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The heterogeneity of the immune microenvironment leads to different

responses in immune checkpoint blockade therapy. We aimed to propose a

robust molecular classification system to investigate the relevance of the

immune microenvironment subtype and prognosis of prostate cancer

patients, as well as the therapeutic response to immune checkpoint block-

ade therapy. A total of 1,557 prostate cancer patients were enrolled, includ-

ing 69 real-world samples from our institute (titled the AHMU-PC

cohort). The non-negative matrix factorization algorithm was employed to

virtually microdissect patients. The immune enrichment was characterized

by a high enrichment of T cell-, B cell-, NK cell-, and macrophage-associ-

ated signatures, by which patients were subclassified into nonimmune and

immune classes. Subsequently, the immune class was dichotomized into

immune-activated and immune-suppressed subtypes based on the stromal

signature, represented by the activation of WNT/TGF-b, TGF-b1, and C-

ECM signatures. Approximately 14.9% to 24.3% of patients belonged to

the immune-activated subtype, which was associated with favorable recur-

rence-free survival outcomes. In addition, patients in the immune-activated

subtype were predicted to benefit more from anti-PD-1/PD-L1 therapy. In

conclusion, our study identifies a novel immune molecular classifier that is

closely related to clinical prognosis and provides novel insights into

immunotherapeutic strategies for prostate cancer patients.
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1. Introduction

Since prostate cancer is the second most common

tumor and ranks as the fifth most common reason of

cancer-related death among males, its substantial

worldwide burden has raised public health concerns

[1]. The outcomes of low-intermediate-risk patients are

favorable with the application of minimally invasive

ablative therapies, radiation therapy, or radical prosta-

tectomy. However, approximately 26% to 30% of

prostate cancer patients will develop to advanced and

metastatic disease within five years [2]. Although

androgen deprivation therapy (ADT) is available for

advanced-stage patients [3], they still experience unfa-

vorable outcomes due to the rapid progression to cas-

tration-resistant prostate cancer (CRPC), which can

cause prostate cancer-specific death within 2 to 4 years

[4]. For CRPC patients who received maximum andro-

gen blockade therapy, the 5-year overall survival (OS)

rate is 25.4%, while for patients who received only

androgen suppression by surgery, it is 1.8% [5]. Cur-

rently, sipuleucel-T, abiraterone acetate, enzalutamide,

cabazitaxel, radium-223, and apalutamide treatments

are approved by the Food and Drug Administration

(FDA) and are available for CRPC patients.

The tumor microenvironment (TME) can also be

regarded as the tumor milieu, a composite of blood

vessels, immune cells, stromal cells, mesenchymal cells,

cytokines, and chemokines [6], and it plays a crucial

role in tumorigenesis and tumor progression. Many

investigations have explored the role of the TME in

tumor progression and prognostic prediction. In our

previous study, we found that polarizated M2 macro-

phage can be a risk factor for prostate cancer patients

[7]. Zhao et al. [8] demonstrated the association

between high expression levels of programmed cell

death 1 ligand 2 (PD-L2) and poor outcomes in pros-

tate cancer patients, as well as its link with postopera-

tive radiation therapy. Rodrigues et al. [9] also

illustrated the positive association between defects in

mismatch repair pathways and the overactivation of

several immune checkpoints. Sipuleucel-T is the first

FDA-approved immunotherapy for prostate cancer

patients, the recombinant fusion prostatic acid phos-

phatase (PAP) can activate antigen-presenting cells

(APCs) and shift the immunosuppressive milieu of

tumors [10]. Anti-programmed cell death protein 1

(PD-1) and anti-programmed cell death 1 ligand 1

(PD-L1) therapy is another potential immunotherapy

option for prostate cancer patients and has been con-

firmed to offer benefits to patients with melanoma,

nonsmall cell lung cancer, breast cancer, and urothelial

carcinoma. However, only some patients respond to

these immune checkpoint blockade (ICB) treatments,

and the molecular features of the TME are tightly

linked to patients’ response to chemoradiotherapy and

ICB [11]. Therefore, it is essential to investigate subim-

munophenotypes in prostate cancer to guide potential

immunotherapeutic strategies for these patients.

In the current study, we employed the non-negative

matrix factorization (NMF) algorithm to discover

molecular patterns that are tightly linked to the immune

infiltration of prostate cancer. Based on these patterns,

three immunophenotypes were established using bulk

tumor gene expression profiles from public cohorts and

a real-world AHMU-PC cohort. Our results suggest

that the immune response drives outcomes in prostate

cancer, and also guiding the development of

immunotherapy strategies for prostate cancer patients.

2. Materials and methods

2.1. Patient information

A total of 1557 prostate cancer patients were enrolled

in the current study with available gene expression

profiles, clinicopathological features, and recurrence-

free survival records. The procedure of this study is

depicted in Fig. 1. The Cancer Genome Atlas-prostate

adenocarcinoma (TCGA-PRAD) cohort, which

includes 495 patients, was set as the training cohort,

while another four public cohorts, the Memorial

Sloan-Kettering Cancer Center (MSKCC), GSE70770,

GSE116918, and GSE79021 cohorts, were set as the

validation cohorts, including a total of 993 prostate

cancer patients. Detailed information for all the

enrolled cohorts is listed in Table 1.

2.2. Real-world clinical samples collection and

sequencing

Moreover, we also collected formalin-fixed, paraffin-

embedded (FFPE) samples from 69 patients with avail-

able recurrence-free survival records from the Depart-

ment of Urology, First Affiliated Hospital of Anhui

Medical University (AHMU-PC cohort). Before the

FFPE sample collection, a central review of pathology

was performed by an experienced pathologist. Clinico-

pathological characteristics were obtained from elec-

tronic records. Patients were regularly followed up by

telephone, mail, or in the clinic, the endpoint of the

primary outcome is the biochemical recurrence, which

was defined with the presence of the PSA level greater
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than 0.2 ng�mL�1 measured 6–13 weeks after RP, fol-

lowed by a confirmatory test showing a persistent PSA

greater than 0.2 ng�mL�1 [12]. All the study designs

and test procedures were performed in accordance

with the Helsinki Declaration II. Ethical approval for

the AHMU-PC cohort was obtained from the Ethics

Committee of the First Affiliated Hospital of Anhui

Medical University (PJ2019-09-11). The detailed fea-

tures of AHMU-PC cohort are described in Table 1.

The extraction of total RNA from FFPE samples was

referring to the manufacturer’s instructions provide by

RNeasy FFPE Kit (Qiagen, Germany). The quality of

RNA was determined by a Nanodrop (OD260/280,

Thermo Fisher) and further analyzed by Agilent 2100

bioanalyzer (Agilent). The gene expression profiles

were determined by whole transcriptome sequencing

based on the Illumina NovaSeq platform with a

paired-end 150-bp sequencing strategy.

2.3. Bioinformatic analyses

In the TCGA-PRAD training cohort, tumor, stromal,

and immune cell transcriptome profiling data were

virtually microdissected employing the unsupervised

NMF method as previously described [13] through the

GenePattern module ‘NMF’ [14]. The NMF algo-

rithm, which is suitable for decomposing biological

data, can factorize the gene expression matrix V (n ge-

nes 9 m samples) into two matrixes: a gene factor

matrix W of (n genes 9 k factors) and a sample factor

matrix H of (m samples 9 k factors) [15] (Fig. 1). To

select immune-related NMF factor, we employed sin-

gle-sample gene set enrichment analysis (ssGSEA,

GenePattern module ‘ssGSEA’) to generate the

immune score as described previously [16]. Then, the

immune and nonimmune subtypes were dichotomized

by the GenePattern module ‘NMFConsensus’ using

the gene expression of the top 150 exemplar genes of

the immune-related NMF factor. The immune class

was further divided into immune-suppressed and

immune-activated subtypes by the nearest template

prediction (NTP, GenePattern module ‘NTP’) via the

activated stroma signature [17]. Manually curated

gene signatures representing various immune cell

types or host antitumor immunity were used to

further characterize the immune classes based on the

factor

Fig. 1. Flow chart of the current

study. A total of 1,557 prostate

cancer patients were analyzed, and

the immunophenotypes were

established based on 495 patients

from the TCGA-PRAD cohort and

validated in the GSE70770,

GSE116918, GSE79021, MSKCC,

and AHMU-PC cohorts. TCGA-

PRAD, The Cancer Genome Atlas-

prostate adenocarcinoma; MSKCC,

Memorial Sloan-Kettering Cancer

Center.
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immunosuppressive or activated microenvironment via

ssGSEA (Table S1). Copy number alterations (CNAs)

and tumor-infiltrating lymphocytes (TILs) were com-

pared between different immune classes. The tumor-in-

filtrating lymphocytes (TIL) abundance estimated by

H&E-stained whole-slide images of TCGA samples

was obtained from a previous study [18]. Copy number

alterations (CNA) data were generated by GISTIC2.0

from GDAC Firehose (https://gdac.broadinstitute.org).

We compared the differences in amplification or dele-

tion events of both focal and arm level between

immune and nonimmune classes. The neoantigen num-

ber was accessed from a previous study by Rooney

et al. [19]. The mutation data were retrieved from

TCGA (https://tcga-data.nci.nih.gov); we calculated

the number of nonsynonymous mutations per million

bases to evaluate the tumor mutation burden (TMB).

What’s more, we used the MutSigCV_v1.41 [20]

(www.broadinstitute.org) to infer significant cancer

mutated genes (q < 0.05) across the entire TCGA

cohort with default parameters. Significantly differen-

tial mutations among the current three subtypes were

further identified by the independent test with

P < 0.05. The mutation landscape Oncoprint was

drawn by R package ‘ComplexHeatmap’ [21]. To vali-

date the immunophenotypes obtained from the train-

ing cohort, the 150 differentially expressed genes

(DEGs) among the immune and nonimmune classes

were used to dichotomize the subgroups into external

validation cohorts with the GenePattern module

‘NMFConsensus’ and then into immune-activated and

suppressed subgroups according to the activated stro-

mal signature. Melanoma cohort that received anti-

CTLA-4 or anti-PD-1 therapy was also concerned for

the immunotherapy response prediction [22]. Subclass

mapping analysis (GenePattern module ‘SubMap’) was

applied to detect the similarity of gene expression pro-

file between our prostate cancer immune classifier and

responders of anti-CTLA-4 or anti-PD-1 in the mela-

noma cohort.

2.4. Immunohistochemistry (IHC) staining for

CD163 and a-SMA

IHC staining was used to validate the immunopheno-

types in the AHMU-PC cohort. CD163 (Anti-CD163

antibody: Cat. ab182422, Abcam Inc., Cambridge,

MA, USA) was chosen as the cell marker for macro-

phages, while a-SMA (anti-a-SMA antibody: Cat.

Ab7817, Abcam Inc., Cambridge, MA, USA) was

employed to reflect stromal activation and distinguish

the immune-activated and immune-suppressed sub-

types. The detailed steps of the IHC procedure have

been previously reported [23,24]. a-SMA is universally

expressed in stromal cells, and we used the positively

stained region score (0, negative; 1, 1%–10; 2, 11–
50%; 3, 51–80%; and 4, >80% positive area) multi-

plied by the immunostaining intensity score (0, no

Table 1. Summary of the clinicopathological parameters of four independent prostate cancer datasets

Parameters

TCGA-PRADc

(n = 495)

MSKCCd

(n = 140)

GSE70770e

(n = 203)

GSE116918f

(n = 248)

GSE79021g

(n = 402)

AHMU-PC

(n = 69)

Experiment

type

RNA-seq Microarray Microarray Microarray Microarray Illumina

NovaSeq

Age

≤60 222 – – 35 – 10

>60 273 – – 213 – 59

Pathology T Stagea

≤T2 187 86 82 127 - 55

>T2 301 54 119 96 - 14

Gleason scoreb

≤7 291 117 177 141 – 37

>7 204 21 24 107 – 29

Recurrence event

No 425 104 139 192 – 38

Yes 70 36 64 56 – 31

a

Seven samples lack of T stage data in TCGA database, two samples lack in GSE70770, 25 samples lack in GSE116918.
b

Two samples lack of Gleason score data in MSKCC, two samples in GSE70770, three samples in AHMU-PC.
c

https://gdc.xenahubs.net/download/TCGA-PRAD.htseq_fpkm.tsv.gz;
d

http://cbio.mskcc.org/cancergenomics/prostate/data;
e

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70770;
f

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116918;
g

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79021.
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staining; 1, weak; 2, mild; and 3, strong intensity) to

semiquantify the results. For the CD163 staining, we

directly used ImageJ software (NIH, Bethesda, USA)

to count positively stained cells [25].

2.5. Statistical analysis

Comparisons of continuous data (TIL abundance,

CNV, TMB, neoantigens, and signature score) between

two immune molecular subtypes were performed by t-

test and Wilcoxon rank-sum test for normal and non-

normal distribution data, respectively. Kaplan–Meier

plots and log-rank tests were employed to perform sur-

vival analysis among three immunophenotypes for

recurrence-free survival. Correlations between immune

molecular classification and proposed molecular sub-

types were analyzed by the chi-square test. A two-

sided P-value < 0.05 was considered statistically signif-

icant. All analyses were performed by GENEPATTERN

[14] and R version 4.0.2 (http://www.r-project.org).

3. Results

3.1. Discovering immune-related factor and

identifying the immune subclasses of prostate

cancer

A total of 1,557 prostate cancer patients were enrolled

in the current study (Table 1) with available gene

expression profiles, clinicopathological features, and

recurrence-free survival records. The procedure of this

study is depicted in Fig. 1. The NMF algorithm was

first employed to conduct a virtual microdissection of

the gene expression profiles of 495 prostate cancer

patients derived from the training TCGA-PRAD

cohort. The second factor of the eleven expression

patterns (NMF clusters) was of immunologic rele-

vance and had a relatively higher immune enrichment

score than the others (Fig. 2A); therefore, we termed

this NMF factor the ‘immune factor’. We chose the

top 150 weighted genes as exemplar genes representing

the second immune factor (Table S2). We performed

Gene Ontology enrichment analysis and found that

the 150 exemplar genes were most enriched in T-cell

activation, leukocyte migration, and lymphocyte dif-

ferentiation pathways (Figure S1); further, the top five

exemplar genes showed positive relationships with B

cells, CD8 + T cells, CD4 + T cells, macrophages,

neutrophils, and dendritic cells (all P < 0.05, Fig-

ure S2).

Consensus clustering based on the 150 exemplar

genes was performed on all 495 patients, and a

multidimensional scaling (MDS) random forest was

employed to further divide patients into immune and

nonimmune subclasses (Fig. 2B,C). We compared the

differences in the activated signaling pathways between

the immune and nonimmune classes by GSEA and

found that immune cell-associated pathways, immune

response pathways, proinflammatory pathways, and

tumor promotion pathways were significantly activated

in the immune class [all of which had false discovery

rate (FDR) <0.05; Fig. 2D]. Moreover, patients

belonging to the immune class showed significantly

higher enrichment scores for immune signals than

those in the nonimmune class, including T cell-, B cell-

, NK cell-, and macrophage-associated signatures, as

well as tertiary lymphoid structure (TLS), cytolytic

activity score (CYT), and IFN signatures (all P < 0.05,

Fig. 3A upper panel). Taken together, the results

shown in Fig. 2 and the upper panel of Fig. 3A indi-

cate that the identified immune-related factors and

exemplar genes are able to define the immune sub-

classes in prostate cancer.

3.2. Two distinct immunophenotypes

highlighted by different microenvironmental

conditions

Several studies have revealed the heterogeneity of the

immune microenvironment in tumors. The different

infiltration statuses of Treg cells and myeloid-derived

suppressor cells are correlated with divergent responses

to anti-PD-1 immunotherapy; these tumors are defined

as immune ‘hot’ or ‘cold’ groups, respectively [26].

Therefore, we sought to explore the subimmunopheno-

types of the immune class.

According to previous reports, the activated stromal

response is negatively associated with immune activa-

tion, and we found that 63.0% (126/200) of patients in

the immune class were characterized by high stromal

enrichment scores (Fig. 3A, lower panel). TGF-b is

regarded as the central mediator of immune suppres-

sion in the immune microenvironment [27], and the

high levels of extracellular matrix cytokines (C-ECM)

induced by activated cancer-associated fibroblasts are

able to recruit immune suppressive cells [28]. In line

with our expectations, we found that the signatures of

WNT/TGF-b, TGF-b1, and C-ECM were more highly

enriched in the stromal-activated subgroup (termed the

immune-suppressed subtype) than in the nonimmune

class (all P < 0.05, Fig. 3A, lower panel), and the

remaining 37.0% of patients (74/200) belonged to the

immune-activated subtype. Furthermore, we observed

increased expression of IL-11, TGFB1, and TGFB2 in

the immune-suppressed subtype compared with the
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immune-activated subtype (all P < 0.05, Fig. S3), a

result consistent with a previous publication [29]. A

recent study suggests that PAK4 is enriched in nonre-

sponding tumor biopsies [30], and we also observed

that PAK4 was significantly more highly expressed in

the immune-suppressed subtype than in the immune-

activated subtype (P = 0.037, Fig. S3). In addition, we

found that the tumor-infiltrating Treg (TITR)

class

classclass

cell response promotion

class class

A

B

C

D

Fig. 2. Identification of the immune-related clustering factor by non-negative matrix factorization (NMF) analysis. (A) 11 clustering factors

obtained from NMF analysis, with the second factor enriched the most patients with high immune enrichment scores. (B) The immune and

nonimmune classes were adjusted by the multidimensional scaling (MDS) random forest analysis, via the expression matrix of the top 150

exemplar genes. (C) Heatmap showing the distribution of patients in different NMF factors, immune factor weight, exemplar genes-based

clustering, immune enrichment score, and final immune classes. (D) Gene Set Enrichment Analysis (GSEA) results showing the activated

signaling pathways in the immune class.
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signature (P < 0.01) and Treg cell signature

(P = 0.017) were mostly enriched in the immune-sup-

pressed subtype (Fig. 3A, lower panel, Table 2), while

the Th17 cell infiltration signature was significantly

enriched in the immune-activated subtype (P = 0.034,

Fig. S3). Taken together, the results shown in Fig. 3A

and Fig. S3 define two distinct immunophenotypes,

the immune-suppressed and immune-activated sub-

classes, based on tumor microenvironmental activities.

3.3. Immune activation is linked to favorable

recurrence-free survival and anti-PD-1

immunotherapy

The clinicopathological features are important evalua-

tion criteria to demonstrate the malignant degree of

prostate cancer. Here, we explored the distributions of

the three immunophenotypes according to their differ-

ent clinicopathological features. Most patients in the

immune-suppressed class were in the advanced stage

compared to the other two subclasses in the TCGA-

PRAD cohort [Gleason score > 7 (48/126, 61.9%,

P < 0.001), T stage > T2 (99/125, 79.2%, P < 0.001)]

(Fig. S4). The different recurrence-free survival out-

comes according to the immune molecular subgroups

were also assessed. In the TCGA-PRAD cohort,

among patients younger than 60 years old, we

observed that the immune-activated subtype showed

favorable recurrence-free survival, while the immune-

suppressed subtype showed poor recurrence-free sur-

vival, and the nonimmune class showed a moderate

recurrence outcome (P = 0.033, Fig. S3B). We tested

the potential capacity of the immune molecular classi-

fication system to select candidate patients to receive

anti-PD-1/PD-L1 immunotherapy. SubMap analysis

indicated that patients in the immune-activated sub-

type shared a similar gene expression profile to mela-

noma patients who were responsive to anti-PD-1

immunotherapy (Bonferroni-corrected P = 0.0079,

Fig. 3C). In summary, according to the results shown

in Fig. 3B,C and Fig S4, patients in the immune-acti-

vated class showed the best recurrence-free survival

outcomes and might benefit more from anti-PD-1/PD-

L1 immunotherapy than other patients.

3.4. Correlations between immune class and

copy number alterations, tumor -infiltrating
lymphocyte enrichment, and reduced cancer

stemness

Somatic mutations in tumor cells are a double-edged

sword in malignant tumors; these mutations can pro-

mote tumorigenesis or they can be recognized by the

immune system and lead to forcefully acquired immu-

nity. The immunogenicity of the antitumor immune

response is based on the non-self-antigen, which is

generated by somatic mutations [31]. Neoantigens can

be captured by antigen-presenting cells and then

induce the activation of neoantigen-specific T cells;

subsequently, tumor cells are killed by tumor-infiltrat-

ing lymphocytes (TILs) through recognition of the

neoantigen [32].

In the TCGA cohort, the immune class showed a

high burden of amplification at both the arm and focal

levels (PArm-Amp = 0.033, PFocal-Amp = 0.015) instead

of deletion (PArm-del = 0.54, PFocal-del = 0.14) (Fig. 3D,

E). Furthermore, we found that copy number alter-

ations (CNAs) of several immune checkpoints, PD-1,

PD-L1, LGALS9, and CD48, were positively associ-

ated with the infiltration of immunocytes (Fig. S5).

Regarding TMB and neoantigens, no differences were

observed between the immune and nonimmune classes

(PTMB = 0.661, Fig. 3F, PNeoAgs = 0.271, Fig. 3H).

Notably, we revealed a different mutation landscape

among the three immunophenotypes based on Mut-

SigCV algorithm analysis (Fig. 3G, Table S3). Specifi-

cally, the mutation frequency of TP53 in the immune

class were higher than that in the nonimmune class

(14.00% vs. 9.83%), particularly in the immune-sup-

pressed subtype (19.05%, Fisher’s extract test,

P < 0.001). Regarding SPOP, fewer mutations were

observed in the suppressed subtype than in both the

immune-activated subtype and the nonimmune class

(5.56% vs. 13.51% and 13.22%, P < 0.001). In addi-

tion, we identified several immune class-specific

mutated genes, including BRCA2, SCN10A,

C14orf115, OR4C6, KAL1, CHRNA6, KIAA1012, and

OR10R2 (all P < 0.05). Some of these genes have

already been used in clinical tests. The gene mutation

signatures of each immunophenotype are shown in

Fig. S6.

Regarding TILs, we found a significantly higher

density of TILs in the immune class than in the non-

immune class (P = 0.001, Fig. 3I). The expression of

PD-L1 was also increased, along with a greater infil-

tration of CD8 + T cells, in the immune class than in

the nonimmune class (P < 0.001, Fig. 3J), consistent

with a previous study [33]. Moreover, Miranda et al.

[34] reported a negative association between stemness

and the immune response and revealed that it is not

readily attributable to a low neoantigen load. Here, we

revealed reduced stemness, represented by mRNAsi

[35], in the immune class compared to the nonimmune

class (P < 0.001, Fig. 3K). Taken together, the results

shown in Fig. 3, Figs S5 and S6, and Table S3 reveal

that the immune class is correlated with significantly
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higher CNAs and higher TIL enrichment but not with

TMB and neoantigens.

3.5. Reappearance of the three

immunophenotypes in a real-world AHMU-PC

cohort

To confirm the accuracy of the NMF algorithm and

activated stromal signature-based immunophenotypes,

a total of 150 upregulated genes were identified

between the immune and nonimmune classes

(Table S4) as the immune classifier to distinguish these

classes. The top five DEGs showed positive relation-

ships with B cells, CD8 + T cells, CD4 + T cells,

macrophages, neutrophils, and dendritic cells (all

P < 0.05, Fig. S7), which indicated that these genes

could reflect immunocyte infiltration effectively.

In the AHMU-PC cohort, we retrospectively col-

lected FFPE tissue of 69 patients with available clini-

copathological features and performed long-term

follow-up and RNA sequencing to obtain the gene

expression profile (Table S5). With the help of the

NMF consensus pattern, 47.8% (33/69) of patients

had a high immune enrichment score and were

assigned to the immune class, while the other 52.2%

of patients belonged to the nonimmune class. Further-

more, the immune class was subsequently classified

into immune-activated (14/69, 20.3%) and suppressed

(19/69, 27.5%) subtypes (Table 2). Similar to the

results obtained above, patients in the immune class

showed higher enrichment scores for the T cell, B cell,

macrophage, TLS, CYT, and IFN signatures (all

P < 0.05) than those in the nonimmune class. The

immune-suppressed subtype displayed high scores for

the stromal enrichment score, TITR, MDSC, and C-

ECM signatures (all P < 0.05, Fig. 4A). We also

employed Kaplan-Meier analysis to determine the

recurrence-free survival differences among the three

immunophenotypes. Consistently, the immune-sup-

pressed subtype showed a worse recurrence-free sur-

vival outcome than the immune-activated and

nonimmune subgroups (P = 0.0083, Fig. 4B). Further-

more, patients in the immune-activated subtype were

mostly enriched at the early pathological stage, as

assessed by the Gleason score (92.3% vs. 44.4%,

48.57%, Kruskal–Wallis test, P = 0.0127) and pathol-

ogy T stage (92.9% vs. 65.0%, 75.0%, Kruskal–Wallis

test, P = 0.368, Fig. S8). Patients in the immune-acti-

vated subgroup of the AHMU-PC cohort seemed to

benefit more from anti-PD-1/PD-L1 immunotherapy

Table 2. The proportion of three immune subtypes in six enrolled cohorts. MSKCC, Memorial Sloan-Kettering Cancer Center; n, number;

TCGA-PRAD, The Cancer Genome Atlas-Prostate Adenocarcinoma

Cohort TCGA-PRAD GSE70770 GSE116918 MSKCC GSE79021 AHMU-PC

Number, n 495 203 248 140 402 69

Immune activated, n (%) 74

(14.9%)

42

(20.7%)

33

(13.3%)

34

(24.3%)

87

(21.6%)

14

(20.3%)

Immune suppressed, n (%) 126

(25.5%)

56

(27.6%)

75

(30.2%)

33

(23.6%)

75

(18.7%)

19

(27.5%)

Nonimmune class, n (%) 295

(59.6%)

105

(51.7%)

140

(54.5%)

73

(52.1%)

240

(59.7%)

36

(52.2%)

Fig. 3. Identification of the immunophenotypes among the TCGA-PRAD cohort, and comparing their differences at tumor-infiltrating

lymphocytes, copy number alterations, gene mutations, neoantigens, tumor stemness, and PD-L1 expression levels. (A) Consensus-

clustered heatmap by the exemplar genes of NMF selected immune factor and refined by multidimensional scaling random forest to define

the immune class (200/495, 40.4%, sky-blue bar); nearest template prediction (NTP) using a signature capturing activated stroma identified

immune-suppressed (126/495, 25.5%; light-green bar) and immune-activated (74/495, 14.9%; red bar) classes; in the heat map, high and

low single-sample gene set enrichment scores are represented in red and blue, respectively. Positive prediction of activated stroma

signature as per NTP is indicated in brown and its absence is in gray; (B) different recurrence-free survival in three immunophenotypes

among patients less or equal to 60 years old in TCGA-PRAD cohort; (C) subclass mapping analysis manifested that patients with immune-

activated subtype were more likely to respond to anti-PD-1 treatment (Bonferroni-corrected P-value = 0.0079); (D) arm-level copy number

amplification and deletion; (E) focal-level copy number amplification and deletion; (F) tumor mutant burden difference; (G) differentially

mutated genes among three immune subgroups (some patients in nonimmune class without gene mutations hided); (H) neoantigens

difference; (I) tumor-infiltrating lymphocytes difference; (J) PD-L1 expression difference; (K) tumor stemness difference represented by the

mRNAsi. The comparison between two groups was conducted by Student’s t-test. TCGA-PRAD, The Cancer Genome Atlas-prostate

adenocarcinoma; CYT, cytolytic activity score; TITR, tumor-infiltrating Tregs; MDSC, myeloid-derived suppressor cell; TLS, tertiary lymphoid

structure; C-ECM, cancer-associated extracellular matrix. t-Test, Student’s t-test, K-W test, Kruskal–Wallis test.
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Fig. 4. Successful validation of the immunophenotypes in the AHMU-PC cohort. (A) Heatmap showing the different enrichment of

characteristic signatures among immune-activated, immune-suppressed, and nonimmune groups; (B) Kaplan–Meier plot showing the

recurrence-free survival outcome in three immunophenotypes; (C) subclass mapping analysis manifested that patients with immune-

activated subtype were more likely to respond to anti-PD-1/PD-L1 treatment (Bonferroni-corrected P-value = 0.0399); immunohistochemistry

staining and quantification of CD163 (D) and a-SMA (E) in prostate cancer patients with different immune status (nonimmune, immune-

suppressed, and immune-activated classes) from AHMU-PC cohort, Scale bar, 200 lm, 100 lm. t-Test, Student’s t-test, K-W test, Kruskal–

Wallis test.
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than patients in the non-immune-activated class (Bon-

ferroni-corrected P = 0.0399, Fig. 4C).

To confirm the accuracy of the classification system,

we employed immunohistochemistry (IHC) staining

for samples from the AHMU-PC cohort (tissue sec-

tions were obtained from the 69 patients mentioned

above). CD163 is a marker of macrophages that was

used to distinguish the immune and nonimmune

classes in this study, while the stromal marker a-SMA

was used to discriminate the immune-activated and

immune-suppressed subgroups. We obtained IHC

results consistent with the results derived from the

NMF-based immune molecular classifier. We observed

increased CD163 + cells in both the immune-sup-

pressed (P < 0.0001) and immune-activated

(P = 0.0018) subtypes compared to the nonimmune

class (Fig. 4D). Regarding the IHC staining of a-
SMA, we observed a higher H-score in the immune-

suppressed subtype than in both the immune-activated

subtype (P = 0.0033) and nonimmune class

(P = 0.0261) (Fig. 4E). Taken together, the results

shown in Fig. 4 and Figs S7 and S8 validate the three

immunophenotypes in the AHMU-PC cohort and con-

firm the consistency of the RNA-sequence-based

immunophenotypes and real IHC staining findings.

Patients in the immune-suppressed group showed the

worst recurrence-free survival outcomes, while patients

in the immune-activated subtype might benefit from

anti-PD-1/PD-L1 therapy.

3.6. Validation of the three immunophenotypes

in external cohorts

Moreover, we recruited an additional 993 prostate can-

cer patients with available gene expression profiles and

matched clinicopathological features (Table 1) for vali-

dation. For the results of immune signatures in these

four external validation cohorts, the immune enrich-

ment score and immune signaling signature were sig-

nificantly enriched in the immune class (all P < 0.05),

as well as the ssGSEA results of the T cell, B cell,

macrophage, TLS, CYT, and IFN signatures (all

P < 0.05). The activated and suppressed subtypes were

divided by the stromal activation signature generated

from the nearest template prediction (NTP) method,

and the immune-suppressed subtype showed a higher

SES than the immune-activated subtype in these three

external cohorts (all P < 0.05). Furthermore, higher

enrichments of the Treg cell, TITR, MDSC, WNT/

TGFb, and C-ECM signatures were identified in the

immune-suppressed subtype than in the immune-acti-

vated subtype in these three external cohorts (all

P < 0.05).

In the GSE70770 cohort, 51.7% (105/203) of

patients were classified as the nonimmune subtype, 42

patients (20.7%) were classified as the immune-acti-

vated subtype, and 56 patients (27.6%) were classified

as the immune-suppressed subtype (Fig. 5A, Table 2).

Of the 248 patients from the GSE116918 cohort,

54.5% (140/248) belonged to the nonimmune subtype,

75 patients (30.2%) belonged to the immune-sup-

pressed subtype, and the other 33 (13.3%) belonged to

the immune-activated subtype (Fig. 5B, Table 2). In

the MSKCC cohort, 73 patients (52.1%) were assigned

to the nonimmune subtype, while 34 (24.3%) and 33

(23.6%) were assigned to the activated and suppressed

subtypes, respectively (Fig. 5C, Table 2). Another 402

patients extracted from the GSE79021 cohort also dis-

played similar results: 21.6% (87/402) of patients

belonged to the immune-activated subtype, 18.7% (75/

402) belonged to the immune-suppressed subtype, and

the remaining 240 belonged to a nonimmune class

(Fig. S9, Table S2).

Notably, consistent with the results obtained above,

in these three external validation cohorts, patients

belonging to the immune-activated subtype showed the

best recurrence-free survival, while patients belonging

to the nonimmune subtype showed the worst recur-

rence-free survival, and the immune-suppressed group

showed an in-between outcome (Fig. 5D–F). Taken

together, the results shown in Fig. 5 and Fig. S9 prove

the stability and significance of this newly established

immune molecular-based classification system in pros-

tate cancer.

3.7. Comparison between the newly defined

immunophenotypes and previously established

molecular features

We also sought to integrate the immunophenotypes

with previously established immune molecular features.

Thorsson et al. [36] generated a six-subtype immune

molecular feature, including wound healing, IFN-c-
dominant, inflammatory, lymphocyte depleted,

immunologically quiet, and TGF-b-dominant features.

We revealed that most prostate cancer patients

belonged to the inflammatory group, and the immune-

activated subtype ranked as the highest proportion of

the inflammatory group (46/50, 92.0%), followed by

the immune-suppressed subtype (85/114, 74.6%) and

nonimmune class (176/241, 73.0%) (P < 0.001,

Fig. S10). Zhao et al. [37] defined the molecular sub-

types of pan-cancer using the PAM50 classifier, which

was approved by the FDA for clinical prognostic eval-

uation of breast cancer [38]. We classified the 495

patients in the TCGA-PRAD cohort into luminal A,
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luminal B, and basal-like subgroups. We revealed that

the immune-activated subtype contained more luminal

A-like patients, while the immune-suppressed subtype

contained more luminal B-like patients (P < 0.001,

Fig. S10). Tamborero et al. [39] provided a compre-

hensive landscape of the immune characteristics of

solid tumors. We compared the patient distributions of

our study and Tamborero et al.’s study and revealed

that the immune subtypes identified in our study were

similar to theirs. Patients in the immune-activated sub-

type belonged to the higher cytotoxic cell groups

(Groups 3–6), while patients in the nonimmune class

was consistent with the lower cytotoxic cell infiltrated

groups (Group 1 and Group 2) (Fig. S11). Taken

A

D E F

B C

Fig. 5. Immunophenotypes associated with the different recurrence-free survival outcomes of prostate cancer patients. (A–C) Consensus-

clustered heatmap by the exemplar genes of NMF selected immune factor and refined by multidimensional scaling random forest to define

the immune class; nearest template prediction (NTP) using a signature capturing activated stroma identified two distinct immune response

subtypes: immune-suppressed and immune-activated classes; in the heat map, high and low single-sample gene set enrichment scores are

represented in red and blue, respectively. Positive prediction of activated stroma signature as per NTP is indicated in brown and its absence

is in gray; (D) different recurrence-free survival of three immunophenotypes in GSE70770 cohort; (E) different recurrence-free survival of

three immunophenotypes in GSE116918 cohort; (F) different recurrence-free survival of three immunophenotypes in MSKCC cohort.

MSKCC, Memorial Sloan-Kettering Cancer Center. t-Test, Student t-test, K-W test, Kruskal–Wallis test.
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together, these results establish a novel immune fea-

ture-based classification system that is able to predict

recurrence-free survival of prostate cancer patients,

and the patients in the immune-activated subgroup

seem to be more responsive to anti-PD-1/PD-L1

immunotherapy than other patients.

4. Discussion

CRPC patients face more severe symptoms and com-

plications than other early-stage patients, including a

reduced survival time, more bone metastasis-induced

bone pain, greater spinal cord compression, more

extensive ureteric obstruction, and more renal failure

[40]. Several therapeutic agents have been approved

for the treatment of CRPC, including immune-associ-

ated sipuleucel-T; yet, the potential treatment of anti-

PD-1/PD-L1 is still under clinical evaluation [41].

Immune checkpoints promote or inhibit factors in the

TME, and several immune checkpoints can help

tumors escape recognition and attack the host immune

system [42,43]. Anti-PD-1/PD-L1 therapy has been uti-

lized for several malignant tumors but can only offer

benefits to some patients. In the IMvigor210 trial, only

27.4% (68/248) of bladder cancer patients benefited

from treatment with atezolizumab (a PD-L1 inhibitor).

For gastric tumors, only 11.6% of enrolled patients

responded to pembrolizumab monotherapy in the

KEYNOTE-059 trial, and the objective response rate

of nivolumab in the ATT RAC TION-2 trial was only

11.2% [44,45]. Therefore, it is essential to comprehen-

sively describe the prostate cancer immune microenvi-

ronment, which will help to identify suitable patients

to undergo immunotherapy.

The NMF approach is a virtual separation approach

that has been applied successfully in several fields,

including image and pattern recognition, signal process-

ing, and text mining [46], and has obtained novel

insights into cancer type discovery based on gene

expression profiles by identifying exemplar genes [17]. In

the current study, we proposed a robust immunoge-

nomic classification system for prostate cancer based on

the NMF algorithm. The immune exemplar genes and

stromal activation signature enabled patient stratifica-

tion into three immunophenotypes: immune-activated,

immune-suppressed, and nonimmune classes. A similar

method to reveal the immunophenotypes was applied

and validated in hepatocellular carcinoma, gastric can-

cer, and head and neck squamous cell carcinoma [47–
49]. Initially, we observed the landscape of immune class

distributions in prostate cancer derived from the

TCGA-PRAD cohort. Of the 495 patients, 40.4%

belonged to the immune class; patients in this class

exhibited greater enrichment of immunocytes, cytolytic

activity, and IFN signaling than patients in the nonim-

mune class, and these signatures were also similar to the

signatures observed in patients responding to

immunotherapy [19,50]. Subsequently, we dissected the

immune class into immune-activated and immune-sup-

pressed subtypes based on the stromal-activated signa-

ture. Overall, 14.9% of patients belonged to the

immune-activated subtype and had lower enrichment of

the stromal enrichment score, WNT/TGF-b, C-ECM,

and TITR signatures, while the remaining 25.5% were

immune suppressed. Similar immunophenotypes were

also validated in four external cohorts. The immune-ac-

tivated subtype comprised 20.7% of the GSE70770

cohort, 13.3% of the GSE116918 cohort, 24.3% of the

MSKCC cohort, 21.6% of the GSE79021 cohort, and

20.3% of the AHMU-PC cohort. These results indicate

that only approximately 13.3–24.3% of overall patients

could benefit from immunotherapy.

The PAM50 classifier was first used to subclassify

breast cancer into four subtypes: luminal A, luminal

B, HER2-enriched, and basal-like. The FDA approved

the application of the PAM50 classifier in the clinical

prognostic evaluation of breast cancer patients in 2013

[38]. PAM50 subtypes also display different prognostic

outcomes and responses to clinical therapy among

bladder cancer patients [51]. As a supplement to Zhao

et al.’s [37] work on the PAM50 classifier and its

application to prostate cancer patients, we classified

the 495 patients in the TCGA-PRAD training cohort

into luminal A, luminal B, and basal-like subgroups.

After comparing the distributions of the three

immunophenotypes and PAM50 subtypes, we revealed

that the immune-activated class contained more lumi-

nal A-like patients, while the immune-suppressed sub-

type contained more luminal B-like patients. These

results are consistent with Zhu et al.’s work [52],

demonstrating that luminal A patients showed higher

expression of immune checkpoint genes (PD-L1 and

CTLA-4) and chemokine genes (CXCL9 and

CXCL10). Recently, Thorsson et al. [36] also gener-

ated the pan-cancer atlas of TCGA, which identified

six pan-cancer immune cells. Of the prostate cancer

patients evaluated in this study, most belonged to the

inflammatory subtype, and the distributions were simi-

lar between the immune and nonimmune classes. Inter-

estingly, after dividing the immune class into activated

and suppressed subtypes, the inflammatory subtype

accounted for the majority of immune-activated

patients (92.0%). The inflammatory subtype is charac-

terized by elevated Th17 cells [36], and we also

revealed increased infiltration of Th17 cells in the

immune-activated subtype. Derhovanessian et al. [53]
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reported that Th17 cells were higher in patients who

were responsive to immunotherapy than in nonrespon-

ders and were negatively correlated with tumor stage.

The CNAs were decreased compared with the nonim-

mune class at both the arm and focal levels, as reported

in an immunophenotype study in gastric cancer and

head and neck carcinoma [47,48]. However, we observed

a different phenomenon in which the arm level of CNA

in the immune-activated subtype was increased, which

might be linked to the elevated infiltration of immuno-

cytes, the increased release of cytokines, and the CNA

of immune checkpoint genes in prostate cancer [54]. No

differences in terms of TMB and neoantigens were

found between the immune and nonimmune classes in

our study. Although the somatic mutation frequencies

of prostate cancer are dramatically lower than those in

melanoma [55], Subudhi et al. [56] reported that some

metastatic castration-resistant prostate cancer patients

who received ipilimumab treatment can still benefit

from immunotherapy, with a median number of non-

synonymous somatic mutations of 76.

We presented the gene somatic mutation landscape

in the three immunophenotypes. Mutations in TP53

were mostly observed in the nonimmune class, and the

proportion was only 5.4% in the immune-activated

subtype. Jiang et al. [57] demonstrated that the TP53

mutation results in depressed immune activity in gas-

tric cancer, and less active immune pathways and cell

types were observed in TP53-mutated gastric cancer

patients. Carlisle et al. [58] also reported that the TP53

mutation was correlated with the poor efficacy of

immunotherapy after adjusting for PD-L1 expression

in NSCLC. There were more mutations in SPOP in

the immune-activated subtype than in the immune-sup-

pressed subtype in our study. Zhang et al. [59] demon-

strated that SPOP promotes ubiquitin-mediated

degradation of PD-L1, and mutant SPOP leads to ele-

vated PD-L1 levels in prostate cancer patients.

The novel three defined immunophenotypes are

essential for selecting suitable immunotherapies for

prostate cancer patients. Patients in the immune-acti-

vated subtype could benefit more from single ICB

treatment, while immune-suppressed patients could

benefit from TGF-b inhibitors plus ICB therapy. Like-

wise, the fusion protein M7824, comprising TGF-b
Trap linked to the C terminus of the human anti-PD-

L1 heavy chain, is more suitable for immunosup-

pressed patients than other patients, as it decreases

TGFb-induced signaling and promotes the activation

of CD8 + T cells and NK cells [60]. For the nonim-

mune class, the combination of anti-CTLA-4 and anti-

PD-1/PD-L1 therapy, which attracts the infiltration of

immune cells in the TME and maintains their

activated status, might aid in stimulating a response in

nonresponders [61].

5. Conclusion

We establish and validate a novel immune subtype

classifier based on the expression profiles of 1,557

prostate cancer patients, including 69 real-world PCa

patients from our center. Patients in the immune-acti-

vated subtype might benefit more from anti-PD-1/PD-

L1 therapy. Our findings suggest that the immune

response drives outcomes in prostate cancer, which

offers inspiration for the development of immunother-

apy for prostate cancer patients in the future.
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Fig S4. The distribution of Gleason score, PSA, Age

and pathological T stage among three immunopheno-
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