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ABSTRACT: L-Carnosine is an endogenous dipeptide that has
high potential for therapeutic purposes, being an antioxidant with
metal chelating, anti-aggregating, anti-inflammatory, and neuro-
protective properties. Despite its potential therapeutic values, the
biomolecular mechanisms involved in neuroprotection are not fully
understood. Here, we demonstrate, at chemical and biochemical
levels, that insulin-degrading enzyme plays a pivotal role in
carnosine neuroprotection.
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1. INTRODUCTION

Amyloid ß-protein (Aβ) is a complex mixture of peptides of
37−43 amino acids in length that is present in the brain and
the cerebrospinal fluid of human beings.1 Aβ represents the
key peptide in the pathogenesis of Alzheimer’s disease (AD), a
neurodegenerative disorder with a growing prevalence on a
global scale. Although AD pathogenesis is not fully
characterized yet, systemic accumulation of biomarkers of
redox unbalance2 and inflammation,3 along with the deposition
of insoluble proteinaceous aggregates in the brain, are
hallmarks of disease progression.4−6

In the AD brain, Aβ, which is released upon enzymatic
digestion of APP precursor protein in the monomeric state,
typically enters a neurodegenerative pathway, which causes it
to undergo aggregation characterized by the formation of
larger and heavier species,7 among which the soluble
oligomers, which anticipate the formation of insoluble
aggregates, are supposed to represent the most toxic ones.8

Both peripheral macrophages and microglia, the brain-
resident immune cells, represent two different specialized cell
types activated during the immune response.9,10 There is a
bidirectional cross-talk between microglia and neurons; in fact,
neurons inform microglia regarding their status and control
activation and the motility of microglia, while microglial cells
are able to modulate neuronal homeostasis.11 Reactive
microglia co-localize with Aβ within the neuritic plaques
observed in the brain of AD subjects and could be implicated
either in the removal or, paradoxically, in the formation of
amyloid plaques.12−15 Microglia can promote Aβ clearance
through different mechanisms including the internalization and

degradation of the peptide through the endosome/lysosome
pathway16 and the secretion of enzymes able to degrade Aβ
such as insulin-degrading enzyme (IDE),17,18 a major enzyme
responsible for the degradation of insulin (Ins) and Aβ in vitro
and in vivo.19−22 In fact, despite Ins being the preferred
substrate for IDE, the enzyme also cleaves different
amyloidogenic peptides such as amylin23 and Aβ.24,25 The
latter,26,27 as well as IDE itself,28 represents a well-recognized
neurobiological link and a common pharmacological target
between AD and type 2 diabetes (T2DM). Mice with the
homozygous deletion of the IDE gene (IDE−/−) and an IDE
deficiency show increased cerebral accumulation of endoge-
nous Aβ, as well as hyperinsulinemia and glucose intolerance,
hallmarks of T2DM.29 Positive allosteric modulators of the
activity of IDE are currently studied as potential drugs for both
pathologies, as shown by the use of a novel IDE inhibitor in a
mouse model of T2DM, while activators of IDE have been
considered for AD treatment.29 In addition, IDE has been
recognized to be involved in many other biochemical pathways
wherein it does not play a proteolytic action but rather a
regulatory one,19,30−33 envisaging a multifaceted role of this
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enzyme within the dynamics of metabolism of living
organisms.

L-Carnosine (Car) is a naturally occurring dipeptide
synthesized by Car synthase composed of β-alanine and L-
histidine,34,35 and it is highly concentrated in muscle and brain
tissues. The concentration of this dipeptide is very high in
cardiac and skeletal muscles, up to 20 mM,36,37 and remains in
the millimolar range in the brain.38 Different studies have
shown the therapeutic potential of Car in diseases charac-
terized by abnormal oxidative stress,39 inflammation,40 and
abnormal protein aggregation, such as diabetes,41,42 AD, but
also retinal diseases.43 Nevertheless, the well-documented
antioxidant, anti-inflammatory, and anti-aggregative activities
of Car make this molecule very attractive for drug discovery
approaches in neurodegenerative diseases.44 In addition, Car
has shown the ability to interact with macrophage receptors,45

stimulating the phagocytic activities of these cells.46,47 These
modulatory activities along with its ability to decrease oxidative
stress and inflammation in two in vitro models (macrophages
and microglia) of Aβ-induced stress47,48 make Car a very
attractive pharmacological tool in the context of AD pathology.
Indeed, in the context of AD, Car has been able to revert
oxidative stress and microglial activation in a transgenic mouse
model of AD,43 while its supplementation was shown to
counteract cognitive decline in AD subjects.49 It is worth
mentioning that the plasma concentration of Car in subjects
with a presumptive diagnosis of AD is significantly lower than
that detectable in age- and sex-matched healthy subjects.50

In the present study, we wondered whether Car can exert
neuroprotective effects against Aβ oligomers through the
modulation of IDE activity. We first investigated the toxic
potential of Aβ1−42 oligomers in the absence or presence of
Car and/or a highly selective IDE inhibitor (6bK). We
conducted these studies in primary mixed neuronal cultures as
a well-known and established in vitro model to study Aβ
toxicity as well as the therapeutic potential of molecules of
interest.48,51 Once the neuroprotective activity of Car was
established to be IDE-mediated, we then investigated Car/IDE
interaction and the molecular mechanisms underlying the
protective effects of Car. For this purpose, we have applied
high-performance liquid chromatography−mass spectrometry
(HPLC-MS), surface plasmon resonance (SPR), dynamic light
scattering (DLS), and fluorescent methods to determine the
effect of Car on IDE activity, oligomerization, and coopera-
tivity. Results indicate that the neuroprotective effect of Car is
due to a modulation of IDE activity and oligomerization.

2. RESULTS
2.1. Car Prevents the Toxicity of Aβ1−42 Induced in

Mixed Neuronal Cultures via IDE. We investigated the
neuroprotective activity of Car in mixed cultures of cortical
cells consisting of neurons (35−40%) and glial (astrocytes and
microglia; 60−65%) cells treated with Aβ1−42 oligomers (1
μM) for 48 h. Because Aβ1−42 is able to potentiate glutamate
toxicity,52 the experiments were carried out in the presence of a
cocktail of ionotropic glutamate receptor antagonists [MK-801
(10 μM) and DNQX (30 μM)] to exclude the contribution of
endogenous excitotoxicity to the overall process of neuronal
death. Using this model, neurotoxicity of Aβ oligomers showed
faster kinetics, with a substantial increase (about 250%) in the
number of trypan blue positive cells (dead neurons) being
detected after 48 h of exposure to Aβ1−42 oligomers
compared to untreated cells (p < 0.001) (Figure 1). Car

significantly decreased the toxicity due to Aβ1−42 oligomers
treatment in mixed neuronal cultures, giving a number of dead
cells comparable to that observed for untreated cells. The
highly selective IDE inhibitor, 6bK, prevented the neuro-
protective activity of Car directly applied to mixed neuronal
cultures treated with Aβ1−42 oligomers (p < 0.001 compared
to Aβ1−42 oligomers + Car). Thus, these experiments show
for the first time that IDE is implicated, at least in part, in
mediating the neuroprotective effects of Car. The treatment
with 6bK had no effect per se on mixed neuronal culture
viability in the absence of Aβ1−42 oligomers.
An additional set of experiments in which mixed neuronal

cultures were treated with Aβ1−42 oligomers for 48 h in the
absence or presence of increasing concentrations of 6bK (100
and 250 nM) was carried out. The results reported in Figure
1S show how the selective IDE inhibitor did not significantly
modify the Aβ-induced cell death.
In order to understand the role played by glial cells in the

neuroprotective effects of Car, we treated primary pure
neuronal cultures with Aβ1−42 oligomers for 48 h in the
absence or presence of Car. As shown in Figure 1S, the
treatment of pure neurons with Aβ1−42 oligomers signifi-
cantly decreased cell viability compared to untreated cells (p <
0.001). Differently from mixed neuronal cultures, Car was not
able to revert the toxic effects mediated by Aβ1−42 oligomers,
underlining the key role played by glial cells in the
neuroprotection elicited by Car.

Figure 1. Neuroprotective effects of Car against the toxicity induced
by Aβ1−42 oligomers are mediated by IDE. Primary mixed neuronal
cultures were treated with Aβ1−42 oligomers (1 μM) for 48 h in the
absence or presence of Car (10 mM). The effect of 6bK (highly
selective IDE inhibitor) pretreatment (1 h; 250 nM) on the
neuroprotective activity of Car against Aβ1−42 oligomer-induced
toxicity is also shown. The toxicity of Aβ1−42 oligomers in mixed
neuronal cultures was assessed by cell counting after trypan blue
staining. Cell counts were performed in three to four random
microscopic fields/well. Data are the mean of 7 to 8 determinations.
Standard deviations are represented by vertical bars. ***Significantly
different from untreated cells, p < 0.001, ###significantly different from
Aβ1−42 oligomers, p < 0.001, ϕϕϕsignificantly different from Aβ1−42
oligomers + Car, p < 0.001; ns = not significant.
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2.2. Car Induces IDE Oligomerization. DLS was
performed to determine the average hydrodynamic diameter
(dh) of IDE in the presence of Car. A dose-dependent effect of
Car on the stability, conformation, and aggregation of IDE was
revealed through thermal denaturation experiments (see
Supporting Information). IDE alone showed a hydrodynamic
diameter of 12.7 ± 0.9 nm, a finding consistent with previous
studies.53 At a concentration of 1 mM, Car caused an increase
of IDE diameter (22 ± 2 nm), suggesting that an
oligomerization process of IDE actually occurred (Figure 2).

DLS measurements were also performed using IDE R767A.
This mutation hinders the oligomerization properties of IDE
and, therefore, IDE R767A is mainly monomeric. The
hydrodynamic diameter of the IDE mutant was found to be
10 ± 1 nm, supporting a minor presence of oligomeric species
in solution.32,54 DLS data showed that Car did not significantly
affect the hydrodynamic diameter of the IDE R767A. This
result demonstrates that Car could induce the oligomerization
of IDE.
In addition, the thermal denaturation of IDE was also

followed to study the effects of Car on the stability,
conformation, and aggregation of IDE at pH 7.4. Figure 3S
shows the derived count rate (DCR) variation when the
temperature of an IDE solution was increased in the presence/
absence of Car. The DCR represents the scattering intensity
measured at the detector in the absence of the laser light
attenuation filter and therefore it is related to both size and
concentrations of the protein.55 As for IDE alone, DCR
increased over 50 °C in DLS experiments upon the protein
denaturation. Car at 0.1 mM appeared to slightly anticipate the
denaturation process, whereas at 1 mM, it promoted a change
of IDE size at low temperature. These data further support a
dose-dependent effect of Car on IDE stability and oligomeriza-
tion.
2.3. Car Differently Modulates IDE Activity In Vitro

toward Long and Short Substrates. The activity of IDE
has been tested for different substrates and by different
methods. Indeed, it is well known that IDE activity and
allosteric mechanisms are different depending on the length of
the substrates, as only long substrates are able to bind the
catalytic site as well as the exosite.56 For this reason, Car has
been tested as a possible IDE activator toward the degradation
of Ins, Aβ1−40, and the short fluorogenic peptide, substrate
V.53 In Figure 4S, the cleavage sites of IDE on Ins and Aβ1−40
as obtained by HPLC-MS detection of the peptide fragments
generated by the incubation with IDE are reported, whereas in
Figure 5S, the normalized areas of the peaks assigned to intact
Ins and Aβ1−40 in absence and presence of Car 100 μM and 1
mM as a function of incubation time are plotted.23 In both
cases, Car enhances peptide degradation by IDE as the

decrease of the Ins and Aβ1−40 molecular peaks is more rapid
in the presence of the dipeptide. For this reason, MS
experiments confirmed that Car is an activator of IDE activity
toward both long substrates tested, Ins and Aβ1−40.
As for the IDE activity toward a short substrate, Figure 3

shows the IDE kinetic graphs, obtained by plotting the initial

velocity as a function of the substrate V concentration (a), also
in the presence of different amounts of Car (b, c). Based on
these results, Car seems to slightly lower the maximum
reaction rate, suggesting that Car affects the IDE-dependent
degradation of substrate V in a noncompetitive manner. This
effect of Car on the IDE activity toward substrate V, different
from that reported for that on the IDE-mediated hydrolysis of
both Ins and Aβ1−40, could reasonably be ascribed to a
different substrate dimension. Bearing that in mind, the
fluorimetric assay results showed that Car did not act as an
IDE activator toward short peptides like it does for longer
ones.
Finally, it is important to highlight that, besides Car

addition, the pH and all the other experimental values have
been kept constant during all activity measurements. In order
to check if the Car effect was molecule-specific, we have
performed IDE activity modulation experiments in the
presence of D-carnosine and carnitine, using Ins as a substrate.
In neither cases, IDE activity modulation was observed (data
not shown), demonstrating a specific modulatory activity for
Car and the selective role of stereochemistry.57

2.4. Car Increases IDE Cooperativity. It has been
reported that IDE has a Hill coefficient for the degradation
of small fluorogenic substrates equal to about 2.0.58 In this
work, we have measured IDE-Ins interaction kinetic parame-
ters in the presence and in the absence of Car at different
concentrations, by applying a novel SPR approach described in
the Supporting Information. In Table 1, the obtained results
are reported for both wild-type and IDE R767A. It is possible
to see that the effect of Car on the Hill coefficient value n
(second column of Table 1) is remarkable. Interestingly, such
effect is dependent on the concentration of Car and is not
detected in the case of IDE R767A, confirming the DLS
results. The variation of the KD value observed in the presence
of Car in the case of IDE R767A indicates that a contribution
to the activation of the enzyme is possibly given also to a Car
induced higher affinity of IDE toward Ins.

Figure 2. DLS measurements of (a) IDE wild type and (b) IDE
R767A in the presence of increasing concentrations of Car.

Figure 3. Kinetic graphs related to the IDE-mediated hydrolysis of
substrate V (a) also in the presence of Car 0.1 mM (b) or 1 mM (c).
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3. CONCLUSIONS
As experts in the field continue to advertise, “many of the most
exciting new possibilities hinge on the development of
powerful pharmacological modulators of IDE.”59 Car is an
endogenous peptide that can be also given orally as a beta-
alanine supplement, widely used by many people, especially
athletes to improve their performances.60 Although the
presence of Car in the serum is not detectable because of its
rapid degradation by serum carnosinase,61 intact Car is
excreted in urine up to 5 h after intake, indicating that the
dipeptide resists somehow to degradation.62 As it is widely
reported that Car is neuroprotective,63 here we have explored
the possibility that Car exerts its beneficial effect through the
modulation of IDE. Our results obtained in rat mixed neuronal
cultures clearly show that Car is protective against Aβ1−42-
induced toxicity and also that the neuroprotective activity of
Car is lost in the presence of 6bK, a highly selective IDE
inhibitor, supporting the recent findings described by Fu et
al.18 demonstrating that microglia partially degrade Aβ via the
secretion of IDE. In order to understand the molecular basis of
such an intriguing result, we have applied various experimental
approaches to assess the Car mechanism of action on IDE.
Indeed, DLS measurements show that Car alters the average
hydrodynamic radius of the enzyme, hinting to higher
oligomeric forms induced by the presence of Car in a
concentration-dependent manner. We exclude that the change
in the hydrodynamic radius could be due to a change in
enzyme conformation, as IDE R767A used to test such
hypothesis did not show the same trend. In accordance to this
result, SPR measurements applied to calculate the Hill
coefficient gave a clear indication that Car directly affects the
enzyme cooperativity, increasing the value of the Hill
coefficient in a concentration-dependent manner. Last but
not least, HPLC-MS experiments clearly show an increase in
IDE activity toward both Ins and Aβ peptides in the presence
of Car. On the contrary, the IDE degradation of a smaller
fluorogenic substrate does not seem to be affected by the
presence of Car. The latter findings give a clear indication on
the possible mechanism involved in Car neuroprotection.
Indeed, all results point at an IDE activating role of Car due to
an increase in the oligomerization and in the cooperativity of
the enzyme, which increase the enzyme capability to degrade
long substrates such as Ins and Aβ peptides, but not shorter
one such as substrate V. This specific regulatory mechanism
indicates that Car does not bind to the IDE catalytic site, being
a heterotropic modulator, as it is able to regulate the enzyme
activity by binding to the exosite or to other not identified
sites, causing a different interaction between the enzyme and
long substrates, changing their reciprocal affinity and, in turn,
IDE catalytic activity. Such a result is in accordance with
previous findings already reported for IDE activity53,56 and

opens a new path to explore the therapeutic potential of Car in
AD.
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