the “large” triangle for the three-phase equilibrium
appeared for both models at ctot = 1.3728...(see Appendix A.4
in the present paper and Huang’s Figure 1e that can be
compared to the diagram at ctot = 1.25 mol/m3) (see
Supporting Information, Figure S9).
This is in accordance with the calculation that the minimum

of free energy coincides with the location where the binodals
meet in the symmetric system (see Appendix A.4). The
spinodals are straight lines for the present model for ctot = 13/
10 (Figure 2b) and for Nχ/2 = 4/3 in their model (Huang’s
Figure 1c), which is not the same but close. The existence of
the proposed three-phase equilibria for the “small” triangles
(see Huang’s Figure b−d) was not supported by our work, as
no local minima in the free energy surface were found.
Unfortunately, neither Heidemann34 nor Huang et al.15

discussed the technical details of their calculations.
In the symmetric case, the coordinates ci,s in eqs 44−46

coincide with the critical point coordinates

=c
C B

1
2( )i c,

(68)

as was previously shown for binary mixtures.8,10 This leads to
solutions for the three phase systems that are very similar
compared to those for the binary mixtures
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with K = I, II, or III and i = 1, 2, or 3 and z = −1 or 0. Equation
67 is solved in terms of the so-called Lambert-W function.32 By
convention, the phase rich in component 1 will be called phase
I, the one rich in component 2 will be called phase II, and the
one rich in component 3 will be called phase III. The phase
rich in component i is represented by the z = −1 branch, and
the phases depleted in component i are represented by the z =
0 branch of the Lambert-W function.

■ DISCUSSION
The current work can be extended in various directions. First,
one could consider ternary mixtures where the virial
coefficients for the pure components are identical, but the
cross-virial coefficients differ. It is expected that in such
systems, many of the features observed in the (maximally)
symmetric ternary mixture are maintained qualitatively (e.g.,
semimoonlike regions, out-of-Gibbs-triangle binodals). Sec-
ond, one could consider asymmetric mixtures, where all six
virial coefficients differ. For such systems, the unstable and
metastable regions can still be represented in terms of Gibbs
triangles using eqs 10−12. The representation of the tie-lines,
however, cannot simply be given by a set of stacked Gibbs
triangles each characterized by a specific constant ctot because
the tie-lines will be out-of-Gibbs-triangle. For c1, c2, and c3 large
enough (formally c1, c2, c3 → ∞), the three coexisting phases
will be all located in a plane defined by eq 55. Third, one could
consider including third-order virial coefficients in the
expressions for the Helmholtz free energy (eq 1), something
that could be essential for some cases.36 Fourth, the current
work may be extended to cover examples of associative phase
behavior for cases where one of the cross-virial coefficients is
negative (and the related tangent is positive). Lastly, some of
the results might be generalized to mixtures of N components
(expression for the critical point, relation between the tangents
to the critical curve, stability criteria using the Descartes rule of
signs, and relation between the concentration of individual
components in the different phases satisfying the Lambert-W
function). That would make the present work useful as a
stepping stone toward describing polydisperse and multi-
component mixtures. This would be relevant for describing
phase separation phenomena in complex systems.

■ CONCLUSIONS
In this paper, an extension of the Edmond−Ogston theory
describing phase separation in ternary polymer mixtures in a
common solvent was considered. De facto, this makes these
systems quaternary mixtures. Stacked Gibbs triangles can be
used to represent the phase diagrams for the symmetric
mixture, where the total polymer concentration serves as a
parameter labeling the different Gibbs triangles. Ternary
mixtures can also be considered as ideal examples for the
case of three binary mixtures with shared components, as
addressed in earlier work.13

Various novel analytical expressions were derived for the
Edmond−Ogston model for ternary mixtures. A necessary
condition for the virial coefficients for the occurrence of phase
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separation in two or three phases was identified. An analytical
expression was obtained to describe the relation between the
tangents of the plane to the binodal and spinodal surface for
each point on the critical curve. The Descartes sign rule was
successfully applied to identify different regions of (local)
thermodynamic instability. Similarly, as for binary mixtures, the
Lambert-W functions were also found to play a central role in
the description of the concentrations of the components in the
coexisting phases of ternary mixtures. In addition, the tie-lines
that connect the compositions of the coexisting phases are
explicitly shown in our diagrams.
For maximally symmetric mixtures with C > B > 0, three

regions in terms of phase behavior can be identified as a
function of increasing total concentration. Typically, at low
total concentrations, the three components are completely
mixed. At intermediate total concentrations, two-phase systems
will develop that are each equally enriched in the third
component. At the highest concentrations, three-phase systems
will develop that are each enriched in one of the components.
For the maximally symmetric case, we have a mixed system for

<c
C Btot

1 , two-phase systems for < <c
C B C B

1
tot

1.3728 ... , and

three-phase systems for >c
C Btot

1.3728 ... . This means that the
two-phase region for maximal symmetric mixtures occurs only
over a narrow concentration range of the range of

C B
0.3728 ... ,

which seems smaller than one might intuitively have expected.
Qualitatively, this observation is expected to hold for other
mixtures too (including asymmetric mixtures), though
quantitatively, there will still be differences.
The expressions were numerically evaluated for symmetric

mixtures, where the virial coefficients of the three pure
components as well as the cross-virial coefficients are identical.
The advantage of symmetric mixtures is that most, but not all,
of the phase separation takes place in the plane of constant
polymer concentration (referred to as “in-Gibbs-triangle”),
thereby facilitating visualization. Analytical expressions were
obtained for the binodals in these planes.
Surprisingly, not all phase separation phenomena take place

in-Gibbs-triangle for maximally symmetric mixtures, as some of
the tie-lines intersect the planes of constant concentration.
This out-of-Gibbs-triangle behavior is found in a distinct
region between the in-Gibbs-triangle binodals. The in-Gibbs-
triangle binodals represent segregative phase separation,
whereas the out-of-Gibbs-triangle binodals represent solutions
where two components show associative and the third
segregative phase separation. It appears that this partial
associative phase separation has not been reported earlier.

■ A. APPENDICES

A.1. Comparison of Edmond−Ogston and
Flory−Huggins−de Gennes for a Ternary Mixture in the
Context of the Calculations by Huang et al.
The Edmond−Ogston model starts from the following
expression for the Helmholtz free energy

= + + + +

+ + + +

F
RTV

c c c c c c B c B c

B c B c c B c c B c c

ln( ) ln( ) ln( )

2 2 2

1 1 2 2 3 3 11 1
2

22 2
2

33 3
2

12 1 2 13 1 3 23 2 3 (70)

where the Flory−Huggins−de Gennes free energy model15
reads

= + + +

+ +
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3
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where terms involving concentration gradients are ignored. Ni
is the degree of polymerization of component i (and N = N1 =
N2 = N3 in the calculations of Huang et al.

15), φi is the (local)
composition of component i, and χij is the interaction

parameter between components i and j. Table 2 shows the
matching of terms for the Edmond−Ogston and Flory−
Huggins−de Gennes models.
To compare the calculations of Huang et al.15 (Huang’s

Figure 1) directly to the present results (Figure 2), it is noted
that there are two parameters here (C and ctot), and only one in
the work of Huang et al. (Nχ).
For most cases, the identification ctot = Nχ/2 seems to give a

fair match with the phase diagrams, although there is no formal
justification for this. The minimal concentration ctot = 1.3728...
mol/m3 to get three phases (yellow triangle) is the same
between both models (Figure 2d in the present paper vs
Huang’s Figure 1e). Huang’s Figure 1f and Figure 2e in the
present paper are presented at the same concentration ctot = 1.5
mol/m3, where Figure 2e provides more details on the local
stability.
For the straight spinodals (Huang’s Figure 1c), the relation

ctot = Nχ/2 does not seems to hold. In Huang’s calculation,
straight spinodals (Huang’s Figure 1c) are found for Nχ = 8/3,
corresponding to B = 0 m3/mol and C = 4/3 m3/mol.
According to eq 62, straight spinodals occur for ctot= 15/16
mol/m3 instead of 4/3 mol/m3.
A.2. Determinants for M1 and M2 along the Critical Curve
Determinant M1 (eq 7) along the critical curve (eq 21) can be
evaluated as
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confirming that Det M1 = 0 for every point along the critical
curve. For Det M2‴ = 0 along the critical curve, one has

Table 2. Matching of Terms for the Edmond−Ogston and
Flory−Huggins−de Gennes Models

Edmond−Ogston Flory−Huggins−de Gennes
c1 φ1

= = =B B B B11 22 33 0
= = =C B B B2 2 2 212 13 23 Nχ = Nχ12 = Nχ13 = Nχ23
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where the expression for DetM2‴ is given in eq 20, and for
DetM2′ and DetM2″ as

= +

+ +
+

+ +

+ +

+

+ +

Mc c c B B c c B c B c

B c c B c B c

B c c B c

B c B c c B c

B c B B c c

B c B c

B c c B c B c

Det (4 2 (1 2 ) )

(4 (1 2 )(1 2 ))

( 4 (1 2 )

(1 2 ))(4 (1 2 )

(1 2 )) (4

2 (1 2 ) )

(4 (1 2 )(1 2 ))

21
2

2
2

3
2

23 12 2 1 13 1 22 2

12
2

2 1 22 2 11 1

23
2

2 3 22 2

33 3 23
2

2 3 22 2

33 3 23 13 3 1

12 1 33 3

13
2

3 1 33 3 11 1
(73)
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Consciously not substituting the explicit expressions for all
critical coordinates on the bottom row, the above equation can
be written in the same way as
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(75)

Note that Sc,11 ≡ − 1. The expressions in terms of DetM2′
and DetM2″ are given in eq 75 to demonstrate that eqs 20, 73,
and 74 eventually lead to the same relation.
A.3. Criterion for the Virial Coefficients for the Occurrence
of Two Negative Eigenvalues Anywhere in the Phase
Diagram
Introducing

= = =b
B

B B
b

B
B B

b
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B B
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2

11 22
13
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2

11 33
23
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Equations 29 and 31 can be written as
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and
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Equation 77 can be rewritten as
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(79)

leading to

<b b b b b( ) ( 1)( 1)23 12 13
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and also

<

< +

b b b b

b

b b b b

( 1)( 1)
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12 13 12
2

13
2

23

12 13 12
2

13
2

(81)

Two cases can be identified: case 1 where (b12 > 1) ∧ (b13 >
1) ∧ (b23 > 1) and case 2 where (0 < b12 < 1) ∧ (0 < b13 < 1) ∧
(0 < b23 < 1). Note that we exclude the cases where (b12 > 1) ∧
(0 < b13 < 1) or (0 < b12 < 1) ∧ (b13 > 1), which give rise to
imaginary solutions to b23. Furthermore, the cases where (b12 <
0) and/or (b13 < 0) are excluded because all virial coefficients
are assumed to be positive. Also note that b12 = b13 = b23 = 1 is
not a solution because of the inequality in eq 77.
In case 1, if (b12 > 1) ∧ (b13 > 1), it follows that (b23 > 1).

For this, the following needs to be proven for the lower limit of
eq 81:

>b b b b b( 1)( 1) 123 12 13 12
2

13
2

(82)

The right-hand side of this equation can be simplified to

b b b b1 ( 1)( 1)12 13 12
2

13
2

(83)

or

b b b b( 1) ( 1)( 1)12 13
2

12
2

13
2

(84)

eventually leading to the true statement

b b( ) 012 13
2

(85)

proving the right-hand side of eq 82. By extension, this also
proves that b23 > 1 in the left-hand side of eq 82.
In case 2, if (0 < b12 < 1) ∧ (0 < b13 < 1), it follows that (0 <

b23 < 1). For this, the following needs to be proven for the
upper limit of eq 81:

< +b b b b b( 1)( 1) 123 12 13 12
2

13
2

(86)

The right-hand side of this equation can be simplified to

b b b b1 ( 1)( 1)12 13 12
2

13
2

(87)
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or

b b b b( 1) ( 1)( 1)12 13
2

12
2

13
2

(88)

The sign of the inequality changes because both terms in eq 87
are negative for (0 < b12 < 1) ∧ (0 < b13 < 1), eventually
leading to the true statement

b b( ) 012 13
2

(89)

proving the right-hand side of eq 86. By extension, this also
proves that b23 < 1 in the left-hand side of eq 86.
It is noted that although eq 77 is satisfied in cases 1 and 2,

the inequality in eq 78 is never satisfied in case 2. Therefore,
two negative eigenvalues can only occur in case 1, when (b12 >
1) ∧ (b13 > 1) ∧ (b23 > 1).
Alternatively, if we have the requirement that a0 > 0, it

implies that not all three criteria (b12 > 1), (b13 > 1), and (b23 >
1) can be satisfied simultaneously.
A.4. Expressions for the In-Gibbs-Triangle Binodals
(Maximally Symmetric Mixture)

(a) Expressions for the in-Gibbs-triangle binodals for N = 3
and P = 2
The full expressions for the osmotic pressure Π and

chemical potential μi of component i = 1, 2, or 3 for the
maximally symmetric mixture can be written as
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(91)

where ctot = c1 + c2 + c3. The last two terms in the above
equations are constant for fixed ctot and can be ignored,
when discussing the coexisting phases, where they
cancel. Equation 90 indicates that all compositions
with the same osmotic pressure can be found on a circle
within the Gibbs triangle (see Figure 5). For constant
ctot,

+ + = + +c c c c c c1
I2

2
I

3
I

1
II

2
II

3
II2 2 2 2 2

(92)

Equation 91 indicates that phase compositions with
the same chemical potential need to satisfy the equality

=c C B c c C B cln 2( ) ln 2( )i i i i
I I II II (93)

which gives rise to solutions in terms of Lambert-W
functions. It follows from eq 93 that

=W c c W c c( ( / ) e ) ( ( / ) e )i i c
c c

i i c
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,
( / ) II

,
( / )i i c i i c

I
,
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(94)

with =ci c C B,
1

2( )
, where the appropriate branch of the

Lambert-W should be chosen. Note here that the
concentrations can be on the same branch of the
Lambert-W function (i.e., the component is evenly
distributed over both phases), or they can be on separate
branches (i.e., the component has a high concentration
in one phase and a low concentration in the other).
We can check now whether the equation that we

derived using heuristic arguments fits the equation.

Figure 5.White dotted lines: Examples of the iso-osmotic pressure contours in phase diagrams for ctot = 1.2 and 1.8 mol/m3 and B = 1 m3/mol, C =
2 m3/mol. Open green circles: critical points above the plane of constant ctot. Solid green circles: critical points below the plane of constant ctot.
Short green solid lines: projection of the tangent to the critical plane to the Gibbs triangle according to Appendix A.5). Yellow lines: triangle with
three phases in equilibrium; Cyan solid lines: binodals; Cyan dotted lines: tie-lines; Light gray: two negative eigenvalues; Dark gray: one negative
eigenvalue; Black region: zero negative eigenvalues.
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Consider the binodal emerging from the c3 = 0 axis while
considering that c1,c = c2,c = c3,c for the maximally
symmetric case. The in-Gibbs-triangle binodal coordi-
nates for the maximally symmetric ternary mixture are as
follows:
For the left branch (for c2,bi ≥ c2,c, phase I),
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(95)

For the right branch (for c2,bi ≤ c2,c, phase II),
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Filling in these coordinates in eq 92 leads to
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which is true. Therefore, the expression for the binodal is
exact for the binodal on the c1,bi + c2,bi + c3,bi = ctot plane,
originating from the c3 = 0 axis.
Simplifying the notation of eqs 95 and 96 leads to
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with xi
K the mole fraction of component i in phase K (= I

or II) and where < <x0 2
I 1

3
and where the other two

pairs of coexisting phases can be found under cyclic
permutation of the concentrations. As a result, eq 93
reduces into a single equation
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from which the two coexisting phases can be determined
as a function of ctot. To follow the perpendicular bisector
from the center of the Gibbs triangle toward the
midpoint of one of its sides (i.e., x1I = x2I and x3I = 0), one
takes x1

I 1
2
. Using L’Hôpital’s rule, one finds
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leading to
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These concentrations correspond to the critical point for
binary symmetric mixtures (Dewi et al.8,9).

(b) Composition of coexisting phases for the binary mixtures
at ctot
The intersection of the binodal with the sides of the

Gibbs triangle can be calculated as
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as follows directly from setting c3, bi = 0 in eq 95 or 96.
(c) Straight spinodal lines in the phase diagram for the

maximally symmetric mixture (cf. Figure 2b)
Starting from the expression for the spinodal, eqs 10

and 11 (but not expressed as an inequality) and
assuming the conditions for the maximally symmetric
model (B = B11 = B22 = B33 and C = B12 = B13 = B23)
result in

+ + +

+ +

+ + +
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(104)

Converting the molar concentrations ci to molar
fractions xi

=c x ci i tot (105)
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and introducing the following simplifications and
substitutions

+ + =x x x 11 2 3 (106)
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lead to a polynomial in xi
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which should be true for all values of x1; so, a = 1 and ctot
= 0 are not acceptable solutions, and B = C does not
satisfy the phase separation criterion. Therefore, the
coefficients of the polynomial should be zero. So, for the
coefficients of the first two terms of the polynomial,
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Filling in a in the coefficient for the third term of the
polynomial (which also should be zero) leads to

= +
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and
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+

a
B C
B C3 5 (112)

It is noted that it is not possible to write eq 111 only in
terms of (B − C), as is the case for the coexistence
equation. Although all binodals are identical for (C − B)
= constant, the spinodal surfaces differ.

(d) Conditions for the formation of three phases (in-Gibbs-
triangle binodals, N = 3 and P = 3)
For the in-Gibbs-triangle solutions for N = 3 and P =

3, we conjecture a solution for the concentrations in
phases I, II, and III, inspired by the symmetry of the
problem of the form
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tot (114)

=c c c x x x c( , , ) (1 2 , , )1
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2
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3
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2
I

2
I

2
I

tot (115)

where x0 2
I 1

3
. Using this form, the requirement for

the osmotic pressure is automatically fulfilled. For the
chemical potentials, one needs to fulfill eq 3, leading to a
single expression
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In Figure 6, (C − B)ctot is plotted against x2I . At x2I =
0.2076..., there is a local minimum at (C − B)ctot =

1.3728..., expressing a necessary condition for the
f o r m a t i o n o f t h r e e p h a s e s . F o r

C B c1.3728 ... ( ) tot
3
2
, there are two possible x2I

values that correspond to a certain (C − B)ctot. This is
also reflected in Figure 2d, where the binodals intersect
each other in two points for ctot(C − B) ≥ 1.3728....
Here, the smallest x2I of the possible x2I values should be
chosen since this x2I value corresponds to the lowest
Helmholtz free energy of the two. With each x2I value,
three coexisting phases are associated, forming the
corners of a triangle within the Gibbs triangle that
defines the three-phase area. Using L’Hôpital’s rule, one
can establish the following limit for x2
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3
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where all three phases collapse in a single point
=

= ( )
( )c c c c( , , ) , ,

, ,
C B C B C B

1 2 3
1
3

1
3

1
3 tot

1
2( )

1
2( )

1
2( )

.

However, this point corresponds to a local maximum
in the free energy.
The solutions above are the consequence of

intersections of the in-Gibbs-triangle binodals. From
the discussion above, it can be concluded that there are
generally zero, one, or two solutions: zero if the binodals

Figure 6. Plot of (___) (C − B)ctot as a function of x2I , showing a local
minimum at x2I = 0.2076 where (C − B)ctot = 1.3728 and at =x2

I 1
3
,

=C B c( ) tot
3
2
. Furthermore, (C − B)ctot → ∞, when x2I ↓ 0. For

C B c1.3728 ( ) tot
3
2
there are two possible x2I values that

corresponding to a certain (C − B) ctot, where the lowest x2I -value
corresponds to the lowest free energy; (−--) horizontal line with (C −
B)ctot =1.3728; (....) horizontal line with (C − B)ctot =1.5.
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do not intersect, one if they merely touch, and two if
they fully intersect. In the case of two solutions, the
largest solution for c2,bi of the pair is the one needed (the
other describes the solution for the intersection closer to
the center of the Gibbs triangle).
An example of the free energy surface is shown in

Figure 7. The dashed white lines represent the contour
lines of the free energy surface. At ctot = 1.2 mol/m3, the
free energy varies relatively smoothly (featuring a
concave area in the spinodal area), whereas at ctot=1.8
mol/m3, pronounced minima can be observed at the
vertices of the Gibbs triangle.
A special case occurs when ctot is chosen such that eq

125 has a single solution (cf. Figure 2d).
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When two binodals intersect (previous section), a
different pair of intersections will be found for each
value of ctot. Moving to lower ctot will give a curve of
intersections, with two branches merging in a point (and
ctot) where only a single intersection exists. This
intersection is characterized by the criterion
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I (see Figure 6). This point can be
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where the identity dWi(z)/dz = Wi(z)/(z(1 + Wi(z)))
was used.
Another case occurs when ctot is chosen such that eq

125 has two solutions (cf. Figure 2e and beyond). If the
(c3, bi ≤ c3, c) branch of the binodal originating from the
c1 = 0 axis intersects the (c2, bi ≥ c2, c) branch of the
binodal originating from the c3 = 0 axis (right bottom

Figure 7. White dotted lines: Examples of the iso-free energy contours in phase diagrams for ctot = 1.2 and 1.8 mol/m3 and B = 1 m3/mol, C = 2
m3/mol. Open green circles: critical points above the plane of constant ctot. Solid green circles: critical points below the plane of constant ctot. Short
green solid lines: projection of the tangent to the critical plane to the Gibbs triangle according to Appendix A.5). Yellow lines: triangle with three
phases in equilibrium; Cyan solid lines: binodals; Cyan dotted lines: tie-lines; Light gray: two negative eigenvalues; Dark gray: one negative
eigenvalue; Black region: zero negative eigenvalues.
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corner of the Gibbs triangle), it is found that for c2, bi ≥
c2, c
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and for c2, bi ≥ c2, c (cf. eq 95)
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This leads to the conditions for the intersection
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Here, eq 123 is always true, and eqs 122 and 124 lead to

the same expression.
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which is the same as ctot = 2c2, bi
I + c2, bi

II or ctot = c1, bi
II +

c2, bi
II + c3, bi

II for the coordinates in the point where the
binodals intersect. Figure 2d indicates that this is the
requirement for the yellow triangle, if the phase with c2, bi
≤ c2, c is labeled I and c2, bi ≥ c2, c is labeled II.
Figure 8 shows the Helmholtz free energy F/(RTV)

along the bisector from one of its vertices to the center

of the Gibbs triangle. It is observed that the curve for ctot
= 1.5 mol/m3 has a minimum in free energy, whereas the
curve for ctot= 1.25 mol/m3 is monotonically decreasing
(and does not have a minimum, therefore). For ctot =
1.3728... mol/m3, a transition takes place between both
cases.

(e) Point at the common top of the in-Gibbs-triangle
binodals

The critical curve, eq 22, is a ringlike structure for symmetric
mixtures, which typically has two intersections with a plane like
c2 = c3. So for

=
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The condition c2,c = c3,c implies

=
CS S B CS S B

1
2( (1 ) )

1
2( (1 ) )c c c c,12 ,31 ,13 ,21

(127)

or

Figure 8. Normalized Helmholtz free energy F/(RTV) as a function
of the molar fracttion xi for ctot= 1.5, 1.3728..., 1.25 mol/m3 (from top
to bottom) following the bisector from one of its vertices to the center
of the Gibbs triangle. Here B = 1 m3/mol andC = 2 m3/mol.
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=S S S S(1 ) (1 )c c c c,21 ,21 ,31 ,31 (128)

There are two solutions

=S Sc c,21 ,31 (129)

and

=S S1c c,21 ,31 (130)

(or generally, Sc,21 + Sc,31 = 1). The solution related to eq 129 is
out-of-Gibbs-triangle and will be discussed in Appendix A.5.
Here, we will consider the situation associated with eq 130: it
can be easily seen that substituting eq 130 into eq 126 leads to

critical coordinates of = = =c c cc c c C B1, 2, 3,
1

2( )
.

A.5. Some Expressions for the Out-of-Gibbs-Triangle
Binodals (Maximally Symmetric Mixture)

(a) Demonstration that the out-of-Gibbs-triangle binodals
do not lay in the Gibbs triangle
The tangent plane to a critical point on the critical

curve (eq 22) is
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The problem involves two planes (Gibbs triangle and
the tangent plane), with normalized normal vectors
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Note that by definition, Sc,11 = − 1; so, the critical
plane normal vector on the right can be written in a form
in which all coordinates are treated equivalently.
We would like to calculate the (length of the)

projection of the normal ncritical plane on the plane c1 + c2 +
c3 = ctot (i.e., the rejection of ncritical plane on nGibbs plane). If
the tangent plane is parallel to the Gibbs triangle, the
length of the projection is 0. If the tangent plane is
perpendicular to the Gibbs triangle, the length of the
projection is 1, with the direction of the projection being
perpendicular to the intersection of both planes. Any
length smaller than unity suggests that the coexisting
phases can be found “out of plane” above and below the
Gibbs triangle.
The projection of ncritical plane on the plane with the

normal vector nGibbs plane is given by (using that the
normal vectors have been normalized)
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where the tangents in eq 133 should satisfy eq 23. The
conclusion of this equation is that the projection of
ncritical plane on the plane with the normal vector nc dtot plane

does not always have the same length, and therefore, the
critical plane does not always coincide with the ctot (or
Gibbs) plane. The projections are plotted in Figure 2a−
f.

(b) Out-of-Gibbs-triangle binodal for c2 = c3

In Appendix A.4, we identified a solution to the critical
coordinates in eq 126 for the condition Sc,21 = Sc,31 (eq 129). In
the following section, it will be shown that this solution leads
to out-of-Gibbs-triangle binodals. Equation 23 can be written
in the maximally symmetric case as
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For B = 1 and C = 2 m3/mol, the relevant Sc,21 is

{ + + }k40 8 46 cos((tan (405 191 /8267) 2 )/3) /54

0.4197

1

for k = 2. The associated coordinates are c1, c = 0.7366, c2, c =
0.2832, and c3, c = 0.2832 mol/m3; so, the maximum of the
critical curve can be found at ctot = 1.3031 mol/m3.
Under the assumption c2 = c3, i.e. associative phase

separation between two of the components, we can write for
eqs 51

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02604
ACS Omega 2023, 8, 28387−28408

28405

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

y

{
zzzzzz

c
c

c
c

S
c

c
c
c

c
c

1 1

1 1

s s

m
s

s s s

1
I

1,

1
II

1,

,12
2,

1,

2
I

2,

2
II

2, (136)

=
i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

c
c

c
c

c
c

c
c

1 1 1 1
s s s s

2
I

2,

2
II

2,

2
I

2,

2
II

2,

(137)

=

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

y

{
zzzzzz

c
c

c
c

S
c

c
c
c

c
c

1 1

1 1

s s

m
s

s s s

2
I

2,

2
II

2,

,21
1,

2,

1
I

1,

1
II

1, (138)

Equation 137 is always true, and eqs 136 and 138 are identical
and therefore the only equation that we need to use going
forward in this derivation. Combined with eq 49, we have
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By subtraction and addition, expressions can be obtained for
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The tie-lines are not quite parallel, but Sm,21 → Sc,21 when the
tie-lines are near the critical point.

A.6. Consistency Check for Coexisting Phases in Ternary
Mixtures
In previous work on binary polymer mixtures, a consistency
relation was obtained, which was formulated exclusively in
terms of the concentrations of the coexisting phases but
without any of the virial coefficients (eq 105 in ref 8. It was
later shown that this relation can be obtained directly from the
coexistence equation (eq 11. Here, the previous approach is
applied to the coexistence equations for N = 3 and P = 2 (eqs
37−40), which can be rearranged as
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Subsequently substituting eqs 143−145 into eq 142
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This can be simplified by canceling terms as
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The same approach can be taken in the case of N = 3 and P =
3, which yields an additional equivalent relation linking the
concentrations in phases I and III. Combining this additional
equation with eq 146 links the concentrations in phases II and
III in a similar way.
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