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Abstract

Reconstruction of network is to infer the relationship among nodes using observation data,

which is helpful to reveal properties and functions of complex systems. In view of the low

reconstruction accuracy based on small data and the subjectivity of threshold to infer adja-

cency matrix, the paper proposes two models: the quadratic compressive sensing (QCS)

and integer compressive sensing (ICS). Then a combined method (CCS) is given based on

QCS and ICS, which can be used on binary-state and multi-state dynamics. It is found that

CCS is usually a superior method comparing with compressive sensing, LASSO on several

networks with different structures and scales. And it can infer larger node correctly than the

other two methods. The paper is conducive to reveal the hidden relationship with small data

so that to understand, predicate and control a vast intricate system.

1 Introduction

Objects are often abstracted into complex networks in many social, economic, engineering

and scientific fields, such as electric power networks, transportation networks, social networks,

game networks, economic networks, protein interaction networks in biological systems, and

so on. Many researches focused on network topology, network controlling and dynamic

behavior of complex networks [1–5]. And yet mastering the structure networks is a prerequi-

site for understanding, predicating and controlling the system. Studies have shown that the

information of adjacency among the group is often unknown and difficult to acquire directly

[6], such as synaptic connections between neurons in the brain [7]. Therefore, it’s necessary to

reconstruct it using other observable data, and we call it “dynamic network reconstruction”.

Methods based on continuous and discrete dynamic systems have been proposed and applied

one after another, such as Pearson or Spearman Correlation [8], Bayes [9,10], Mutual Informa-

tion [11], Granger Causality method [12], Optimal Causation Entropy [13,14], Compressive

sensing (CS) [15–19], LASSO [20], noise-driven [21,22], Maximum Likelihood [23–30], deep

learning [31] and so on. And methods for dynamic network are also proposed [32]. More

overviews about network reconstruction can be found in the literature [33–36]. Among them,

CS is a method to solve the problems brought by high-dimensional data. For a sparse adja-

cency matrix, CS minimizes its L1 norm under the linear equations to reconstruct the
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adjacency matrix. It has been used in the fields of signal processing, numerical computation,

computer vision, neuroscience, and so on.

During reconstructing, we maybe encounter the following questions. The first one, contra-

dictory inferring, happened in the undirected and unweighted networks. To overcome the

contradictory, Ma et al. [37] proposed the CBM basing on conflict frequency to solve the con-

tradiction. Huang [2] proposed a compressed sensing model with constrain. Zhang et al. [38]

identified large nodes through clustering and adjusting large nodes’ inferences via compressive

sensing to solve conflict. Second, inferring the structures of nodes one by one demands

extremely time for the large network. Shi et al. proposed an iteratively thresholded ridge

regression screener for dimension reduction, and then employed the LASSO method to

recover the network structure [39]. Another, if using the connecting probability to infer

whether two nodes are adjacent, we must give a threshold, which is subjective. Moreover, the

data we get are often insufficient for reconstructing the large network, especially on the large

degree nodes. How to infer the network in a high precision with small data?

Here, two reconstruction models are proposed for game networks. They are compressive

sensing model basing on 0−1 program (ICS) and compressive sensing model basing on qua-

dratic program (QCS). We also give a combined method of ICS and QCS and discuss its per-

formance. The main contribution of this article is as follows.

1. For evolutionary game systems, we propose an effective index to identify large nodes and

network’s type.

2. Two reconstruction models, QCS and ICS, are proposed, and it needn’t to determine

thresholds with ICS model.

3. A combined method for binary-state and multi-state systems is proposed, which has a

higher performance, especially on multi-state dynamic. And the method is not limited to

the reconstruction of the game network.

The rest of the article is organized as follows. In the section I, the paper gives the evolution-

ary game mechanism and evaluating indexes. In Section II, ICS and QCS models are given.

Then, in Section III, the combined model of ICS and QCS is proposed on binary-state dynam-

ics, and the performance of proposed method is compared with CS and LASSO. Section IV

carries out a series of experiments to validate the performance of the proposed algorithm on

multi-state dynamics including on some real networks. Finally, the conclusion and discussion

remarks are given in Section V.

2. Game theory and reconstruction evaluation standard index

2.1 Evolutionary game theory

In a group, assuming individuals repeat the prisoner’s dilemma game in pairs, and they can

adopt the strategies: C (unconditional cooperation), D (unconditional defection), ZD (zero-

Table 1. The scores for players X and Y in a single play of prisoner’s dilemma.

C ZD D WSLS TFT

C b−c ðb2 � c2Þ
bxþc

−c b� 2c
2

b−c

ZD ðb2 � c2Þx
bxþc

0 0 ðb2 � c2Þx
ð1þ2xÞbþcð2þxÞ

0

D b 0 0 b
2

0

WSLS 2b� c
2

ðb2 � c2Þ
ð1þ2xÞbþcð2þxÞ

� c
2 b−c b� c

2

TFT b−c 0 0 b� c
2

b� c
2

https://doi.org/10.1371/journal.pone.0263939.t001
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determinant strategy) [40], TFT (tit-for-tat) and WSLS (win stay, lost shift) [41] with a score

matrix A between strategies as illustrated in Table 1.

In the round τ, the individual i plays games according to Table 1 with her immediate neigh-

bors, and she obtains the accumulated payoff

UiðtÞ ¼
P

j2GðiÞuði; jÞ ð1Þ

where Γ(i) is the neighbor set of individual i, and u(i,j) is the payoff of individual i from the

game with neighbor j.
To optimize her behavior, her strategy si is replaced by the strategy of one randomly chosen

neighbor, say j (with strategy sj), with the probability

P si  sj
� �

¼
1

1þ e½ðUiðtÞ� UjðtÞ=a�
ð2Þ

where a represents her rational degree [42]. In the following, let a = 0.1.

2.2 Threshold model

The elements in the adjacency matrix should be binary, however the estimators we obtained

will not be exactly 0 or 1. For node i, supposing that the adjacency values with other nodes are

kj, j = 1,2,⋯N, j6¼i. In a similar way to what done in Ref [26], we use a threshold value

Di ¼ arg max
j

kj
kjþ1

kj � kjþ1

� �
( )

ð3Þ

to separate the actual from the nonexistent links.

2.3 Three evaluation standard indexes

By comparing the inferring results to the true adjacency matrix, nodes can be classified into

true positive (TP), false positive (FP), true negative (TN), or false negative (FN). To evaluate

the reconstruction performance, we take three standard indexes: the area under the receiver

operating characteristic curve (AUROC), the area under the precision-recall curve (AUPR)

and success rate(SR)

SR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SREL�SRNC
p

ð4Þ

where SREL ¼ TP
TPþFN ; SRNC ¼ TN= FPþ TNð Þ.

3 ICS and QCS models on game networks

For an undirected and unweighted network with N nodes, let xij = 1 if node i and j are con-

nected, else xij = 0. Supposing that the strategy of each node is known in each round, then

accumulated payoffs of node i from time period 1 toM can be expressed as

yðtÞ ¼
P

j6¼iSijðtÞxij; t ¼ 1; 2;⋯;M ð5Þ

where Sij(t) is known, which represents the score of the player i gained from playing with

player j at round t. Let Y ¼ ðyð1Þ; yð2Þ;⋯; yðMÞÞT;X ¼ ðxi1; xi2;⋯; xi;i� 1; xi;iþ1;⋯; xiNÞ
T
; and
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matrix

F ¼

Si1ð1Þ ⋯ Si;i� 1ð1Þ Si;iþ1ð1Þ ⋯ SiNð1Þ

Si1ð2Þ ⋯ Si;i� 1ð2Þ Si;iþ1ð2Þ ⋯ SiNð2Þ

⋯

Si1ðMÞ ⋯ Si;i� 1ðMÞ Si;iþ1ðMÞ ⋯ SiNðMÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð6Þ

For node i, the adjacent vector X satisfies the equation

Y ¼ FX ð7Þ

Since the elements in X are either 0 or 1, and X is a sparse vector, it can be solved by the fol-

lowing model (I), which minimize the number of non-zero elements in vector X under the

constraints (7).

I :

min‖X‖0
Y ¼ FX

xij 2 f0; 1g; j ¼ 1; 2;⋯;N; j 6¼ i
ð8Þ

8
><

>:

where ‖X‖0 is the L0 norm of vector X.

On the other hand, as x(1−x) approaches 0, x approaches 0 or 1. If the elements of X are not

limited to 0 and 1, we can minimize xij(1−xij) to make xij approach 0 or 1, which helps to deter-

mine the threshold too, so we propose the second reconstruction model

II :

min
P

jxijð1 � xijÞ

Y ¼ FX

0 � xij � 1; j ¼ 1; 2;⋯;N; j 6¼ i
ð9Þ

8
><

>:

In model (I), the element xij is integer, so we call the model ICS (Integer Compressed Sens-

ing). While in model (II), we minimize a quadratic function ∑xij(1−xij), thus we call it QCS

(Quadratic Compressed Sensing). We can solve the model I and II with CPLEX and the func-

tion “quadprog” of MATLAB.

4. A combined compressive sensing model with binary-state

dynamics

4.1 The influence of degree and sample size on reconstruction accuracy

To obtain the features of ICS and QCS, we analyze their performance from the perspective of

node’s degree and sample size. Supposing that individuals play games on a scale-free network

with 500 nodes and an average degree of 6 (unless noted, the following networks are similar),

and their strategies are C and D strategy only. The payoffs between the strategies are listed in

Table 1 with b = 1.5, c = 1. There are the following notes for the reconstruction.

(1) Considering that the game with strategies C and D approaches the steady state quickly

and once it reaches the steady state, the data almost no longer change. In order to demonstrate

such phenomenon, we simulate it on different scale networks. In each round, we count the fre-

quency of nodes whose strategies are changed. The results are shown in Fig 1(A) and 1(C). It

can be found that the strategies of all nodes are no longer changed after 4 rounds no matter the

scale of networks, their payoffs as well. Furthermore, if there are four strategies in the games,

although their strategies are not stable for a long time (see Fig 1(B)), yet the matrix F in Eq (7)

is no longer changed. For example, the revenue of strategy D is always 0 no matter his co-
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player is D or ZD. Moreover, their payoffs also stabilize quickly (see Fig 1(D)). Hence, we

make the nodes adopt strategy randomly for diverse data every 3 rounds.

(2) Since the feasible region of the ICS is discrete, it may take a long time to solve it. We will

terminate the solution once the number of iteration exceeds 1×106, and this node’s accuracy

will be considered as 0.

(3) In the experiments, the nodes are sorted by the degree. The top 15% of the large nodes

are grouped together, called large group, and the rest are the other group, called small group.

It is worth noting that the division need not too strict.

Under the above agreements, the experiments are repeated 10 times. The results of ICS,

QCS on two groups are shown in Table 2 with the samples sizeM (rounds of the games) from

10 to 40, where the evaluation index is average success rate of all nodes.

It can be found that QCS always has the highest accuracy no matter on large group or small

group if data are scarce (10 samples), wherever ICS is always better than QCS if the samples

are sufficient (more than 25 samples). Only if the sample size is 15 and 20 (insufficient), the

results are complicated: the QCS is better on the large group, and ICS is better on small group.

Therefore, if the sample is very scarce, it’s better to reconstruct with QCS on the whole

Fig 1. The frequencies of nodes who change strategies in each round in games with {C, D} strategy (Fig 1A) and {C, D,

WSLS, ZD} strategy (Fig 1B). The frequencies of nodes whose accumulated payoffs are changed in each round in

games with {C, D} strategy (Fig 1C) and {C, D, WSLS, ZD} strategy (Fig 1D).

https://doi.org/10.1371/journal.pone.0263939.g001

Table 2. Accuracy of QCS and ICS models on large and small group.

Sample size ICS QCS

Small large small large

10 0.4283 0.4599 0.5823 0.5464

15 0.7240 0.5098 0.7722 0.6043

20 0.9386 0.6347 0.9061 0.6603

25 0.9983 0.8041 0.9614 0.7763

30 1 0.9261 0.9864 0.8489

35 1 1 0.9957 0.8879

40 1 1 1 0.9162

https://doi.org/10.1371/journal.pone.0263939.t002
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network. If the sample is sufficient, we prefer use ICS. For the other case, we should combine

them to infer the network: QCS for large nodes, ICS for small nodes.

From the above analysis, we should choose a proper model according to the sample size

and the degree of node. Therefore, for the scale-free networks, we divide the sample sizeM
into three levels according to its capacity: scarcity (M2(0,M1)), insufficient (M2[M1,M2]) and

sufficient (M2(M2, +1)), wherever, for the networks of WS and ER, we divide the samples

into two grades (M2(0,M3)[[M3, +1)) since there are almost no large nodes in the networks.

Next, we’ll analyze the threshold of sample size according to the type of the networks.

4.2 Judgment of sample capacity

Obviously, the threshold of sample size is related to the scale and density of the network. See-

ing from Table 2, we can conclude that QCS is better than ICS on the majority of nodes if with

scarcity samples. Hence define threshold

M1 ¼ max Mj
PN

i¼1
IðSRICSðiÞ � SRQCSðiÞÞ

N
> 0:7;with M samples

( )

ð10Þ

In the same way, let

M2 ¼ min Mj
PN

i¼1
IðSRICSðiÞ � SRQCSðiÞÞ

N
> 0:7;with M samples

( )

ð11Þ

where I(�) is indicator function and SR(�) is the success rate.

In order to find the regularity of the threshold, we simulate it on the scale-free networks

with 100–3000 nodes and average degree 5.97–12. Some intervals of [M1,M2] have been

shown in Fig 2(A). It can be found that intervals have strong statistical regularity. Hence, we

establish polynomial regression models ofM1 andM2 for N and average degree<k> with

high fitness 0.924 and 0.925, respectively. They are

M̂1 ¼ 0:594þ 0:014N � 2:875� 10� 6N2 þ 1:479 < K > ð12Þ

M̂2 ¼ 7:456þ 0:015N � 3:438� 10� 6N2 þ 1:585 < K > ð13Þ

For the networks without large nodes, let

M̂3 ¼
M̂1 þ M̂2

2
ð14Þ

If the predicted value is a decimal, we take the smallest integer not less than it. We can utilize

above equations to evaluate the samples so that to choose a proper reconstruction model, yet we

also notice that it is necessary to acquire the average degree<k> of network with (Eqs 12 and 13).

In fact, the average degree of the network can be estimated with ICS alone. We can use the

ICS model to make initial inference on the neighbors of each node so as to estimate the average

degree of the whole network. We simulate it on the networks of 500 nodes with real average

degrees 5.97, 7.96, 9.94,11.91 respectively (unknown), we estimate them with 15, 20, 25, 30

samples respectively. The results have been shown in Fig 2(B). We can see that the estimate

fluctuates around the true value. Even though the estimate deviation reaches 1, it can be con-

cluded from (Eqs 12 and 13) that the deviation of the thresholds aboutM1 and M2 is about 1.5

only, which hardly affects the evaluation of sample capacity.
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Next, we’ll use above methods to predictM1 andM2 so that to judge the sample capacity on

the scale-free network of 500,1000 nodes with 20 samples. The results are represented in

Table 3. For the estimate of average degree is more accurate, the estimation ofM1 is only 1 or 2

less than the real value, andM2 is more perfect with no difference from the real value on the

network with 1000 nodes. It shows that (Eqs 12 and 13) are effective to estimateM1 and M2. In

a word, we can evaluate the sample capacity through ICS and the number of nodes.

4.3 Identification of large nodes

For a scale-free networks, we should know which nodes are large nodes so as to choose proper

model to reconstruct their neighbors if samples are insufficient (M2[M1,M2]). How to identify

the large nodes?

For an undirected network, inferring node’s neighbors one by one may lead to contradic-

tion. CBM [37] believes that the accuracy of large node is lower than the small node with the

method of CS, then the large node has a larger contradiction number. So CBM method identi-

fies the large node through their contradiction number. For the game networks, we believe

that the variance of node’s revenue sequence (VR) can also reflect its degree. It is because that

node’s revenue will change as the neighbor’s strategy changes, and the large node has more

neighbors, so her benefit fluctuation is larger than small node. For a node i, define

VR ið Þ ¼
1

M

XM

t¼1

ðyiðtÞ � �yiÞ
2

ð15Þ

whereM is the length of revenue sequence, and �yi is the average revenue. We sort the VRs of

all nodes and identify the large nodes with their order.

In the following, we simulate it on the network of BA, WS and ER with sample size 15

(insufficient samples). The VR of each node has been shown in Fig 3(A). We can see that VRs

of the large nodes (at the right) are 20–100 times than that of the small nodes (at the left) in BA

network, while the difference in other two networks is no obvious. Therefore, VR can be used

to infer who are large nodes, in addition, we can evaluate the type of network with it.

Fig 2. (a)The interval [M1,M2] on various networks. (b)The estimation of average degree with 500 nodes.

https://doi.org/10.1371/journal.pone.0263939.g002

Table 3. The judgement of sample capacity (20 samples).

N = 300 <k> = 5.96 N = 1000, <k> = 7.9

〈k̂^〉 5.72 7.44

Estimation of [M1, M2] [13, 21] [23, 31]

Real [M1, M2] [15, 22] [24, 31]

Samples type Insufficient Scarcity

https://doi.org/10.1371/journal.pone.0263939.t003
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Does the order of VR reflect the order of nodes’ degree really? We calculate the correlation

coefficient between the VR and degree and compare it with the CBM. Fig 3(B) shows the

results of two methods as the relative sample (M/N) increases. It is obvious that the correlation

of VR is higher than that of CBM, and it is close to 1 as the sample size increases. Even if the

sample size is only 5, the correlation coefficient is also more than 0.85, so VR can be used as an

alternative indicator of the degree. We use it to identify the top 10% of large nodes on the

scale-free network with 100,300,500 nodes withing sample size 15,20 and 25, respectively

(insufficient in all cases). We do the same thing with CBM. The results are shown in Fig 3(C).

The accuracy of VR is obviously higher than the CBM. It is no less than 0.9 in all cases, wher-

ever CBM is no more than 0.5. It means that the VR is an effective index in identifying large

nodes, which lays the foundation for the selection of model with insufficient data.

4.4 The combination compressive sensing model based on ICS and QCS

Basing on the features of ICS and QCS, we propose a combined model to reconstruct the

whole network. The implementation steps are as follows:
Algorithm Proposed method for reconstruct the whole network based on
evolutionary game data via ICS and QCS.
Input:
Strategy matrix S and accumulated payoffs matrix Y of each agent

from time period 1 to M.
Output:
The identification structure of the network.
Step 1: For i = 1:N
Extract the revenue vector Yi and Fi = SiAS(i) of node i
Using ICS model with cplexbilp package to estimate the neighbor set

x0(i) of node i preliminarily.
End For
Calculating the average degree 〈k̂〉 of the network.

Step 2: For i = 1:N
VR ið Þ ¼ 1

M

PM
t¼1
ðYiðtÞ � �YiÞ

2

End For
Identify the type of network through the scatter plot of VR. If it is

scale-free network, switch to Step 3, else to Step 4.
Step 3:

Fig 3. (a) The variance of each node’s payoff sequence (VR) on BA, WS and ER with 100 nodes and average degree 6, and the degree of

the node on the right is larger than that on the left. (b) The correlation coefficient between VR (CBM) and the degree as the relative

sample (M/N) increases. (c) The accuracy of identifying the top 10% large nodes with VR and CBM on the scale-free network with

100,300,500 nodes and 15, 20, 25 samples, respectively.

https://doi.org/10.1371/journal.pone.0263939.g003
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Taking 〈k̂〉 and time period M into Eqs 12 and 13 to estimate M1 and M2.
If sample size M<M1,switch to step 3.1, and if M>M2,switch to step 3.2,
else to step 3.3.

Step 3.1: Using QCS model with quadprog package to estimate the
neighbors of each node.

Step 3.2: Using ICS model with cplexbilp package to estimate the
neighbors of each node if the number of iteration is no more than
1×106, otherwise with QCS.

Step 3.3: After finding the large nodes according to the VR values,
QCS are used to reconstruct their neighbors, while the other nodes are
reconstructed using ICS (if the number of iteration is no more than
1×106).
Step 4:
Taking 〈k̂〉 and M into Eqs 12 and 13 to estimate M3. If M<M3, switch to

step 3.1, else to step 3.2.
End

Since the approach above combines ICS and QCS according to the scale of network and the

sample size, it is called the combined compressed sensing method (CCS).

4.5 Reconstruction with CCS on the networks with different types and

different sizes

Firstly, we simulate the performance of CCS and compare it with CS and LASSO on scale-free,

small world and random networks, where the networks have the same size and same average

degree. The results are shown in Table 4. It can be found that the accuracy of the CCS is almost

the highest regardless of the type of the network, except the result on the scale-free network

withing 10 samples. And CCS is always better than LASSO. It means that the advantages of

CCS are hardly affected by the type of network.

Next, we increase the scale to 2000 and 5000 with 40, 60 samples, respectively. The results are

shown in Fig 4. It is not difficult to find that CCS has obvious advantages over CS in two (AUPR

and SR) of the three evaluation indexes, and there isn’t much difference between CCS and CS in

the third indicator (AUROC). Moreover, CCS is always better than LASSO on three indexes.

Synthesizing the simulations of the three methods on network with different types and dif-

ferent scales, we can conclude CCS is a superior method.

5 The combination compressive sensing model on multi-state

dynamics

5.1 The influence of strategy to CCS model

In the following, the impact of game strategy and their number on reconstruction accuracy

will be discussed. There are 5 strategies: C, D, TFT, WSLS and ZD. We design 8 groups with 5

Table 4. The success rate of three methods on different types of networks (N = 500,<k> = 6).

Sample size scale-free network

CS LASSO CCS

small network

CS LASSO CCS

random network

CS LASSO CCS

10 0.3976 0.1642 0.3691 0.0709 0.0907 0.5867 0.3716 0.1073 0.3961

15 0.4352 0.2817 0.4486 0.2244 0.2203 0.5911 0.3859 0.2642 0.4549

20 0.5986 0.4533 0.6555 0.4151 0.3823 0.6497 0.5089 0.4161 0.5039

25 0.7529 0.6681 0.7794 0.6191 0.5533 0.6716 0.5968 0.5215 0.6425

30 0.8429 0.7926 0.8992 0.8072 0.7367 0.9389 0.7429 0.6771 0.8773

35 0.9110 0.8631 0.9660 0.9101 0.8360 0.9970 0.8548 0.8095 0.9672

40 0.9286 0.8937 0.9740 0.9811 0.9424 1 0.9234 0.8839 0.9913

45 0.9582 0.9365 0.9792 1 0.9919 1 0.9612 0.9257 1

https://doi.org/10.1371/journal.pone.0263939.t004
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strategies. The success rate (SR) on the scale-free network is shown in Table 5 withing 20 sam-

ples on the scale-free network with 500 nodes. We can find that the accuracy of CCS is always

the best in three methods except the group of {C, TFT}. CCS is even 26–37% higher than the

other two methods for the group (8). It means that the strategies in system play an important

role on the CCS.

To find out the deep reasons for the high accuracy of CCS, we introduce two influencing

factors: the number of different elements in payoff matrix (NDP) in each group, the maximum

frequency of these element in the matrix F (MF). For example, in group (1), strategy C and

strategy TFT take part in the games. There are only two different elements {b−c, (b−c)/2} in

payoff matrix (see Table 1), and in the 10 experiments, the frequency of element b−c in matrix

F is 81.93%. In the following, we’ll analyze how and why such two factors affect the accuracy of

CCS through correlation and regression analysis of SR on NDP andMF. The results can be

seen in Table 6.

Firstly, the Pearson correlation coefficient between SR and NDP is 0.743, which means that

the larger the NDP, the better the CCS. And the correlation coefficient betweenMF and SR is

−0.905, which means there is a strong negative correlation between them. A regression equa-

tion is got with a high fitness (R2 = 0.933)

ŜR ¼ 0:995þ 0:03NDP � 0:01MF ð16Þ

And the influence on SR ofMF is larger than NDP according to standardized coefficients

(0.382, -0.711). The results show that NDP andMF of matrix F strongly affect the accuracy of

CCS, especiallyMF. What do these two indicators mean? Why do they affect the accuracy of

CCS?

As we all know the location identification of 0 and 1 in vector X decides the accuracy of CCS,

and it depends on the diversity of matrix F in Eq (7). The more diverse the matrix F, the easier it

Fig 4. The performance of CCS, CS and LASSO on the scale-free networks with 2000, 5000 nodes, and sample

sizes are 40, 60, respectively.

https://doi.org/10.1371/journal.pone.0263939.g004
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is to identify their locations in vector X and the higher the reconstruction accuracy. If all ele-

ments are the same in matrix F extremely, the locations of 1s are not unique. In fact, the diversity

of matrix F is reflected in two aspects: the number of different elements and the uniformity of

the distribution of elements. The larger the number of different elements, the more uniform

their distribution, the higher the accuracy of CCS. And if the maximum frequency is too high,

which means that the elements are not uniform in matrix F, it will lead to a low precision.

Explain it in another way, the diversity of the matrix F depends on the number of strategies.

The more the strategies, the better the CCS. For instance, the accuracy of the three-strategy

groups (group 3,4,5,7) is higher than that of the two-strategy groups (group 1,2), at the same

time it is lower than that of the four-strategy group (8). So multi-strategy game system is

friendly to CCS, which is helpful for CCS to infer its structure.

Moreover, the diversity of the matrix F also depends on the strategies of the games. If one

strategy makes other strategies disappear quickly, only one strategy left extremely, then the ele-

ments of matrix F are the same in many ranks. Available information from the data is little, so

it is difficult to identify the true neighbors (all 1s in vector X). Hence, the strategies, such as

WSLS, ZD, which can protect the cooperators and coexist with other strategies are helpful to

acquire diverse samples so as to reconstruct the network accurately. For example, unlike strat-

egy D, which always eliminates strategy C, ZD strategy is a catalyst for cooperation. It makes

the ratio of C and ZD more even and their payoffs are different, so it is more diverse in the

group {C, ZD} than in group {C, D}. But in group {ZD, D, C}, as ZD and D get the same payoff

0 if they encounter, then the difference of elements’ frequency in this group is larger than that

in the group {C, D}, but smaller than that in the group {C, ZD}. As a matter of course, SRC,

D<SRC,D,ZD<SRC,ZD.

In summary, besides the number of initial strategies, the type also affects the performance

of reconstruction directly.

5.2 The performance of CCS on scale-free network

To study the performance of CCS on the multi-strategy game network, we design the following

two groups:

Table 5. The succeed rate (SR) of three methods under different strategy combinations.

strategies CCS CS LASSO NDP MF
(1) C, TFT 0.1814 0.2986 0.2347 2 81.93

(2) C, D 0.4486 0.4352 0.2817 4 54.88

(3) C, D, ZD 0.5889 0.5435 0.4209 6 63.05

(4) C, WSLS 0.6141 0.56 0.4787 3 54.71

(5) C, D, TFT 0.7342 0.5775 0.4654 5 46.49

(6) C, ZD 0.7789 0.5992 0.4481 4 30.30

(7) C, D, WSLS 0.9106 0.6506 0.5493 8 30.21

(8) C, D, ZD, WSLS 0.92 0.6807 0.5508 12 40.86

https://doi.org/10.1371/journal.pone.0263939.t005

Table 6. The multiple linear regression analysis of SR on NDP and MF.

Model Unstandardized Coefficients Standardized Coefficients t Sig.

R2 0.933 constant 0.995 7.151 .001

rSR,NDP 0.743 NDP 0.030 0.382 2.815 .037

rSR,MF -0.905 MF -0.010 -0.711 5.237 .003

https://doi.org/10.1371/journal.pone.0263939.t006
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1. Three strategies {C, D, WSLS} in the games

2. Four strategies {C, D, WSLS, ZD} in the games.

We compare the reconstruction performance of CCS, CS and LASSO in different sample

sizes. The results are shown in Fig 5. It is obvious that CCS is almost the best with AUPR and

success rate on both groups regardless of sample size. Although it is not the best on AUROC,

its advantage gradually increases if ZD strategy involving (Fig 5.b1). As a whole, it stands out

more when the samples are insufficient. For example, ifM = 20, the success rate is more than

0.9 with CCS, however LASSO is only about 0.55, and CS is no more than 0.69. Moreover, the

advantage of CCS is more obvious on four-strategy networks than on three-strategy networks.

5.3Noise environment experiments

In the real world, the practical environments are not as good as experimental environments.

Limited by the accuracy and cost of observers, the observation data are not clean and pure,

which contain a certain degree of noise. We test the performance of CCS in a noisy environ-

ment. Here, in the network with four strategies {C, D, WSLS, ZD} in the games, we assume

that the observation noise is ε � Nð0; s2
NÞ, and u% of the samples are contaminated by noise.

In Table 7, the variance of the noise is set as σN = 0.3, and u is set as 0.5, 1, respectively. The

results demonstrate that the proposed method can cope with noise efficiently to a certain

extent. The specific as follows:

Firstly, although high rate of noise pollution is adverse to CCS, it still achieves the highest

accuracy if the samples aren’t sufficient, as in the case of pure environment. Secondly, the bigger

the network, the better for CCS. For example, increasing the scale of network from 200 to 1000,

CCS can maintain its advantage in more cases (fromM�20 toM�30). But it should be noticed

Fig 5. The performance of three methods as sample size increases from10 to 40. (a1-a3): Group {C, D, WSLS} (b1-b3):

Group {C, D, WSLS, ZD}.

https://doi.org/10.1371/journal.pone.0263939.g005

PLOS ONE The reconstruction on the game networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0263939 February 11, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0263939.g005
https://doi.org/10.1371/journal.pone.0263939


that LASSO is more robust to the noise pollution if with large samples. Therefore, CCS is robust

to noise in the case of small samples, and LASSO is robust in the case of large samples.

5.4 The results of CCS on real network

Compare with the generative small-world, random network and scale-free network, real net-

works may not have the obvious behavior characteristics; therefore, we choose 4 real networks

to test the generalization of the proposed method: the football, the dolphin, the elegans and the

social networks, including 115, 62, 453, 1858 nodes and average degrees 10.66, 5.13, 8.9 13.45,

respectively.

5.4.1 The macro-analysis of the reconstruction accuracy of the network. Suppose that

the nodes can adopt four strategies: {C, D, ZD, WSLS}. The accuracy of three methods is

shown in Fig 6. CCS always has the highest accuracy about AUPR and success rate, except for

the occasional case with 10 samples. Furthermore, its reconstruction accuracy increases rapidly

with the increase of samples, especially on the football network. It is worth mentioning that

CCS is not always the best on AUROC. The sparser the network, the higher the reconstruction

accuracy. It means that the sparse networks are better for CCS. It validates that CCS maintains

similar referring features on real networks.

5.4.2 The influence of node degree on completely correct frequency. As we know, not

all nodes can be reconstructed correctly with insufficient samples. Which node is most likely

to be reconstructed correctly? Is it related to its degree? Define completely correct frequency of

node i as

fr ið Þ ¼
ni
n

ð17Þ

where n is the number of experiments, and ni is the frequency of completely correct recon-

struction on node i. For example, if node i has a 100% success rate in 9 out of 10 experiments,

then fr(i) = 0.9. In the following, three reconstruction methods are compared to analyze which

method is most likely to be affected by the degree. Assuming that the samples size is 50, and

each node is reconstructed 10 times. We calculate the completely correct frequency of each

node and draw the scatter of completely correct frequency and degree in Fig 7.

Within expectation, the larger the degree, the lower the accuracy. The completely correct

frequencies of all the large nodes are 0. To analyze the case of the smaller nodes, we zoom in

the graph where degree is from 1 to 80. The difference among three methods can be found eas-

ily. Define the minimum degree of the nodes whose completely correct frequencies are less

than 1

MD ¼ minfkijfrðiÞ < 1; i ¼ 1; 2; ;Ng ð18Þ

Table 7. The success rate of CS, CCS, LASSO in a noisy environment.

M N = 200, u = 0.5 N = 200, u = 1 N = 1000, u = 1

CS CCS LASSO CS CCS LASSO CS CCS LASSO

10 0.4015 0.7315 0.2761 0.4625 0.6947 0.2735 0.1224 0.4057 0.0846

15 0.7144 0.8758 0.5431 0.6273 0.8057 0.5055 0.3926 0.6728 0.2188

20 0.8141 0.8736 0.7181 0.7670 0.8043 0.7283 0.5220 0.7297 0.3962

25 0.8542 0.8773 0.8482 0.8004 0.7679 0.8277 0.5437 0.7121 0.4538

30 0.8472 0.8421 0.9045 0.7664 0.7383 0.8726 0.5913 0.6993 0.5387

35 0.8169 0.8221 0.9166 0.7170 0.7113 0.9278 0.6891 0.6708 0.7947

https://doi.org/10.1371/journal.pone.0263939.t007
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Fig 6. The performance of CCS, CS and LASSO is shown with three evaluation indexes on football, dolphin,

elegans and social networks.

https://doi.org/10.1371/journal.pone.0263939.g006

Fig 7. The completely correct frequency in 10 experiments on the elegans network under 50 samples.

https://doi.org/10.1371/journal.pone.0263939.g007

PLOS ONE The reconstruction on the game networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0263939 February 11, 2022 14 / 18

https://doi.org/10.1371/journal.pone.0263939.g006
https://doi.org/10.1371/journal.pone.0263939.g007
https://doi.org/10.1371/journal.pone.0263939


For the CCS, it is 16 (the degree on blue line). In other words, the nodes whose degree is no

more than 15 can always be reconstructed correctly. In contrast, CS and LASSO are 2 and 5,

respectively (green line and red line). It means that CCS can correctly reconstruct the larger

nodes than CS and LASSO despite that all of them are not very friendly to large nodes. There-

fore, CCS is more tolerant to the larger nodes.

5.4.3 Coupled oscillations dynamics. In order to further verify the generality of the pro-

posed structure identification method, the oscillator dynamics network is introduced and

explored. Here, consider a complex Kuramoto model

_y iðtÞ ¼ oi þ
XN

j¼1

aijsin ðyj � yiÞ; i ¼ 1; 2;⋯;N ð19Þ

where θi and ωi are the phase and the natural frequency of the ith oscillator. Assuming that

yi ¼ _y i � oi

Fi ¼ ðsin ðyj � yiÞj

yi ¼ FiA ð20Þ

Our target is to identify the network structure matrix A = (aij). The identification results are

shown in Fig 8. It is obvious that the proposed method is the best in three methods no matter

what evaluation indexes are used. In particular, if there are only 10 observations, the success

rate is near to 1 which is well above the other two methods. It means that CCS can also be used

in other real systems besides evolutionary game systems.

6 Conclusions and discussions

In this paper, we propose two compressive sensing models: ICS and QCS firstly. According to

the samples size, we also propose a combined model: CCS basing on ICS and QCS. It has been

shown that the combined models usually have a higher accuracy compared with CS and

LASSO on the networks with different types and different scales. In the multi-strategy system,

it has an even better performance. The more strategies, the better performance. And the partic-

ipation of strategies, which can improve group cooperation level, such as WSLS, ZD, etc., help-

ful for reconstruction with less data. In addition, CCS can correctly reconstruct the larger

nodes than CS and LASSO. At the same time, it is robust under noise environment to a certain

extent.

Fig 8. The performance of CCS, CS and LASSO is shown with three evaluation indexes on the coupled-oscillator

dynamics. Network size N = 100, average degree<k> = 6.

https://doi.org/10.1371/journal.pone.0263939.g008
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It is worth noting that the method is not limited to reconstruct the game networks although

the paper discusses the reconstruction with evolutionary game data. As long as the linear con-

straint equation can be found from the system, the network can be reconstructed with our

method. In addition, samples do not have to be time series data. It is worth mentioning that

the combined compression sensing method should be improved in the following aspects. For

example, sometimes we have to select model from ICS and QCS according to samples. Fur-

thermore, sometimes we spend too long time on ICS. How to save time on ICS? They are wor-

thy of attention in the future.
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