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We present experimental evidence for scale invariant behaviour of the excitation spectrum in
phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing
density correlations in free expansion, we find that the temperature of an initial thermal state scales with the
spatial extension of the cloud as predicted by amodel based on adiabatic rescaling of initial eigenmodes with
conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to
adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.

A systematic understanding of non-equilibrium dynamics in many-body quantum systems is a longstand-
ing goal, with far-reaching applicability for many different fields of physics. Ultracold atom experiments
offer clean implementations of systems that are tunable, well isolated from the environment and the-

oretically tractable1,2. In particular, the profound understanding available for the one-dimensional (1d) Bose gas
makes it an ideal test bed for quantum many-body dynamics3.

Tunable parameters in the system’s Hamiltonian allow the controlled preparation of non-equilibrium states4–7.
The identification of characteristic scaling laws is an important step for the concise description of the subsequent
dynamical processes. Of particular importance are laws governing not only global parameters8–10 but ideally the
full spectrum of excitations, as studied in recent experiments with 2d Bose11,12 or Tonks-Girardeau gases4,13.

Recent work14 has shown that a general scaling property ofmany-body wavefunctions holds exactly for a broad
class of systems, including the weakly interacting 1d Bose gas addressed in this Letter. The existence of such a
scaling solution is a consequence of a dynamical symmetry of the underlying Hamiltonian. For an ultracold gas,
fast changes of control parameters in the Hamiltonian generally lead to quasiparticle production and heating15.
The existence of a scaling solution for the full spectrum of quasiparticle modes implies that so-called shortcuts to
adiabaticity (STA)16,17 can be engineered not only for the mean density profile of a 1d gas, but also for correlation
properties of the system in certain regimes of interaction strength18,19.

We show in this work that the scaling solutions for a true many-body wavefunction have their counterpart in
the hydrodynamic regime of our experimental system. We bring our system out of equilibrium by rapidly
changing its longitudinal confinement. The subsequent system evolution gives insight into the scaling properties
of the gas. This allows us to study the regimes and limits of such a manipulation, with an emphasis on STA
schemes. We furthermore demonstrate for the first time that STA schemes are valid for the second-order
correlation, and thereby the temperature, of weakly interacting 1d Bose gases.

Results and Discussion
In our experiments, we investigate the scaling solutions of hydrodynamic equations and how they can be applied
for the rapid control of the complete wavefunction of a many-body quantum system.

We start with a single quasicondensate of several thousand  Rb atoms in an elongated trap on an atom chip .20

The initial temperatures are set between 50 nK and 150 nK and linear densities range between 50 atoms/mm and
200 atoms/mm. Axially, the cloud is deeply in the Thomas-Fermi regime. Radially, the gas is described by an
interaction-broadened ground state wavefunction21–23. For these parameters, both the chemical potential and the
average thermal energy per particle fulfil the condition m,kBTƒ�hvr , where �hvr denotes the radial level spacing of
the trap with frequency vr , so that scattering into radial excited states is strongly suppressed and an effective 1d
system is realized24,20,25,21. After evaporative cooling, we keep an RF-shield 12 kHz above the trap bottom
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throughout our experiments to remove hot atoms. The cloud is
probed by standard absorption imaging techniques after a 4 ms to
10 ms long phase of time-of-flight expansion.
The geometry of the trap is governed by the current flow

through a central Z-shaped wire and two U-shaped control struc-
tures on the atom chip, as shown in figure 1(a). Panels (b)–(e)
show two different trapping potentials calculated for currents
tuned to IZ~2 A and IU~0 A, as well as IZ~1:5 A and IU~1
A. Varying IZ and IU results in traps with axial confinement
ranging from va~2p|16 Hz to va~2p|7 Hz, and radial con-
finement from vr~2p|600 Hz to vr~2p|1100 Hz. A rapid
change of the current ratio IU=IZ constitutes a quench of the
trapping potential and induces excitations.
In our first set of experiments we probe the dynamical scaling of

the phonon ensemble in the presence of an axial quadrupole-mode
collective excitation26 induced by such a quench. To this end, we
employ a linear ramp from va~2p|12:1 Hz to 2p|8:2 Hz, and
from vr~2p|630 Hz to 2p|990 Hz, respectively, of duration t.
The ramps of the trapping potential were designed to avoid trans-
verse excitations. We chose to maintain a constant transverse posi-
tion to avoid inducing a corresponding sloshing of the cloud. The
ramp duration was chosen to be longer than t<5 ms so that adiaba-
ticity with respect to the change of transverse trap frequency is ful-
filled. Axial dipole oscillations are suppressed by the symmetric
arrangement of the control wires.
We probe phononic excitations in the quasicondensate using a

thermometry scheme based on the analysis of density correlations
in free expansion27,28, as shown in the inset of figure 2(a). To extract
the temperature we compare the measured density correlation func-
tions with the results of a stochastic model29. Our analysis accounts
for the effects of the collective excitation on the free expansion (see
methods section below), and for the finite resolution of our imaging
system.
Figure 2 summarises our temperature measurements following

a quench. We show data for ramp times of 10 and 30 ms and
mean atom numbers of 11000 and 16000, compared to the beha-
viour expected from a scaling model building upon the results of
Ref14.
The scale invariance of the underlying Hamiltonian allows to cal-

culate time-dependent correlation functions: In the Thomas-Fermi
regime, the density profile exhibits self-similar scaling described by

n(z,t)~
n0
b

� �
1{

z2

R2
0b2

� �
H 1{

jzj
R0b

� �
, ð1Þ

with a time-dependent scale factor b(t)~R(t)=R0. Here, R0 and n0
denote the initial Thomas-Fermi radius and peak density, respectively,

Figure 1 | Time-dependent potentials on an atom chip. (a) The current ratio between a central Z-shaped wire and two U-shaped control wires allows us
to precisely tune the trap geometry. For a symmetric current flow, the trap minimum is positioned below the center of the Z-wire, with the long trap axis

aligned to the horizontal direction. (b) 2d cut through the trapping potentials for IZ~2A, IU~0A and (c) IZ~1:5A, IU~1A at a constant external Bias

field of B~26G, respectively. (d,e) Cuts through the radial trap minimum of the same potentials to show the axial trap deformation.

Figure 2 | Temperature evolution following a quench. Black circles:

temperatures measured from density correlations in free expansion.

Dashed lines: scaling law taking into account heating as described by the

expression h(t) discussed in the methods section, fitted for effective rates

for each dataset. Blue triangles, purple circles and red squares:temperatures

corrected for heating rate. Lines: scaling law T(t)~T(0):b{3=2 as discussed

in the main text. Error bars represent the standard error estimated by a

bootstrapping technique, as used in ref. 30. (a) Quench time t 5 10 ms,

atom number N<16:103+103, heating rate a:T(0)<0:54 nK/ms. Inset:

thermometry with density correlations in free expansion. Data points

correspond to an average of autocorrelations over 350 density profiles

integrated from pictures as depicted here. (b) t5 10 ms,N<11:103+103,
heating rate a:T(0)<0:28 nK/ms. (c) t~30 ms, N<16:103+103,
a:T(0)<0:55 nK/ms.
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H is the Heaviside function and z represents the axial coordinate.
The scale factor obeys an Ermakov-like equation31

€bzv2
a(t)b~

va(0)
2

b2
: ð2Þ

Using the rescaled mean-field density (1), we can write the linearised
hydrodynamic equations for density and velocity fluctuations dn and
dv, disregarding the quantum pressure term, as

L
Lt

dnz
_b
b

dnzz
L
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To solve these equations we introduce an ansatz of rescaled eigen-
modes for density and phase fluctuations. This approach yields a set of
uncoupled equations and hence nomixing ofmodes, finally predicting
an adiabatic time evolution of the corresponding occupation numbers.
For a thermal state, the initial phonon occupation numbers are given
by a Bose distribution

Nl(t~0)~
1

exp �hvl 0ð Þ
kBT

h i
{1

: ð5Þ

Adiabaticity results in a constant ratio vl(t)=T(t)~vl(0)=T(0). The
spectrum at t~0 is given by32

vl 0ð Þ~ vaffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lz1ð Þ

p
~

c0
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lz1ð Þ

p
, ð6Þ

with mode index l and initial sound velocity c0. For tw0, it scales
as vl(t)~vl(0)b

{3=2, due to the time-dependence of the sound
velocity c(t)~c0=

ffiffiffi
b

p
and radius R(t)~R0b(t). Hence, for an

initial state in thermal equilibrium, we obtain the temperature
scaling

T tð Þ~T 0ð Þb{3=2: ð7Þ
The density correlations in free expansion that our thermometry
scheme relies on are governed by the coherence function. For a
thermal state with homogeneous density, as realised in the vicinity
of the cloud center, it has the form20,32:

g 1ð Þ(z,0)^n z,0ð Þ exp {
mkBTjzj
2n(z,0)�h2

� �
, ð8Þ

where n(z,0) denotes the density at time t~0 and kB the
Boltzmann constant. Based on our model, the coherence function
is expected to scale as

~g 1ð Þ(z,t)^
n z,0ð Þ

b
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Figure 3 summarizes the first central result of our experiments:
The inset shows absolute temperatures plotted against measured
Thomas-Fermi radii. If the measured temperatures are scaled to

Figure 3 | Temperature as a power law of the scaling factor.Main figure: datasets presented in figure 2(a) (blue triangles), 2(b) (purple circles) and 2(c)

(red squares), respectively, recast in units of the initial temperature as a function of the scaling factor. Inset: data in absolute units. Vertical error bars are

standard errors resulting from a bootstrapping method as applied in ref. 30. Horizontal error bars correspond to the error of measured cloud widths,

normalised to the initial width. Dash-dotted line: power law fit to the data, with the lightly shaded area representing the fit’s 95% confidence bounds.

Black line: scalingmodel. Dark shaded area: classical field simulation with 120 sets of stochastic initial conditions generated by a SGPE. The plotted data is

corrected for the independently measured heating rate.
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the initial temperature and plotted against the scale parameter
b(t)~R(t)=R0, the datasets collapse onto a single line. This illustrates
a scaling behaviour that is universal in sense that it is independent of
absolute temperature, density or quench time. To validate our results
we furthermore performed numerical simulations based on a
stochastic Gross-Pitaevskii equation (SGPE)33–36, showing excellent
agreement with the scaling model (fig. 3).
So far, we considered the dynamics induced by a linear ramp of

the trapping potential. In the following, we demonstrate the con-
servation of phonon occupation numbers during shortcuts to adia-
baticity31,18,17 for the rapid expansion and compression of a 1d
quasi-BEC. To implement these shortcuts, we make use of an
optimal control approach that is in spirit similar to the method
proposed in ref. 37. We numerically solve the time-dependent 1d

GPE with a suitable parametrisation of the trap which is subject to
a global optimization procedure based on a genetic algorithm38,39.
The ramp speed is limited by the requirement of adiabaticity in the
transverse degree of freedom. This constraint also guarantees that
the gas remains in the 1d hydrodynamic regime, and that the
interaction strength varies slowly with time. The properties of
the ultracold gas therefore remain consistent with the conditions
necessary for the validity of the microscopic scaling laws14

throughout the ramp.
The upper panel in figure 4 shows a comparison between simu-

lation and experiment for a linear and a shortcut ramp performing a
decompression within 30 ms from a trap with frequencies
v0

a~2p|11:5 Hz and v0
r~2p|764 Hz to vf

a~2p|7 Hz
and vf

r~2p|1262 Hz. The subsequent dynamics is observed

Figure 4 | STA for fast confinement changes. (a) Density profiles for optimal and linear ramps in simulation and experiment. Experimental profiles are

averaged of 5 shots at identical parameters, taken at a free expansion time of 5 ms. (b) Measured Thomas-Fermi radii for an optimal decompression (red

circles) fromv0
a~2p|11:5Hz,v0

r~2p|764Hz tovf
a~2p|7Hz,vf

r~2p|1262Hz, and for a linear ramp (blue squares) compared with results from

a GPE simulation (black and black-dashed lines). (c) Measured Thomas-Fermi radii after an optimal (red circles), and a linear ramp (blue squares) for a

compression of the cloud, inverting initial and final trap frequencies as given for panel (b), again compared with GPE simulation results including

damping (black and black-dashed lines). (d),(e) Optimal trap frequency ramp for decompression (d) and compression (e) within 30 ms (red line).

Dashed lines: corresponding linear ramps. (f) Temperature measurements before and after the STA with (green diamonds) and without correction for

extrinsic heating rate (black circles), compared to simulation results (black line).

www.nature.com/scientificreports
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throughout a period of 170 ms, each picture taken after a short free
expansion time of 5 ms, showing excellent agreement with simula-
tions. It is interesting to note that our shortcut ramps are similar to
theoretical results derived from a counter-diabatic driving method
reported recently19.
For the STA, we expect an adiabatic state change, defined by

T=T0~vf
a=v

0
a. The temperature measurements, corrected for the

measured heating rate, are in good agreement with the adiabatic
prediction of T=T0<0:609 for the implemented decompression
shortcut, confirming that there is no additional heating during the
applied procedure.

Conclusion
In summary, we have characterised the temperature of the phonon
ensemble in a breathing quasi-1d Bose gas for different initial con-
ditions, and used it to test the predicted dynamical scale invariance in
the excitation spectrum of a quasi-1d Bose gas. Following these scal-
ing laws, we have experimentally demonstrated rapid adiabatic
expansion and compression of a 1d Bose gas in the hydrodynamic
regime, allowing fast transformation of the trapped cloud without
additional heating.
Our work is only the beginning for studies of many-body scaling

solutions and shortcuts to adiabaticity. The existence of scaling solu-
tions has been proposed for a large class of cold atom systems14. In
principle, this opens up the interesting possibility to apply the tech-
niques applied here to a variety of settings, such as fermionic systems
or the 1d Bose gas with intermediate or strong interactions. We
expect that studying the effect of quasiparticle interactions on the
implementation of shortcuts to adiabaticity will shed new light on the
complex many-body dynamics in these systems, in addition to pro-
viding novel tools for their controlled manipulation.
We expect that such extensions to studies in regimes of greater

interaction strength, and to systems out of thermal equilibrium, will
benefit from the tools presented in this work.

Methods
Condensate preparation and detection.We employ standard cooling and magnetic
trapping techniques40 to prepare ultracold quasi-one-dimensional samples of
87Rubidium atoms in the jF~2,mF~2w state on an atom chip20,41. Atom chips
feature microfabricated wire structures to create fields for atom trapping and

manipulation42. The structures used in our experiments are produced by masked
vapor depositon of a 2 mm gold layer on a silicon substrate, with a width of both
trapping and control wires of 200 mm. For detection, we employ resonant absorption
imaging43 using a high quantum-efficiency CCD camera (Andor iKon-M 934
BR-DD) and a diffraction-limited optical imaging system characterised by an Airy
radius of 4.5 mm. The RF shield at 12 kHz above the bottom of the trap is used to limit
the number of atoms in the thermal background cloud populating transverse excited
states of the trap, which would otherwise adversely affect our thermometry scheme by
reduction of interference contrast in free expansion.

Characterization of the breathing mode. We characterise the breathing mode
excited by a linear trap frequency ramp from va~2p|12:1 Hz to 2p|8:2 Hz, and
vr~2p|630 Hz to 2p|990 Hz, respectively, in figure 5. As an example, the upper
panel shows the time evolution of the cloud radius after a ramp with duration t 5
12.5 ms. Fitting data as presented here allows us to extract frequencies, damping rates
and amplitudes of the breathing mode. The frequency vb is influenced by the total
atom number in the trap, and is expected to vary with the axial trap frequency
between vb=va~

ffiffiffi
3

p
in the 1d limit, and vb=va~

ffiffiffiffiffiffi
2:5

p
representing the elongated

3d regime26. The amplitude strongly depends on the duration and shape of the trap
frequency ramp. The lower panel in figure 5 shows a comparison of measured
breathing amplitudes for different ramp times between 2 ms and 100 ms with results
calculated with a 1dGross-Pitaevskii equation (GPE), taking into account corrections
to the interaction term relevant in the 1d/3d crossover regime44, and shows good
agreement in the chosen parameter range.

Thermometry. In this work we use the thermometry scheme proposed and
demonstrated in ref. 28,27 based on the analysis of density correlations in freely
expanding phase-fluctuating quasi-1d condensates and comparison with numerically
calculated density profiles29.

Breathing contributes a velocity field characterized by the derivative of the scale
parameter _b, leading to an additional axial compression or expansion of the density
profile during free expansion. This effect can be accounted for by an additional phase
factor

Y(z)~y(z)exp
im
4�h

_b
b
z2

" #
ð10Þ

in the numerics, where b and _b are determined by fits to the measured breathing
oscillations. The error on the temperature measurements is estimated by a boot-
strapping method as outlined in ref. 30.

Derivation of the temperature scaling. The general conditions for the existence of a
scaling solution are stated in reference14. For the 1d Bose gas, they are fulfilled in the
presence of contact interactions, as well as a harmonic, linear or vanishing axial
trapping potential. Given that our system is a 1d quasicondensate, and the trapping
potential is harmonic, we can derive the corresponding hydrodynamic scaling
relations for correlation functions. Our starting point is the self-similar scaling of the
density profile:

n(z,t)~
n0
b

1{
z2

R2
0b2

� �
H 1{

jzj
R0b

� �
: ð11Þ

H denotes the Heaviside function, R0 the initial Thomas-Fermi radius and b the scale
parameter. Similar to the discussion of the corresponding equilibrium problem32, a
scaling solution in terms of eigenmodes for density and velocity fluctuations dn and
dv can be formulated as

dn~
1
b

X?
l~1

Pl ~zð ÞAl cos gl ð12Þ

and

dv~{

ffiffiffi
1
b

r X?
l~1

g
mR0vl(0)

d
d~z

Pl ~zð ÞAl sin gl , ð13Þ

with the Legendre polynomials Pl(~z), the interaction constant g, rescaled coordinates
~z~z=R~z=(R0b), and time-dependent amplitudes Al sin gl andAl cos gl . gl denotes
the frequency of the oscillation between the quadratures of the mode l.
Correspondingly, the initial equilibrium spectrum scales as

vl(t)~vl(0)b
{3=2:

Substituting dn and dv into the linearised Euler equations

L
Lt

dnz
_b
b
dnz

_b
b
z
L
Lz

dn~{
n0
b

L
Lz

1{
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R2
0b2

� �
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� �
ð14Þ

L
Lt

dvz
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b
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z
L
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g
m

L
Lz

dn, ð15Þ

where we have disregarded the quantum pressure term, yields
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Figure 5 | Characterization of the breathing mode induced by a trap
quench.Upper panel: Breathing induced by a linear quench during a time

t~12:5 ms. The fit includes an exponential damping term, with a time

constant 1=l~500ms. Lower panel: Breathing amplitude plotted against

quench time t. Error bars correspond to 95% confidence intervals of fits as

shown in the upper panel. The theoretical calculations (line) are based on

numerically solving a 1d GPE.
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_gl~vl tð Þ{ 1
2

_b
b
sin gl cos gl ,

_Al

Al
~{

1
2

_b
b
sin2 gl : ð16Þ

Since the characteristic inverse time scale of the breathing mode ( _b=b)max~va=2 is
small compared to the characteristic frequencies vl 0ð Þ of the phonon modes with
lw2, we can average over rapid oscillations of cosgl and singl to reduce these
expressions to _gl^vl tð Þ and Al^Al 0ð Þ(R0=R)

1=4, and the phonon modes are
expected to scale adiabatically. Then the initial number of phonons in a thermal
state,

Nl(t)~
1

exp �hvl tð Þ
kBT tð Þ{1

~Nl(0) ð17Þ

is conserved, resulting in

vl tð Þ
T tð Þ ~

vl 0ð Þ
T 0ð Þ : ð18Þ

This leads to the observed temperature scaling T(t)~T(0)b{3=2.
The decay of the coherence function of a quasicondensate is dominated by phase

noise45. We can express phase fluctuations in terms of velocity fluctuations using the
relation

dwl z,tð Þ~R

ffiffiffi
1
b

r
m
�h

ð~z
0
d~z0d~v ~z0ð ÞAl sin gl ,

where

d~v~
g

mR0vl(0)
d
d~z

Pl ~zð Þ, Al^Al 0ð Þ(R0=R)
1=4:

Therefore the relation between initial and time-dependent modes dwl reads

dwl z,tð Þ~b1=4dwl z=b,0ð Þ sin gl tð Þ
sin gl 0ð Þ : ð19Þ

The time-dependent one-body reduced density matrix can be expressed as

r z,z’,tð Þ~
ffiffiffiffiffiffiffi
nn’

p
exp {

1
2

dw2zz’
	 


z
im _b
2�hb

z2{z’2
� �" #

, ð20Þ

with

dw2zz’
	 


~ dw z,tð Þ{dw z’,tð Þ½ �2	 

,

as well as n~n(z) and n’~n(z’). Using dw~
X

l
wl , we can write the density matrix

(20) in terms of themodes given in equation (19). Substituting and following the steps
in reference45, we find that near the cloud center, where the density is practically
uniform and we can use trigonometric approximations for Pl46,

r z,z’,tð Þ^
ffiffiffiffiffiffiffi
nn’

p

b
exp {

jz{z’jffiffiffi
b

p
lT

z
im _b
2�hb

z2{z’2
� �" #

, ð21Þ

with a coherence length lT~
2n zð Þ�h2
mkBT(0)

. This corresponds to a transformation of the

form

r z,z’,tð Þ~ 1
b
r

zffiffiffi
b

p ,
z’ffiffiffi
b

p ,0

� �
exp {iF(t) z2{z’2

� �
 �
,

as predicted in reference14, with the difference that the spatial coordinates scale with
b{1=2 instead of b{1. This difference is a consequence of the the Thomas-Fermi
approximation. In the hydrodynamic regime, scale invariance therefore holds even if
the interaction strength is kept constant. In contrast, reference14 assumes a suitable
tuning of the interaction constant, thereby yielding an exact solution valid for
arbitrary values of the Lieb-Liniger parameter.

Heating. The temperature scaling T~T0b
{3=2 satisfies the equation

_T
T
~{

3
2

_b
b
: ð22Þ

In our experiment we observe heating during evolution times of several hundreds of
milliseconds.We find that all ourmeasurements are compatible with a linear increase
of temperature over time, which can be represented by adding a constant heating term
to the equation:

_T~{
3
2

_b
b
TzaT0: ð23Þ

This equation is solved by T~T0h(t)b
{3=2, with h(t) given by

h(t)~1za

ðt
0
dt’b t’ð Þ3=2: ð24Þ

The integral can be calculated numerically and a corresponds to the regular heating
rate in units of the initial temperature for constant b.

Finite temperature simulations.We solve a stochastic 1d Gross-Pitaevskii equation
(SGPE)33–36 of the form

i�h
Ly
Lt

~ 1{ic Tð Þ½ � HGP{m½ �yzg, ð25Þ

where

HGP~{
�h2

2m
L2

Lz2
z

1
2
mv2

az
2zg1d jyj2: ð26Þ

Here m denotes an external chemical potential, and c(T) is a damping coefficient that
is coupled to the d-correlated noise term g via a fluctuation-dissipation theorem:

hg� z,tð Þg z’,t’ð Þi~2�hkBTc Tð Þd t{t’ð Þd z{z’ð Þ: ð27Þ
Repeated solution of the SGPE yields a set of independent wave functions
representing a thermal state. We use this state as initial condition for propagation
with a time-dependent Gross-Pitaevskii Hamiltonian without any noise or damping
terms. Such an approach has previously been applied to model condensate formation
in atom chip traps47 and is very similar to other classical field methods based on
stochastic sampling of initial conditions48,49. The simulation results are analysed with
the same procedures as the experimental data.
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