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Sounds canmodulate visual perception aswell as neural activity in retinotopic cortex.Most studies in this con-
text investigated how sounds change neural amplitude and oscillatory phase reset in visual cortex. However,
recent studies in macaque monkeys show that congruence of audio-visual stimuli also modulates the amount
of stimulus information carried by spiking activity of primary auditory and visual neurons. Here, we used nat-
uralistic video stimuli and recorded the spatial patterns of functional MRI signals in human retinotopic cortex
to test whether the discriminability of such patterns varied with the presence and congruence of co-occurring
sounds. We found that incongruent sounds significantly impaired stimulus decoding from area V2 and there
was a similar trend for V3. This effect was associated with reduced inter-trial reliability of patterns (i.e. higher
levels of noise), but was not accompanied by any detectable modulation of overall signal amplitude. We
conclude that sounds modulate naturalistic stimulus encoding in early human retinotopic cortex without
affecting overall signal amplitude. Subthreshold modulation, oscillatory phase reset and dynamic attentional
modulation are candidate neural and cognitive mechanisms mediating these effects.

© 2013 Elsevier Inc. Open access under CC BY license. 
Introduction

Perception of the environment requires integration of sensory
information across the senses, but how our brains combine informa-
tion from different sensory streams is still poorly understood. The
earliest stages of cortical sensory processing were long thought to be
unimodal and multisensory processing to be restricted to dedicated
convergence areas (Mesulam, 1998). However, the past decade has
seen new anatomical and functional evidence for multisensory inter-
actions even at the level of primary sensory areas (see Driver and
Noesselt, 2008; Klemen and Chambers, 2012 for an overview).

Tracer studies provide anatomical evidence for multisensory inter-
actions at early stages of cortical processing (here referred to as ‘early
multisensory interactions’ for convenience, not necessarily implying
temporal precedence). There are direct feedback connections from
primary auditory and multisensory areas to V1 and V2 in macaque
(Clavagnier et al., 2004; Falchier et al., 2002; Rockland and Ojima,
2003) and similar connections in rodents (Allman et al., 2008;
Budinger et al., 2006). Although some bimodal neurons can be found
even in primary sensory areas (i.e. neurons that can be driven by either
visual or auditory input, e.g. Fishman and Michael, 1973), the effect of
direct cross-modal connections seems to be modulatory, rather than
driving. Recent evidence from cats and rodents points to subthreshold
modulation of ‘unimodal’ visual neurons (that cannot be driven by
uroscience, University College
C1N 3AR, UK.
aas).
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auditory input alone) as the dominant form of multisensory interaction
in early visual cortex (Allman and Meredith, 2007; Allman et al., 2008,
2009; Iurilli et al., 2012). Early multisensory interactions also result in
phase resetting of ongoing oscillations, thereby modulating and
aligning the periodic excitability of affected neurons (e.g. Lakatos et
al., 2007, 2009, cf. Schroeder et al., 2008).

In humans, cross-modal interactions modulate the amplitude or
can drive neural signals in early visual cortex, as indexed by Blood
Oxygenation Level Dependent (BOLD) fMRI (e.g. Macaluso et al.,
2000; Martuzzi et al., 2007; Meienbrock et al., 2007; Noesselt et al.,
2007; Watkins et al., 2006), event-related potentials (ERPs) (e.g.
Cappe et al., 2010; Molholm et al., 2002) and transcranial magnetic
stimulation (TMS) excitability (e.g.Romei et al., 2009). Cross-modal
phase reset of ongoing oscillations in visual cortex is found in human
magnetoencephalography (MEG; Luo et al., 2010) and electroencepha-
lography (EEG; consistent with phase-locked periodic modulations of
perceptual performance Naue et al., 2011; Romei et al., 2012; Thorne
et al., 2011).

When monkeys are presented with naturalistic sound stimuli,
accompanying visual stimulation reduces the mean firing rate of pri-
mary auditory cortex neurons (Dahl et al., 2010; Kayser et al., 2010).
Moreover, inter-trial variability of spike trains is greatly reduced,
thus enhancing mutual information between stimuli and spiking pat-
terns. This effect is significantly stronger when the auditory and the
visual input are congruent (Kayser et al., 2010). Visual neurons in
STS show a similar behaviour for naturalistic visual stimuli (Dahl
et al., 2010). Their response amplitude is somewhat reduced for bi-
modal audio-visual stimulation and the stimulus information carried
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by spike patterns is affected by multisensory context: incongruent
sounds significantly worsen stimulus decoding based on spike trains.

Here we sought to test whether multisensory modulation of stim-
ulus encoding extended to humans and early retinotopic visual corti-
ces. We presented participants with naturalistic audiovisual stimuli in
four different conditions: audio only (A), visual only (V), audiovisual
congruent (AV congruent) and audio-visual incongruent (AV incon-
gruent). We then used multivoxel pattern analysis (MVPA) to decode
stimulus identities based on spatial patterns of BOLD signals evoked
in V1-3 (as identified by retinotopic mapping, Sereno et al., 1995).
Separate multivariate classifiers were trained and tested for each of
the four conditions and for each ROI. This allowed us to compare
decoding accuracies between conditions, thus obtaining an index of
pattern discriminability for each condition.

Materials and methods

Participants

15 participants from the University College London (UCL) partici-
pant pool took part (mean age, 26 years, SD, 4 years; 7 females; 1 left
handed). All participants had normal or corrected to normal vision
and reported no hearing problems. Written informed consent was
obtained from each participant and the study was approved by the
UCL ethics committee. Participants were paid 10 GBP per hour for
taking part in the experiment, which lasted up to 2.5 h.

Stimuli

Four video clips were used as audio-visual stimuli, each lasting 3 s.
Two clips showed natural scenes containing animals (a croaking frog
and a crowing rooster). These two clips were downloaded from
http://www.youtube.com and edited. The two remaining clips showed
the clothed torso of the first author while turning a key in a lock or
ripping a paper apart. All clips were similar with regard to luminance
and loudness andwere projected onto a screen at the endof the scanner
bore. Participants viewed the clips via a mirror mounted at the head
coil of the scanner at a viewing distance of ~72 cm. Video clips were
presented at a resolution of 640×360 pixels and subtended ~18 by
10° visual angle when viewed by participants in the scanner. During
the experiment participants were asked to fixate a white dot projected
on top of the videos at the centre of the screen (radius ~0.1° visual
angle). In each trial the dot turned blue once, twice or three times and
participants were asked to count and indicate the number of colour
changes via a button box in a 2 s inter stimulus interval.

Audio tracks accompanying the video clips were presented via MRI
compatible in-ear headphones (http://www.etymotic.com). Loudness
was adjusted individually before the start of the experiment, aiming
for a level that was comfortable for participants but still enabled
them to easily tell apart sound clips in the presence of scanner noise.

All stimuli were programmed and presented inMATLAB (Mathworks,
Ltd.) using the Cogent Graphics (http://www.vislab.ucl.ac.uk/cogent.php)
and Psychophysics Toolbox 3 extensions (Brainard, 1997; Pelli, 1997;
http://psychtoolbox.org).

Procedure

Each participant completed 17–24 runs of scanning in the main
experiment, each run lasting just under 2 min. During the runs partic-
ipants were presented with audio and/or visual clips and completed
an incidental, superimposed fixation task (cf. above). During each
run each of the 4 stimuli was presented once for each experimental
condition (i.e. four times), amounting to 16 stimulus trials per run
(cf. Fig. 1). Participants were either presented with videos only (V),
sounds only (A), matching videos and sounds (AV congruent condi-
tion) or mismatching videos and sounds (AV incongruent condition).
For audio-visually incongruent trials the sound files were swapped
between fixed pairs of videos (rooster crowing and paper ripping;
frog croaking and keys turning). Each 3 s clip was followed by a 2 s
inter-stimulus interval during which participants were asked to indi-
cate via a button box how many times the fixation dot changed its
colour. In addition to the 16 stimulus trials there were 4 blank trials
in each run that served as a baseline measure. During these trials par-
ticipants completed the fixation task in the absence of audio-visual
clips. The order of the 20 trials was randomised for each run, as was
the number of fixation dot colour changes in each trial (1–3).

Retinotopic mapping

To delineate the borders of visual areas V1-3 on an individual
basis, each participant underwent an additional fMRI run viewing
stimuli for phase encoded retinotopic mapping (Sereno et al., 1995).
Stimuli for this run consisted of a wedge rotating clock-wise and an
expanding ring. Both stimuli moved in discrete steps, synchronised
with the acquisition of fMRI volumes, but with different frequencies
(wedge: 12 cycles, 20 steps per cycle; ring: 20 cycles, 12 steps per
cycle). They were centred around a fixation dot of ~0.25° diameter
and spanned up to 8° of eccentricity. It is generally difficult to distin-
guish retinotopic maps inside the foveal confluence because the bor-
ders between regions are difficult to resolve at conventional voxel
sizes. Moreover, the presence of a stable fixation dot precludes any
systematic variation in the BOLD signal related to the mapping stim-
ulus. Note that the size of the fixation dot for our mapping stimuli was
slightly larger than the size of the fixation dot for our audiovisual
stimuli (~0.25 vs. ~0.2° diameter). We are therefore confident that
our region of interest analyses did not include the foveal representa-
tions. Ring and wedge were presented on a grey background and
served as apertures revealing a dynamic high contrast stimulus. Par-
ticipants were asked to fixate at all times and count brief colour
changes of the fixation dot from blue to purple. These colour change
events lasted 200 ms and could occur at every non-consecutive
200 ms window of the run with a probability of 5%.

Image acquisition and pre-processing

All functional and structural scans were obtained with a Tim Trio
3T scanner (Siemens Medical Systems, Erlangen, Germany), using a
12-channel head coil. Functional images for the main experiment
were acquired with a gradient echo planar imaging (EPI) sequence
(3 mm isotropic resolution, matrix size 64×64, 40 transverse slices
per volume, acquired in ascending order (whole head coverage); slice
acquisition time 68 ms, TE 30 ms, TR 2.72 s). We obtained 42 volumes
per run of the main experiment (including three dummy volumes at
the beginning of each run and two at the end), resulting in a run dura-
tion of 114.24 s. Functional images for retinotopic mapping were ac-
quired in one run of 247 volumes with an EPI sequence (including
five dummy volumes at the beginning and two at the end of the run;
2.3 mm isotropic resolution, matrix size 96×96, 36 transverse slices
per volume, acquired in interleaved order (centred on the occipital
cortex); slice acquisition time 85 ms, TE 36 ms, TR 3.06 s per volume).
In between the main experiment and the retinotopic mapping run
we acquired fieldmaps to correct for geometric distortions in the func-
tional images caused by heterogeneities in the B0 magnetic field
(double-echo FLASH sequence with a short TE of 10 ms and a long se-
quence of 12.46 ms, 3×3×2 mm, 1 mm gap). Finally, we acquired a
T1-weighted structural image of each participant using an MDEFT se-
quence (Deichmann et al., 2004; 1 mm isotropic resolution, matrix
size 256×240, 176 sagittal slices, TE 2.48 ms, TR 7.92 ms, TI 910 ms).

All image files were converted to NIfTI format and pre-processed
using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The
dummy volumes for each run were discarded to allow for the T1 sig-
nal to reach steady state. The remaining functional images of the
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4 Video Clips 4 Conditions

One 4-way Classifier per Condition

Compare Decoding Accuracies between Conditions

a)
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Fig. 1. Design.

a) Four audiovisual clips used as stimuli, each lasting 3 s. Participants counted colour changes of the fixation dot in each trial.
b) Each of the clips was presented multiple times in four conditions (illustrated here for one example clip): audiovisual congruent (AV congruent) in green, audiovisual incon-

gruent (AV incongruent) in red, visual only (V) in light grey and audio only (A) in dark grey.
c) Separate multivariate classifiers were trained to decode which of the four stimuli was presented for each condition.
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main experiment and the retinotopic mapping session were in-
dependently mean bias corrected, realigned and unwarped (using
voxel displacement maps generated from the fieldmaps). Finally the
functional images were co-registered with the respective anatomical
MDEFT scan for each participant and smoothed with a 5 mm Gaussian
kernel.

Data analysis

Multivariate pattern analysis
We specified separate general linear models for each run and each

participant. Each general linearmodel contained regressors for each of
the 16 trial types plus one regressor for the blank trials (boxcar regres-
sors convolved with a canonical hemodynamic response function).
Additional regressors of no interest were modelled for response inter-
vals and for the sixmotion parameters estimated during re-alignment.
The general linear models for each run and each participant were
estimated and contrast images for each of the 16 trials (per run and
condition) calculated. This resulted in separate contrast images and
t-maps for each trial type of the experiment for each participant.
These t-maps were masked with the retinotopic regions of interest
(see below) and the resulting patterns were vectorised. For the
decoding and correlation analyses the resulting patterns were mean
corrected across stimuli within each condition. Note that this did not
affect classification performance — the distribution of patterns in fea-
ture space was preserved, but now centred on zero. This allowed us to
ensure that any common intercept of patterns across stimuli was
disregarded for the similarity and reliability correlation analyses (see
below). Beta maps for univariate analyses were not mean corrected.
The aim of the decoding analysis was to decode stimulus identity from
activation patterns in visual areas (i.e. which of the four videos was
presented in a given trial) and to compare the accuracies of decoders
across conditions (i.e. did stimulus decoding accuracy vary depending
on audiovisual condition, cf. Fig. 1). Stimulus decoding was performed
using custom code using the linear support vector machine (lSVM)
implemented in the Bioinformatics toolbox for MATLAB (version
R2010b, http://www.mathworks.com). Data from each condition were
used for training and testing of separate classifiers to get condition-
specific decoding accuracies. For each condition a four-way classifier
was built, to decode which of the four stimuli was presented from a

http://www.mathworks.com
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given activation pattern. The four-way classifier consisted of six lSVMs
to test all possible pair-wise comparisons between the four stimuli. It
then assigned one of the stimulus labels based on a one-against-one
voting procedure (Hsu and Lin, 2002). The four-way classifier was
trained and tested for accuracy in a jackknife procedure. In each itera-
tion, the (condition-specific) data from all runs but one served as train-
ing data and the (condition-specific) data from the remaining run was
used to test the prediction accuracy of the lSVM. Accuracieswere stored
and averaged across iterations at the end of this procedure, and the
whole procedure was applied to each retinotopic ROI (V1-3) indepen-
dently, yielding a four-way classification accuracy for each condition
and ROI. Statistical analysis of the resulting accuracies was done in
MATLAB and PASW 18.0 (SPSS inc./IBM). Accuracies were compared
against chance level by subtracting .25 and using one sample t-tests. Ac-
curacies were compared between conditions using ANOVAs and paired
t-tests.

Potential differences in decoding accuracy between conditions
could stem from two different sources. They could be due to changes
in pattern reliability across trials, changes in pattern similarity be-
tween patterns evoked by different stimuli or both. We employed
additional analyses to differentiate between those options. Changes
in pattern reliability were tested by averaging the patterns for a
given stimulus across trials separately from odd and even runs and
computing the Pearson correlation coefficient for the two resulting
mean patterns (in a ROI-and condition-specificmanner). The resulting
correlation coefficients were Fisher z-transformed, averaged for each
condition and then compared across conditions using ANOVAs and
paired t-tests. Changes in pattern similarity were tested by averaging
the patterns for a given stimulus across all trials and computing corre-
lations between these mean patterns for different stimuli (again, in a
ROI- and condition-specific manner). The resulting Pearson correla-
tion coefficients were compared as described above.

Searchlight analysis
To test whether and where stimulus information was modulated

by audiovisual context outside retinotopic cortices, we set up an addi-
tional, exploratory searchlight analysis (Kriegeskorte et al., 2006). For
this analysis, activation patterns were derived from the same (trial-
specific) t-maps that were used for the ROI analysis described above.
The searchlight consisted of a sphere with a radius of 4 voxels that
was centred on each grey matter voxel of each participant's brain in
turn. During each iteration, the searchlight was used as a mask and
the patterns of activation within this mask were read out for each
trial. Then the same 4-way classification procedure used for the ROI
analysis was applied to those patterns (cf. above). The resulting (con-
dition specific) classification accuracies were projected back onto the
seed voxel. Repeating this procedure for every grey matter voxel, we
thus derived four accuracy maps for each participant (one per condi-
tion). To test for significant accuracy differences between conditions
we subtracted the respective accuracy maps from each other. Specifi-
cally, we contrasted the audiovisual congruent condition with the
muted condition and with the incongruent condition and the muted
condition with the audio-visual incongruent condition. The resulting
accuracy contrast maps were normalised to MNI space (http://www.
loni.ucla.edu/ICBM/) and tested for whole brain family-wise error
(FWE) corrected significance at cluster level in SPM 8 (cluster forming
threshold pb .001 uncorrected). Significant clusters were identified
anatomically using the Juelich Histological Atlas implemented in the
SPM Anatomy Toolbox (v. 1.8, http://www.fz-juelich.de/inm/inm-1/
DE/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.
html).

Univariate analysis
To test whether audio-visual context had any influence on the

overall signal amplitude in our ROIs we employed an additional uni-
variate analysis. For this analysis we averaged the condition specific
beta weights of voxels within our ROIs across stimuli and trials for
each participant. We then compared the mean beta values between
conditions for each ROI using ANOVAs and paired t-tests.

We additionally tested whether a different approach to univariate
analyses would have yielded any differences between conditions. To
test this, we concatenated all runs of a given participant in one design
matrix in SPM8. This allowed us to build contrasts between condi-
tions on the first level, utilising all trials of the respective conditions.
These first level contrasts were then normalised to MNI space and
tested for whole brain FWE corrected significance at cluster level in
SPM8 (cluster forming threshold pb .001 uncorrected).

Retinotopic mapping
Retinotopic ROIs were identified using standard phase-encoded

retinotopic mapping procedures (Sereno et al., 1995). We extracted
and normalised the time series for each voxel and applied a fast
Fourier transformation to it. Visually responsive voxels were identi-
fied by peaks in their power spectra that corresponded to our stimulus
frequencies. The preferred polar angle and eccentricity of each voxel
was then identified as the phase lag of the signal at the corresponding
stimulus frequency (wedge and ring, respectively). The phase lags for
each voxel were stored in a ‘polar’ and an ‘eccentricity’ volume and
then projected onto the reconstructed, inflated cortical surface (sur-
face based analysis was performed using FreeSurfer: http://surfer.nmr.
mgh.harvard.edu). The resulting maps allowed us to identify meridian
polar angle reversals and thus to delineate the borders of visual areas
V1-3 on the cortical surface. These labels were then exported as three-
dimensional masks into NIfTI space and served as ROIs.

Results

Behavioural data

Participants performed well on the fixation task for all four stimu-
lus categories and the baseline category. Performance did not differ
significantly between conditions (note that the task was independent
of stimulus category; 95±1%, 96±1%, 96±1%, 97±1%, and 97±1%
correct for the AV congruent, AV incongruent, V, A and baseline cate-
gory, respectively (mean±standard error of the mean); F(2.49, 34.85)=
1.59, p=.22, n.s., Greenhouse–Geisser corrected for non-sphericity).

Multivariate fMRI results

Multivariate ROI results
Visual stimulus identities could be decoded significantly above

chance level (0.25) from V1-3 (ROIs were combined across hemi-
spheres; all pb10−5, cf. Fig. 2a)). When no visual stimulus was
presented (A condition) decoding performance was at chance level
(all p>.4). To test whether the presence and congruence of co-
occurring sounds had an influence on visual stimulus encoding we
compared decoding accuracy in the three conditions containing visual
stimuli (AV congruent, AV incongruent, V) for V1-3. Decoding perfor-
mance did not differ significantly between conditions in V1 (F(2,28)=
0.46, p=.64, n.s.). However, the presence and congruence of sounds
had a significant effect on decoding performance in area V2 (F(2,28)=
7.17, p=.003) and there was a non-significant trend for such an effect
in area V3 (F(2,28)=2.12, p=.14, n.s.). Post-hoc t-tests revealed that
stimulus decoding from activity patterns in area V2 was significantly
worse in the AV incongruent condition compared to both, decoding in
the AV congruent (t(14)=3.29, p=.005) and V (t(14)=3.46, p=.004)
conditions. Pattern decoding from area V3 was significantly worse for
the AV incongruent condition compared to the V condition (t(14)=
2.15, p=.049).

To further investigate the effect of sounds on stimulus decoding
from activation patterns in V1-3 we compared the reliability and
similarity of stimulus-evoked patterns (cf. Materials and methods
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for details). There was no detectable influence of sounds on pattern
similarity in V1-3 (V1: F(2,28)=0.762, p=.476, n.s., V2: F(2,28)=
1.069, p=.357, n.s., V3: F(2,28)=1.815, p=.181, n.s.; cf. Fig. 2d).
However, pattern reliability was significantly affected by the presence
of sounds in V2 and V3 (V1: F(2,28)=2.013, p=.152, n.s., V2: F(1.4,28,
Greenhouse–Geisser corrected)=6.647, p=.011, V3: F(2,28)=5.133
p=.013; cf. Fig. 2c) Post-hoc paired t-tests revealed that pattern reliabil-
ity in V2was significantly reduced in the AV incongruent condition, com-
pared to both the AV congruent condition (t(14)=−2.376, p=.032) and
the V condition (t(14)=−5.406, pb .0001). Pattern reliability in V3 was
significantly reduced in the AV incongruent condition, compared to the
V condition (t(14)=−3.004, p=.010).

For completeness, we computed a complete representation of all
possible stimulus pattern correlations (16 by 16); please see the Sup-
plementary results and Fig. S1.
a)

c)

** **

*

* *** **

Fig. 2. Results for regions of interest (ROIs). Results for areas V1-3 are shown as bar plots. B
in red, visual only in light grey and audio only in dark grey. Error bars indicate the standar

a) Classification accuracies for 4-way classification using linear support vector machines
Stars indicate significantly different decoding accuracies between conditions involving
spective ANOVAs; *pb .05, **pb .01).

b) Mean signal amplitudes estimated by the GLM. Note that amplitudes were not signific
interest. Note that beta maps used for this analysis were not mean corrected (see Mat

c) Pattern reliability as indicated by means of Fischer z-transformed correlation coeffici
methods for details). Stars indicate significantly different pattern reliabilities between c
for details of respective ANOVAs; *pb .05, **pb .01, ***pb .001).

d) Pattern similarity as indicated by means of Fischer z-transformed correlation coefficien
that pattern similarities were not significantly different between conditions involving
because they were mean corrected across stimuli within each condition (see Materials
Our study was limited to investigating multisensory modulation of
pattern discriminability in early visual cortices. It would have been in-
teresting to compare this to similar modulations in early auditory cor-
tex. However, auditory pattern decoding from BOLD signals typically
has much lower accuracies than visual pattern decoding and appears
to require high spatial resolutionMRI sequences (e.g. Formisano et al.,
2008; Staeren et al., 2009). Nevertheless, for completeness we also
extracted patterns of BOLD signals from bilateral anterior transversal
temporal gyri (Destrieux et al., 2010) and tried to classify them. Stim-
ulus decoding was generally unsuccessful for this data and did not im-
prove evenwhen using a more lenient anatomical criterion (including
the whole of the superior temporal gyrus and plane). We conclude
that an investigation of primary auditory cortex similar to our visual
cortex analysis would rely on high-resolution scans and adequate
functional localizers, ideally tonotopic-mapping.
b)

d)

AV congruent

AV incongruent

Visual Only

Audio Only

ar colours indicate conditions: audiovisual congruent in green, audiovisual incongruent
d error of the mean adjusted for repeated measurements (Morey, 2008).

(see Materials and methods for details). The dashed line indicates chance level (.25).
visual stimulation (as indicated by paired t-tests, see Results section for details of re-

antly different between conditions involving visual stimulation in any of the regions of
erials and methods for details).
ents between patterns for a given stimulus in odd and even runs (see Materials and
onditions involving visual stimulation (as indicated by paired t-tests, see Results section

ts between patterns for different stimuli (see Materials and methods for details). Note
visual stimulation in any of the regions of interest. Patterns are negatively correlated
and methods for details).
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Searchlight results
We tested three contrasts: AV congruent–AV incongruent, AV

congruent–V and V–AV incongruent (see Materials and methods for
details.).

The AV congruent–AV incongruent contrast yielded no significant
clusters at the corrected threshold. The AV congruent–V contrast re-
vealed two significant clusters in the bilateral superior temporal gyri
(FWE corrected pb .05). Both clusters included early auditory cortex
and part of the superior temporal gyrus (including TE 1.0, 1.2 and 3)
and the right cluster extended in anterior direction to the temporal
pole (cf. Table 1 and Fig. 3a)). The V–AV incongruent contrast yielded
two significant clusters in visual cortex (FWE corrected pb .05). The
first cluster spanned part of the bilateral calcarine gyrus near the oc-
cipital pole, including parts of Brodmann area 17 and 18. The second
cluster was located in the left lateral inferior occipital gyrus and coin-
cided with the location reported for areas LO1/2 (Larsson and Heeger,
2006). See Table 1 and Fig. 3b).
Univariate fMRI analysis

To testwhere in the brain auditory contextmodulated the amplitude
of the signal evoked by our stimuli (as opposed to information carried),
we employed a univariate whole brain analysis. We tested the same
three contrasts tested in the searchlight analysis: AV congruent–AV in-
congruent, AV congruent–V and V–AV incongruent (see Materials and
methods for details).

The AV congruent–AV incongruent contrast yielded no significant
results. The AV congruent–V contrast yielded two significant clusters
in the bilateral superior temporal gyri (FWE corrected pb .05). Both
clusters included early auditory cortex (including TE 1.0, 1.1, 1.2 and
3) and the right cluster extended in anterior direction to the temporal
pole (cf. Table 2 and Fig. 4a), note the similarity to the corresponding
searchlight contrast). The V–AV incongruent contrast yielded two
similar clusters of significantly greater activation for the AV incongru-
ent condition (i.e. the one including auditory stimulation). These clus-
ters again spanned almost the whole of bilateral superior temporal
gyri, including early auditory cortex (cf. Table 2 and Fig 4b).

For a more direct comparison between univariate contrasts and
the multivariate analysis we also tested for univariate effects in the
retinotopically defined ROIs of each participant. For this contrast we
averaged the voxel responses (betas) for each participant and condi-
tion across the whole of the respective ROI (cf. Fig. 2b)). Response
amplitudes did not differ significantly between the three conditions
involving visual stimuli in all three ROIs (V1: F(2,28)=0.01, p=.99,
n.s.; V2: F(2,28)=0.25, p=.78, n.s.; V3: F(2,28)=1.12, p=.34).
Table 1
Significant searchlight clusters. Details of clusters where decoding accuracy was sig-
nificantly different between conditions. Coordinates of peak voxels are in MNI space,
cluster size is in voxels and p-values are whole brain FWE corrected at cluster level,
t-values correspond to peak voxels. Anatomical labels refer to the Juelich Histological
atlas. See Materials and methods for details.

Contrast p value Cluster
size

t-value Peak voxel Label

AV congruent–V b .001 861 6.33 [62 −2 0] r superior
temporal gyrus

[50 16 −12] r temporal pole
[62 20 −12] (Not assigned)

.006 408 5.40 [−56 −2 8] l superior
temporal gyrus

[−52 4 2] l Rolandic
operculum

[−60 6 −10] (Not assigned)
V–AV incongruent b .001 699 6.93 [−32−82−4] l inferior

occipital gyrus
b .022 303 7.75 [−4 −94 −2] l calcarine bank
Discussion

We presented participants with naturalistic, dynamic audiovisual
stimuli while they performed an incidental fixation task. Replicating
previous studies (e.g. Nishimoto et al., 2011), we could decode stim-
ulus identity from spatial patterns of BOLD signals in retinotopic cor-
tices well above chance. More specifically, we could decode stimulus
identity significantly better than chance from BOLD patterns in V1-3
(separately) for all conditions containing visual stimuli (AV congruent,
AV incongruent and V), but not for the audio only (A) condition.

There were no detectable differences in mean amplitudes of BOLD
signals evoked in V1-3 for the AV congruent, AV incongruent and V
conditions. However, andmost importantly, decoding accuracy varied
significantly with the presence and congruence of sounds in V2 and
somewhat in V3. Decoding accuracy for patterns in V2 was worse for
the AV incongruent condition compared to both, the V and AV con-
gruent condition. Decoding accuracy in V3 was worse for the AV in-
congruent compared to the V condition. Worsening of local decoding
accuracies for the AV incongruent (compared to V) conditionwas con-
firmed and extended to area LO (and possibly V1) by searchlight
analyses.

Significantly worse decoding for the AV incongruent condition in
V2 (compared to the AV congruent and V conditions) was associated
with reduced inter-trial reliability of patterns for a given stimulus in
this condition (again, in comparison to the AV congruent and V condi-
tions). In V3 reduced decoding accuracy for the AV incongruent condi-
tion relative to the V condition went along with reduced inter-trial
reliability for the same comparison. In contrast to the reliability of
intra-stimulus patterns, no significant modulation of inter-stimulus
pattern similarity could be found.

Modulation of pattern discriminability

Our results demonstrate modulation of stimulus evoked pattern
discriminability as a consequence of multisensory interactions in
human early retinotopic cortex. They are in accordwith and extend re-
cent findings in macaque primary auditory cortex (Kayser et al., 2010)
and superior temporal sulcus (Dahl et al., 2010). Notably, we observed
thesemodulations in early visual cortex using high-contrast visual stim-
uli that covered only central parts of the visual field (b10° eccentricity).
Our data suggest that this effect reflected modulations of inter-trial
reliability of neural activation patterns for a given stimulus, i.e. the
average multivariate mean for a given stimulus was not shifted, but
the trial-by-trial scatter around this mean depended on multisensory
context. This is also in line with the findings of Kayser et al. (2010)
and Dahl et al. (2010).

Note that we could not discriminate BOLD signal patterns in visual
cortex evoked by purely auditory stimuli. This contrasts with the find-
ings that auditory motion direction can be decoded from lateral oc-
cipital cortex (Alink et al., 2012) and visual stimulus identity can be
decoded from early auditory cortex (Hsieh et al., 2012; Meyer et al.,
2010). A possible explanation for this difference is that such effects
rely on top-down attention or even cross-modally evoked imagery
(Hsieh et al., 2012; Meyer et al., 2010). It is possible that this kind
of effect was prohibited or attenuated by our fixation task. Alterna-
tively, it is possible that only certain types of auditory signal such as
those associated with motion can be decoded from visual cortex.

Interestingly modulations of BOLD pattern discriminability in vi-
sual cortices were not accompanied by overall amplitudemodulations
in our experiment. This differs from the results of previous fMRI stud-
ies that found increased univariate signals in early sensory areas for
audiovisual concurrent compared to purely visual stimulation (e.g.
Martuzzi et al., 2007; Noesselt et al., 2007; Watkins et al., 2006). This
difference might reflect the fact that these earlier studies used tran-
sient, periliminal or low contrast stimuli while here we used natural-
istic stimuli. Also, Kayser et al. (2010) and Dahl et al. (2010) found
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Fig. 3. Results for whole brain searchlight analysis. Heat maps for searchlight contrasts. Searchlight maps indicating local pattern discriminability for each condition were
normalised and contrasted on the second level (see Materials and methods for details). Colour coding for t-values is indicated by colour bars at the bottom of a) and b). Please
note that the contrast between the audiovisual incongruent and congruent conditions was tested as well but yielded no significant results. Note that contrasts are directed and
that contrasts of opposite direction yielded no significant results.

a) Increased pattern discriminability for the audio-visual congruent condition as compared with the visual only condition in bilateral superior temporal gyrus (see Table 1 and
Results section for details).

b) Increased pattern discriminability for the visual only condition as compared with the audio-visual incongruent condition in left lateral occipital area and the banks of the
calcarine.

Table 2
Significant clusters for the univariate analysis. Details of clusters for which signal inten-
sity was significantly different between conditions. Coordinates of peak voxels are in
MNI space, cluster size is in voxels and p-values are whole brain FWE corrected at
cluster level, t-values correspond to peak voxels. Anatomical labels refer to the Juelich
Histological atlas. See Materials and methods for details.

Contrast p value Cluster
size

t-value Peak voxels Labels

AV congruent–V b .001 1392 8.32 [57 −31 13] r superior
temporal gyrus

7.81 [69 −22 16] ″

7.69 [54 −7 −8] ″

b .001 900 8.26 [−57 −16 10] l superior
temporal gyrus

7.76 [−48 −25 10] ″

7.05 [−42 −19 13] l Rolandic
operculum

AV incongruent–V b .001 1461 8.04 [54 −7 8] r superior
temporal gyrus

7.34 [57 −31 13] ″

7.20 [45 −19 13] r Heschl's gyrus
b .001 1002 7.27 [−48 −25 10] l superior

temporal gyrus
7.17 [−54 −1 −14] ″

7.02 [−48 −1 −8] ″
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somenet amplitude reduction for bimodal stimulation. However, our V
condition differed from their design: in our experiment it was not
truly unimodal because scanner noise was present throughout the
experiment. Increased BOLD amplitude is also observed in parts of
early visual cortex for spatially incongruent (vs. congruent) audiovi-
sual stimuli (Meienbrock et al., 2007). Our failure to find such an effect
might be due to differences in stimuli and design. Audiovisual in/
congruence was specific to spatial alignment in that earlier study
while our manipulation affected temporal and semantic congruence
as well. Also, we used an orthogonal fixation task, while the earlier
study required participants to explicitly judge the spatial congruency
of stimuli. Congruency effects may therefore be task-dependent and
this should be examined in future work. Stimulus and congruency
directed attention might influence multisensory modulation of uni-
variate response levels. Finally, the effect reported in that earlier
study was only observed for a subgroup of vertices within retinotopic
ROIs of one hemisphere at a relaxed statistical threshold so our failure
to observe such moderate effects may be due to a lack in statistical
power. Whatever the reasons for the dissociation between modula-
tion of overall amplitude and pattern discriminability in the present
work, it renders our results important in the context of the debate
about criteria for multisensory interactions. These usually concern dif-
ferent types of amplitudemodulation and the question which of them
qualify as ‘multisensory’ (e.g. Beauchamp, 2005). Our results demon-
strate multisensory interactions in the absence of any detectable net
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Fig. 4. Results for whole brain univariate analysis. Heat maps indicating differences in signal amplitude between conditions. Colour coding for t-values is indicated by the colour bar
at the bottom. See Results section and Table 2 for details. Note that contrasts are directed and that contrasts of opposite direction yielded no significant results.

a) Increased signal amplitude for the audio-visual congruent condition as compared with the visual only condition in bilateral superior temporal gyri.
b) Increased signal amplitude for the audio-visual incongruent condition as compared with the visual only condition in bilateral superior temporal gyri.
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amplitude modulation. Furthermore, one might argue that, in the
context of naturalistic stimuli, modulation of pattern discriminability
may be themost relevant effect of multisensory interactions. Recently,
it has been argued that the role of primary sensory cortices in audio-
visual integration might be limited to low level stimulus features
and transient stimuli (Giani et al., 2012; Werner and Noppeney,
2010). The basis for this argument is the observed insensitivity of
the (univariate) BOLD signal amplitude in primary auditory cortex to
higher order stimulus congruence (Werner and Noppeney, 2010)
and the absence of cross-modulation frequencies for audio-visual
steady-state responses in MEG (Giani et al., 2012; note that the latter
method does not allow the presentation of audio-visual congruent
stimuli). Our results suggest the null results in these studies could re-
flect an insensitivity of the analysismethods used to detectmodulations
of the encoded stimulus information (like pattern discriminability or
pattern reliability). This underscores the need for further research to
clarify the exact role of primary sensory cortices in audiovisual stimulus
integration.

Potential mechanisms modulating audiovisual pattern discriminability

How do sounds affect the reliability of early visual cortex signals?
Most likely this effect rests on subthreshold modulation of visual
neurons, rather than on classical bimodal neurons. Bimodal neurons
in early visual cortex seem to be restricted to the far periphery of vi-
sual space (which we did not stimulate here) whereas subthreshold
modulation also affects more central representations (Allman and
Meredith, 2007). Furthermore, multisensory modulation of spike
train discriminability is found for subthreshold modulation of visual
neurons (Dahl et al., 2010). One could speculate that this subthreshold
modulation in turn could be mediated via phase alignment of ongoing
oscillations (e.g. Lakatos et al., 2007; Naue et al., 2011; Romei et al.,
2012). Some results from a recent MEG study are of particular interest
(Luo et al., 2010), showing that accuracy of decoding video stimuli
from phase patterns of occipital channels depends on audiovisual con-
gruency. Furthermore, in that MEG study the trial-by-trial phase
coherence (i.e. reliability) for a given video stimulus was affected by
audiovisual congruency as well. It has been proposed that temporal
profiles of neural activity in different primary sensory areas can
work as oscillatory attractors on each other, effectively yielding an on-
going modulation of excitability (Lakatos et al., 2009; Schroeder et al.,
2008). This could serve to minimise temporal uncertainty (Friston,
2009) and would be very similar to what was proposed as an early
theory of ‘dynamic attention’ (Jones, 1976; Large and Jones, 1999).
Note, that for our design such effects would likely be stimulus driven,
rather than top-down controlled— participants were engaged in a fix-
ation task and had no incentive to concentrate on the dynamic stimuli
in the background.

If temporal fine-tuning is indeed a mechanism behind our finding,
it is interesting thatMVPAwas sensitive enough to pick it up despite the
coarse temporal resolution of fMRI and the fact that decoding rests on
spatial patterns of activation. The studies by Kayser et al. (2010) and
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Dahl et al. (2010) investigated modulation of single unit firing rate
variability. This could translate to BOLD pattern variability, if the vari-
ance of the net population amplitude in a voxel would be modulated
in effect — or at least the variance of modulatory pre-synaptic activity
contributing to the BOLD-signal (Cardoso et al., 2012; Friston, 2012).

Null results with regard to enhanced pattern discriminability and V1

Our data did not show significant modulation of pattern discrimi-
nability in V1. For V2 and V3 they only showed reduced pattern dis-
criminability in the AV incongruent condition, but no enhancement
for the AV congruent condition. Null-results need to be interpreted
cautiously for several reasons. In our case, there are additional,
design-specific reasons to be cautious: Multisensory interactions are
generally more likely for peripheral (e.g. Allman and Meredith,
2007) and degraded (e.g. Ernst and Banks, 2002; Fetsch et al., 2012)
stimuli. However, our visual stimuli were naturalistic and had high
contrast, while the sounds we used were degraded due to scanner
noise. Thus our design was suboptimal for evoking maximum cross-
modal interaction effects and potentially biased towards detrimental
effects on visual processing rather than enhancement. That said, one
might expect audio-visual effects to be stronger in V2 than V1 if
they rest on direct crosstalk with auditory cortex, because these con-
nections seem to be much sparser in V1 than in V2 (Rockland and
Ojima, 2003). Furthermore, Kayser et al. (2010) found enhancement
of information representation in macaque A1 for AV congruent as
well as for AV incongruent stimuli. However, Dahl et al. (2010)
found only significant information degradation for visual neurons in
the AV incongruent condition, but no significant enhancement for
the AV congruent condition. In sum, it might be possible that the sig-
nal to noise ratio (SNR) of early visual responses is close to ceiling for
naturalistic stimuli, and thus early auditory responses are more likely
to gain from multisensory interactions. Future studies should para-
metrically vary the SNR of visual stimuli (or possibly both modalities)
to shed further light on this question.

Possible sources of multisensory interactions

Our data provide information about the effects of multisensory
interactions in V1-3, but not about their source(s). The multisensory
effects we observed could be mediated by feedback connections
from multisensory cortices, by feed-forward connections from the
superior colliculus and/or by direct connections between primary
sensory areas (cf. Driver and Noesselt, 2008; Klemen and Chambers,
2012) for an overview). In humans, analyses of functional connectiv-
ity could provide hints regarding these possibilities (e.g. psycho-
physiological interactions (PPI) Friston et al., 1997). Unfortunately,
however, the optimal design requirements for MVPA are very dif-
ferent from those for connectivity analyses (e.g. fast event related
designs to acquire many pattern examples for MVPA vs. longer task
blocks for PPI). Future studies could try to combine both analysis
techniques by applying both kinds of designs in one sample. This
would allow testing for correlations between the individual strength
of modulation with regard to information representation and with
regard to connectivity.

Conclusions

Multisensory interactions affect human visual cortex processing
from its earliest stages. For naturalistic stimuli, these interactions
can be restricted to reliability modulations of fine-grained patterns
and thus go undetected by common univariate analyses. This calls
into question the exclusivity of criteria for multisensory interactions
involving net amplitude modulation. The purpose of pattern discrim-
inability modulations is likely to enhance encoding reliability (esp. for
weak stimuli), but further research is needed.
Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.12.061.
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