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Modeling tissue-relevant Caenorhabditis elegans
metabolism at network, pathway, reaction, and
metabolite levels
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Abstract

Metabolism is a highly compartmentalized process that provides
building blocks for biomass generation during development, home-
ostasis, and wound healing, and energy to support cellular and
organismal processes. In metazoans, different cells and tissues
specialize in different aspects of metabolism. However, studying
the compartmentalization of metabolism in different cell types in
a whole animal and for a particular stage of life is difficult. Here,
we present MEtabolic models Reconciled with Gene Expression
(MERGE), a computational pipeline that we used to predict tissue-
relevant metabolic function at the network, pathway, reaction,
and metabolite levels based on single-cell RNA-sequencing (scRNA-
seq) data from the nematode Caenorhabditis elegans. Our analysis
recapitulated known tissue functions in C. elegans, captured meta-
bolic properties that are shared with similar tissues in human, and
provided predictions for novel metabolic functions. MERGE is
versatile and applicable to other systems. We envision this work as
a starting point for the development of metabolic network models
for individual cells as scRNA-seq continues to provide higher-
resolution gene expression data.
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Introduction

Metabolism can be studied at a systems level using genome-scale

metabolic networks that describe the total collection of metabolic

reactions required for the generation of biomass and energy, and

the general maintenance of homeostasis (O’Brien et al, 2015;

Angione, 2019). A systems-level understanding of metabolism in

complex multicellular organisms requires the reconstruction of

metabolic networks at the level of different tissues and, ultimately,

individual cells. To understand the function of metabolic networks

at the level of individual cells or tissues, it is important to know

which parts of the whole network are active in each cell or tissue

and which parts are inactive. Single-cell or tissue-level protein

expression and enzyme activity data are often not available.

However, we and others have shown that mRNA levels provide a

powerful proxy to construct context-relevant metabolic network

models (Machado & Herrgard, 2014; Robaina Estevez & Nikoloski,

2014; Yilmaz & Walhout, 2016).

The nematode Caenorhabditis elegans is a hermaphrodite that

develops from embryos through four larval stages to adults via a

deterministic lineage. Adult C. elegans are comprised of 959 somatic

nuclei that form the major tissues, such as muscle, intestine, and

hypodermis (skin). Caenorhabditis elegans is a bacterivore that can

be fed individual bacterial strains. Caenorhabditis elegans tissues

and metabolism share many functions with mammals. Therefore, it

provides a relatively simple model for understanding animal meta-

bolism at a systems level. We have previously reconstructed a

C. elegans genome-scale metabolic network model (Yilmaz &

Walhout, 2016), which we validated using flux balance analysis

(FBA) (Raman & Chandra, 2009).

Metabolic network models and gene expression data can be

integrated at the network level qualitatively, semi-quantitatively,

or quantitatively. Qualitative methods typically define context-

specific networks by excluding reactions that are not associated

with highly expressed genes (Jerby et al, 2010; Agren et al, 2012;

Wang et al, 2012; Vlassis et al, 2014). Semi-quantitative

approaches predict the metabolic state in the form of a flux distri-

bution that avoids flux in reactions associated with lowly

expressed genes and may divert flux to reactions associated with

highly expressed genes (Becker & Palsson, 2008; Zur et al, 2010).

Quantitative integration methods that can model tissue metabolism
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have also been developed (Brandes et al, 2012; Navid & Almaas,

2012; Pandey et al, 2019). Such methods fit flux distributions to

expression data in a continuous fashion. However, these methods

typically depend on a selected objective function such as biomass

production, and it is not feasible to capture all metabolic functions

with a single objective function.

Here, we developed a new computational pipeline we name

MERGE (MEtabolic models Reconciled with Gene Expression), a

combined approach (Fig 1A) that starts with a semi-quantitative,

network-level integration, evaluates the variability of the resulting

flux distribution to obtain tissue-specific metabolic networks, and

finally uses these networks to quantitatively integrate local gene

expression data at the pathway level to provide relative flux predic-

tions at the reaction and metabolite levels. We used MERGE to study

tissue metabolism in the nematode C. elegans based on scRNA-

sequencing data obtained at the second larval stage (L2) (Cao et al,

2017). We derived functional metabolic network models of seven

major tissues for which transcriptomes were generated in the refer-

ence study (Cao et al, 2017) by aggregating scRNA-seq data from

thousands of individual cells that originate from the same tissue in a

population of animals. Our results recapitulate known tissue func-

tions, reveal metabolic properties that are shared with similar

tissues in human, and predict numerous novel metabolic functions.

MERGE provides a versatile tool for the integration of high-quality

gene expression data with genome-scale metabolic network models

that provides an important step toward the quantitative modeling of

metabolism at the level of individual cells.

Results

Updates in C. elegans metabolic network reconstruction

Prior to deriving tissue-relevant metabolic networks, we updated

our previous model of C. elegans metabolism (Yilmaz & Walhout,

2016) named iCEL1273 (Fig 1B, Tables EV1–EV3). The updated

model, which we refer to as iCEL1314, retains a similar structure to

the original model and the additions did not affect major functions

of the network (Yilmaz & Walhout, 2016). The updates include the

reconstruction of an ascaroside biosynthesis pathway that produces

the most abundant ascarosides (von Reuss et al, 2012; Zhang et al,

2015; Artyukhin et al, 2018) (Fig EV1, Appendix Supplementary

Methods), the incorporation of new transport reactions based on the

recently updated human metabolic network model Recon 3D (Brunk

et al, 2018), two genes and four reactions from ElegCyc (Gebauer

et al, 2016), and different types of manual curations varying from

the elimination of pseudo- and dead genes based on WormBase

(Harris et al, 2013) to the modification of the fatty acid composition

of sphingolipids (Witting et al, 2018). iCEL1314 contains 1,314

genes, 2,230 reactions, and 907 unique metabolites (Fig 1C, Tables

EV2 and EV3).

Processing of the gene expression dataset

For the generation of tissue-relevant metabolic network models, we

selected a high-quality scRNA-seq dataset of the L2 stage that was

used to derive aggregated transcriptomes of seven major tissues

(Cao et al, 2017) (Fig 1D). In the first step of MERGE, we developed

a semi-quantitative approach where genes are divided into four cate-

gories for each tissue: highly, moderately, lowly, and rarely

expressed (Fig 1C, Table EV4). In a tissue, flux is encouraged in

reactions associated with genes that are highly expressed, while

reactions dependent on lowly or rarely expressed genes are discour-

aged from carrying flux. Reactions associated with moderately

expressed genes are left free, so they carry flux only if the flux in

the rest of the network requires them to (Fig 1C). To place genes

into different categories, we used a statistical analysis of gene

expression, rather than arbitrary cutoffs (Fig EV2 and Appendix Fig

S1, Materials and Methods). In addition, we developed a heuristic

algorithm to recategorize moderately expressed genes as highly or

lowly expressed if they are enriched or depleted in some tissues

relative to others (Fig EV3). The distribution of the four gene

expression categories was similar for each tissue (Fig 1E). However,

when all tissues were combined, we found that the majority of

metabolic genes are highly expressed in at least one tissue (Fig 1E).

These results indicate that most of the metabolic network is active

somewhere in L2 animals and that a large portion of the network is

enriched or depleted in different tissues.

Dual-tissue model for data integration

As in mammals, dietary nutrients ingested by C. elegans are not

immediately available to all tissues. In C. elegans, the bacterial diet

is first ingested and then ground by the pharynx to be delivered to

the intestinal lumen. There, intestinal cells uptake bacterial biomass

components, degrade macromolecules to extract nutrients, and

▸Figure 1. Overview of the updated Caenorhabditis elegans metabolic network model and gene expression dataset used to derive tissue-relevant functions.

A Computational pipeline to predict tissue function using tissue-level gene expression data.
B Cartoon outlining the update of the C. elegans metabolic network model. GPR, gene-protein-reaction association.
C Conceptual overview of integration of iCEL1314 with four categories of genes: highly, moderately, lowly, and rarely expressed. The predicted flux state in a tissue is a

flux distribution that trails reactions associated with highly expressed genes in that tissue, while avoiding those associated with lowly expressed and rarely expressed
genes. Circles and arrows indicate metabolites and reactions, respectively. Black arrows show flux, with thicker arrows indicating higher flux. Boxes depict enzymes
encoded by genes that have expression levels indicated by color. Dashed arrows indicate reactions with no flux in the preliminary flux distribution stage according to
Fig 2B but are then detected as latent reactions and are forced to carry flux when possible (see text for details).

D To derive tissue-relevant metabolic network functions, a gene expression dataset obtained with single-cell RNA-seq of L2 animals was used (Cao et al, 2017). Single-
cell data were combined by the authors to provide high-quality gene expression data for the seven tissues shown.

E Distribution of metabolic genes in iCEL1314 in different expression categories in each individual tissue and in all tissues combined, with colors as in (B). For the
combination of data, the union set of highly expressed genes and the intersection set of rarely and lowly expressed genes are illustrated with corresponding colors.
One gene which was lowly expressed in some tissues and rarely expressed in others is not shown in the combined data.

2 of 20 Molecular Systems Biology 16: e9649 | 2020 ª 2020 The Authors

Molecular Systems Biology Lutfu Safak Yilmaz et al



RNA-seq data iCEL1314

D E

B

highly expressed
genes

moderately expressed
genes

lowly expressed 
genes

rarely expressed
genes

integrated model

a

u v&

y
w|

b&
c

i

r

x

g

l

y
w| y
w|

x

d e f

j

mk

t

p s

h

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

n&
o

z

q

C a

u v&

y
w|

b&
c

i

r

x

g

l

y
w| y
w|

x

d e f

j

mk

t

p s

biomass

nutrient

waste

product

h

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

n&
o

z

q

a

u v&

y
w |

b&
c

i

r

x

g

l

y
w| y
w|

x

d e f

j

mk

t

p s

h

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

n&
o

z

q

iCEL1273

1273 genes
1985 reactions 
884 metabolites 

ElegCycmanual curation

Ascaroside biosynthesis
Further annotations
Physiological considerations
Reaction stoichiometry
Flux balance analysis

asp-1

+79 reactions 
- 61 reactions 

+56 genes 
- 17 genes 

56 GPRs modified 
21 reactions modified 

i

g

l

y
w| y
w| j

mk

h6 7 8

10 11 12

806 genes
1924 reactions 
950 metabolites 

Recon 3D

>10K reactions 

+4 reactions  

+2 gene 

1314 genes
2230 reactions
907 metabolites

muscle
hypodermis

pharynx

intestine

gonadneurons glia

+121 transport reactions  
+105 exchange reactions  

A

Tissue-level
gene expression

+ iMAT++
OFDs

Flux Variability 
Analysis

Tissue-level
metabolic 
networks Quantitative

integration

Flux 
potentials

Prediction of tissue-level metabolic functions

MERGE computational pipeline

Metabolic 
network model

Figure 1.

ª 2020 The Authors Molecular Systems Biology 16: e9649 | 2020 3 of 20

Lutfu Safak Yilmaz et al Molecular Systems Biology



subsequently deliver transportable nutrients to other tissues. To

properly simulate nutrient uptake, processing, and delivery, we

developed a “dual-tissue model” that assumes nutrient exchange

between the intestine and the six other tissues. This model has four

compartments: (i) the intestine, which receives, metabolizes, and

delivers nutrients to the other tissue; (ii) the intestinal lumen from

which bacterial nutrients are imported by the intestine; (iii) the

other tissue; and (iv) the extracellular space through which nutri-

ents are exchanged between the intestine and the other tissue

(Fig 2A, Table EV5; Appendix Table S1, Materials and Methods).

Thus, the dual-tissue model allows the simulation of the metabolism

of intestine and one other tissue at a time. We constrained this

model such that the majority of nutrients used by C. elegans are

obtained from bacteria, with limited use of “side nutrients”. These

mainly are importable molecules that may be present in the growth

media or the bacterial diet but may be absent or quantitatively

misrepresented in the assumed biomass composition of the bacteria

(Yilmaz & Walhout, 2016) (Table EV3). We also allowed minimal

usage of storage molecules including glycogen, triacylglycerides,

and trehalose (Fig 2A, Materials and Methods).

We integrated the L2 tissue gene expression data with the dual-

tissue model in two steps (Fig 2A). First, the gene expression data

from each non-intestinal tissue was integrated with the other tissue

compartment, one tissue at a time. Since the intestine can support

the metabolism of the other tissue through the exchange of metabo-

lites, leaving the intestine network free of any constraints may result

in unrealistic predictions in this step, as enzymes not expressed in

the intestine could then be used for metabolic conversions. We

therefore discouraged flow-through reactions associated with genes

that are lowly or rarely expressed in the intestine (Figs 1C and 2A).

Second, the intestine gene expression data were integrated with the

intestine compartment, while the overall nutritional exchange

between the intestine and the other six tissues was imposed. This

exchange was represented by transport fluxes that were calculated

based on a combined flux distribution for the six non-intestinal

tissues (Fig EV4A). Hence, the intestine not only has to adhere to its

own gene expression levels, but also supply the cumulative nutri-

tional requirement of other tissues (Fig 2A).

Integration algorithm

Several algorithms are available to integrate metabolic network

models with gene expression data (Lewis et al, 2010; Machado &

Herrgard, 2014). However, most of these algorithms have at least

one of the following limitations (Machado & Herrgard, 2014): (i)

dependence on a single objective function such as the maximization

of biomass production, (ii) dependence on pairwise comparisons

with a reference state, or (iii) inability to produce a flux distribution

where reaction directionality is addressed. We selected the iMAT

algorithm (Shlomi et al, 2008; Zur et al, 2010) as a starting point for

our network-level analysis, since this algorithm does not have any

of the mentioned limitations and since it was specifically designed

to integrate tissue-level data (Shlomi et al, 2008).

We optimized iMAT to what we refer to as iMAT++ to eliminate

two drawbacks of the original algorithm. The first drawback relates

to cases where highly expressed genes are associated with multiple

reactions (e.g., gene y in the toy model in Fig 1C). The original iMAT

approach is reaction-centered and tends to activate all reactions asso-

ciated with highly expressed genes (Fig EV4B). However, the high

expression of a gene may be indicative of only a subset of its associ-

ated reactions being active (e.g., only one reaction of the y gene,

6 ? 7, carries flux in Fig 1C). To address this issue, we allowed the

algorithm to choose a subset of reactions associated with a highly

expressed gene and impose flux on only those. The second drawback

of the original algorithm is the lack of a distinction between genes

that are not expressed and those that are lowly expressed. iMAT is

programmed to eliminate flux for any reaction that depends on genes

below an arbitrary expression threshold. However, lowly expressed

genes may be indicative of low flux rather than no flux (Yilmaz &

Walhout, 2016). Therefore, instead of forcing reactions of lowly

expressed genes to carry no flux, we aimed to minimize the sum of

their fluxes (absolute), so that they may carry flux if needed by the

rest of the network, but at the lowest possible level.

iMAT++ has two parts, and the flow of the first part is as follows:

First, the number of highly expressed genes associated with at least

one flux-carrying reaction and the number of no-flux reactions

dependent on rarely expressed genes are summed (Zfit) and

▸Figure 2. Integration of iCEL1314 with tissue-relevant gene expression data.

A Dual-tissue model used for compartmentalization of iCEL1314 during data integration. The two major compartments used are the intestine, which is the point of
entry for bacterial nutrients, and another tissue. The lower panel shows the two main steps of integration. First, gene expression data for each tissue except the
intestine is integrated with the model individually. Second, integrated flux distributions from the first step are combined using tissue weights that represent the
relative mass and activity of each tissue (Fig EV4A, Appendix Supplementary Methods) and the intestine gene expression data is integrated.

B Flow chart of the optimized integration algorithm. A maximized or minimized variable from a step is carried to the next step as a constraint as shown by equations
by the arrows (a bold uppercase term indicates a maximized or minimized sum of variables from the previous step). The d term stands for small numbers that
indicate the tolerance of deviation from the corresponding minimized flux sums. A latent reaction is a reaction that is only associated with highly expressed genes
and converts metabolites that are available in the present state of the flux distribution, but does not carry any flux. See text and Appendix Supplementary Methods
for details.

C Example pathways that share genes (only a relevant subset of reactions is shown for each pathway). Dashed arrows indicate skipped parts of the pathway and the
rest of the metabolic network. Upper right panel shows expression categories of relevant genes in tissues. Lower right panel shows predicted flux in the propionate
shunt obtained with iMAT and iMAT++ algorithms. Epsilon indicates the minimum flux imposed on reactions associated with highly expressed genes during
integration (e = 0.01 for every reaction shown).

D Analysis of agreement between experimental data and integrated flux distribution. The left panel shows percentage (y-axis) and number (bold numbers) of highly
expressed genes that have no association with any flux-carrying reactions. The middle panel shows the same for reactions that depend on rarely expressed genes, but
carry flux in the integrated network. The right panel shows the depletion rate of flux in lowly expressed reactions, which is calculated as one minus the ratio of total
flux in these reactions to what is expected for the same number of flux-carrying reactions on average. In each panel, the results for exactly the same set of genes or
reactions were extracted from the output of each algorithm and compared (Appendix Supplementary Methods).
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simultaneously maximized to get Zfit
max (Fig 2B). Importantly,

lowly expressed genes are excluded in this step and integrated into

the next phase. Second, while Zfit
max is held constant, the total flux

in reactions strictly dependent on lowly or rarely expressed genes is

minimized. This step covers rarely expressed genes to avoid increas-

ing possible fluxes that may not have been fitted (forced to zero)

during the first step. Then, while Zfit
max is held constant and the

low flux sum is tightly constrained, the total flux in the entire
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network is minimized based on a parsimonious FBA approach

(pFBA) (Lewis et al, 2010; Machado & Herrgard, 2014; Yilmaz &

Walhout, 2016). Together, these steps achieve a preliminary flux

distribution (PFD) (Fig 2B, Table EV5).

The second part of iMAT++ deals with a compromise introduced

by the gene-centered integration approach. A typical PFD has multi-

ple “latent” reactions, which have no flux even though they are only

associated with highly expressed genes and their reactants are avail-

able in the integrated network (e.g., 3 ? 4 reaction associated with

gene x in Fig 1C). These reactions exist because the associated

genes are active somewhere else in the network and are therefore

already integrated with the model (e.g., the flux in the 3 ? 7 reac-

tion addresses the high expression of the x gene in Fig 1C). We

reasoned that latent reactions should carry flux, unless their prod-

ucts cannot be drained by other reactions. As a remedy, we identi-

fied all latent reactions and imposed flux on them (Fig 2B). Since

the redistributed flux may create new latent reactions, this part of

the algorithm is iterative. After latent reactions are addressed, an

optimal flux distribution (OFD) is achieved (Fig 2B, Table EV5). For

each tissue, the pertaining OFD represents the flux distribution that

best fits the categorized gene expression data.

Agreement between gene expression and optimal
flux distributions

We verified the successful integration of tissue-level gene expression

by iMAT++ by inspecting the flux predictions for well-understood

pathways and by evaluating the overall fitting quality. As a specific

example, flux predictions in a shunt pathway that degrades propi-

onate or propionyl-CoA (ppcoa) (Watson et al, 2016) demonstrate

the advantage of the gene-centered approach (Fig 2C). The acdh-1

gene acts as a control point to allow the degradation of ppcoa by the

shunt when the canonical ppcoa breakdown pathway is perturbed

genetically or by low dietary vitamin B12 (Watson et al, 2016;

Bulcha et al, 2019). This gene is highly expressed in the intestine,

moderately expressed in the hypodermis, and lowly or not

expressed in other tissues (Figs 2C and EV4C). Two of the other

propionate shunt genes, ech-6 and hach-1, are more broadly

expressed. However, these genes are not only involved in the propi-

onate shunt but are also associated with the breakdown of valine

and isoleucine (Fig 2C). Therefore, tissue-level expression data

suggest that the shunt pathway is active only in the intestine and

hypodermis, consistent with direct assays (Arda et al, 2010;

MacNeil et al, 2013). To compare the predictions from the two algo-

rithms, the original, reaction-centered iMAT placed flux in the shunt

pathway in four tissues, while iMAT++ more correctly restricted flux

to the intestine and hypodermis (Fig 2C).

We evaluated the overall fitting quality based on three criteria,

all of which revealed improvements in iMAT++ integrations

compared with iMAT (Fig 2D). First, iMAT++ yielded very few

highly expressed genes that were not associated with any flux-

carrying reaction. Second, only few reactions that depend on rarely

expressed genes carried flux. Third, the average flux in reactions

dependent on lowly expressed genes was greatly depleted compared

with the average flux in all flux-carrying reactions, thus indicating

that the separate minimization step carried out for lowly expressed

reactions worked effectively. In addition, the number of such reac-

tions that carried flux was overall ~ 5% greater in iMAT than in

iMAT++, although iMAT is designed to minimize the number of

these reactions instead of minimizing their total flux.

Validation of predicted flux distributions based on known
tissue functions

Next, we asked whether OFDs captured tissue-level metabolic func-

tions consistent with our current knowledge of C. elegans physiol-

ogy. We generated a heat map of reactions that have enriched or

depleted fluxes in one or two tissues, or that have uniform flux pro-

files across all tissues (Fig 3A, Table EV6). We found one common

and five tissue-specific clusters of reactions that contained metabolic

functions consistent with their tissue pattern and current knowledge.

The common cluster (Fig 3A) includes many reactions that either

produce biomass precursors or assemble biomass from these precur-

sors, while some are part of energy production. Thus, all tissues are

predicted to produce biomass, consistent with the fact that the body

size of C. elegans increases dramatically as it proceeds through the

different stages of larval development (Hirsh et al, 1976). Moreover,

biomass production alone consumes a significant portion of assimi-

lated nutrients as shown with biomass yield calculations (Fig 3B),

which shows that OFDs captured the metabolic burden of growth in

growing larvae (Ferris et al, 1995; Yilmaz & Walhout, 2016).

Other consistent tissue-level predictions included (Fig 3A) the

degradation of bacterial macromolecules in the intestine, a relatively

large flux for the propionate shunt in the intestine (see also Fig 2C)

(MacNeil et al, 2015; Watson et al, 2016; Bulcha et al, 2019), unique

fatty acid processes in the intestine consistent with the presence of

lipid droplets and production of yolk in this tissue (Hall et al, 1999;

Lemieux & Ashrafi, 2015; Vrablik et al, 2015), ascaroside production

in the intestine and hypodermis (Park & Paik, 2017; Artyukhin et al,

2018), the production and secretion of the neurotransmitters octopa-

mine and serotonin in neurons, and the biosynthesis of DNA in the

hypodermis and gonad. The latter prediction suggests that the hypo-

dermis and gonad are the major tissues where significant cell prolif-

eration occurs, which agrees with the cell lineage where the

hypodermis and gonad are the tissues with the largest fraction of

cells dividing at the early L2 stage (Sulston et al, 1983; Hubbard &

Greenstein, 2005), and with the fact that the gonad gene expression

data are dominated by constantly dividing germline cells (Cao et al,

2017). In addition, a hypodermis-specific group of reactions includes

functions shared with mammalian skin or liver, such as urocanic

acid production (Gibbs & Norval, 2011) and degradation (Kalafatic

et al, 1980), kynurenine (Claria et al, 2019) and cysteine (Stipanuk

et al, 2006) metabolism, and lysine degradation (Papes et al, 1999)

(Fig 3A). The hypodermis functions as the skin of C. elegans, based

on its physiological role and structure (Chisholm & Xu, 2012).

However, it has recently been shown that the hypodermis transcrip-

tome from adult C. elegans is best correlated with that of human

liver (Kaletsky et al, 2018), and this relationship is also captured by

our hypodermis model. Taken together, these results show that

tissue-level integration of gene expression with iCEL1314 using

iMAT++ captures biologically relevant functions.

Flux variability analysis of tissue-level metabolic network models

While OFDs represent flux distributions that optimally fit catego-

rized tissue gene expression data, they do not serve as unique
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solutions. The flux states of many reactions in an OFD can be

changed from carrying no flux to carrying flux, or vice versa, with-

out deteriorating data-fitting quality of iMAT++ (Fig 2B and D),

except for a small change in total flux. For instance, the ascaroside

production pathway in the intestine OFD produces and secretes only

ascr#2. However, coA forms of five other ascarosides are synthe-

sized prior to the synthesis of ascr#2 (Fig EV1), and these ascaro-

sides can also be made and secreted from the intestine without

affecting the agreement of the flux distribution with highly, lowly,

and rarely expressed genes. The reason this is not reflected in the

intestine OFD is because an OFD is a single solution that explains

gene expression categories with minimum total flux. Thus, we can

infer that ascr#3 production is in alternate optimal flux distributions

(ALT) (Orth et al, 2010) for the intestine network. To systematically

capture all such metabolic functions in ALT of each tissue, we

performed flux variability analysis (FVA) (Mahadevan et al, 2002).

This analysis yielded minimum and maximum flux each reaction

can take (Table EV5), while fitting constraints generated by the end

of the iMAT++ optimization are maintained (Fig 2B). We then cate-

gorized reactions in each tissue as those carrying flux in OFD, those

carrying flux in ALT, and those not carrying flux in the feasible solu-

tion space (Fig 3C). Reversible reactions were evaluated in each

direction (forward and reverse) separately. We defined a tissue-level

metabolic network (Fig 1A) based on the combined set of reactions

in OFD and ALT, as these reactions are all accessible in optimal

solutions. Interestingly, the intestine and hypodermis were found to

have the largest metabolic networks (Fig 3C), confirming the meta-

bolic role of these two tissues.

Flux potential analysis for quantitative integration of
expression data

The semi-quantitative integration of RNA-seq data followed by FVA

yields information about tissue metabolic networks at the network

level but is not designed to capture quantitative gene expression

values. An example for a good capture of differential expression is

the flux prediction for the first reaction in the propionate shunt,

which is catalyzed by ACDH-1(Watson et al, 2016) (Figs 2C and

4A). In many cases, however, the integration algorithm does not

yield reaction fluxes that correlate well with the expression levels of

the associated genes. For example, ldh-1 is highly, but differentially,

expressed in four tissues, but each of these tissues has the same

predicted flux in the LDH reaction, and therefore is predicted to

produce the same amount of lactate (Fig 4A). We manually evalu-

ated the lactate production potential of tissues by analyzing the

expression profiles of key genes in the pathway that converts

1 Common to all
• Biosynthesis and assemblyof biomass 
components (e.g., proteins, glycans).
• Energy generation.
• Trehalose degradation.
 

2 Intestine-specific

3 Intestine & hypodermis-specific

4 Neuron-specific

6 Hypodermis-specific

5 Hypodermis & gonad-specific

• Ascaroside biosynthesis. 

• Degradation of bacterial biomass.  
• Parts of lipid metabolism.
• Propionyl-coa breakdown shunt.
 

Normalized flux with reaction directionality

• DNA biosynthesis for biomass.

A

C

01- 5.0- 0.5 1

• Skin-like functions: urocanic acid production  
• Liver-like functions: kynurenine-related pathway, 
urocanic acid degradation, cysteine metabolism,
lysine degradation.  

• Biosynthesis and secretion of neurotransmitters.
octopamine and serotonin.  

B Biomass yield in OFDs
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Figure 3. Validation of OFDs based on known tissue functions.

A Heat map of reaction fluxes (rows normalized by the absolute maximum) for a set of 927 reactions (Table EV6) that are biased in flux profiles toward enrichment or
depletion in one or two tissues, or that have flux in all tissues. Functional observations associated with six clusters are indicated on the right. The analysis
distinguishes between flux and no flux for any reaction, as well as between positive and negative flux values for reversible reactions, which correspond to a flux in
forward and reverse directions, respectively.

B Biomass yield of each tissue based on optimal flux distributions (OFDs), defined as grams of biomass produced divided by grams of substrates (nutrients) consumed.
The abbreviation ovr stands for overall biomass yield, which was calculated by combining intestine biomass with a weighted sum of other tissue biomass, and using
the nutrient input from the intestine integration step (Fig 2A) (see Appendix Supplementary Methods for a detailed description of calculations).

C Tissue metabolic network breakdown based on flux variability analysis. Reactions in the model were converted to single-direction reactions by dividing reversible
reactions into forward and reverse reactions. Each single-direction reaction was categorized for each tissue as carrying flux in the optimal flux distribution (OFD),
carrying flux in alternate flux distributions (ALT), or not carrying flux in the feasible solution space (SLNS) of iMAT++ integrations. For each tissue, the sum of the
number of OFD and ALT reactions indicate the size of the accessible network.
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trehalose to lactate, assuming this is the main route for lactate

production (Braeckman et al, 2009; Watts & Ristow, 2017) (Fig 4B).

We deduced that neurons and muscles have a greater lactate

production potential than others, not only because of ldh-1 levels

alone, but also since genes associated with other key reactions of

the pathway are highly expressed in these tissues (Fig 4B). Due to

the integration of gene expression data using four discrete categories

of gene expression levels, tissue-relevant OFDs are generally not

capable of delivering quantitative predictions. However, it is also

not feasible to make quantitative predictions for every reaction by

manually mapping expression data to the metabolic network. This

would be a difficult and time-consuming task especially because the

fluxes of surrounding reactions need to be taken into account, and

not all reactions are part of a previously studied pathway as in the

case of lactate production.

To quantitatively integrate gene expression differences at the

pathway level, we developed a method that we refer to as flux

potential analysis (FPA). We describe the concept of FPA by a toy

network (Fig 5A). FPA uses the entire network of reactions after

reversible reactions are converted to irreversible forward and

reverse reactions but focuses on one “target” reaction at a time (re-

action k, Fig 5A). The flux potential of the target reaction (FPk) is

defined for each tissue (T) as a function of three sets of variables:

(i) the reaction network of the tissue defined as reactions in OFD

and ALT (Fig 3C), (ii) expression levels of genes associated with

reactions in this network relative to other tissues, and (iii) the meta-

bolic distance (Materials and Methods) of every reaction of this

network from the target reaction. The distance factor is included to

promote pathway-level integration, with the reasoning that more

distant parts of the metabolic network (as in other pathways) will

have lesser influence on the substrates of the target reaction. For

FPk in a tissue to have a contextual meaning, it is normalized by

FPk for a hypothetical “super” system (S), wherein all metabolic

genes are expressed at the maximum level found in any tissue.

Thus, FPA of the target reaction yields a dimensionless value

between 0 and 1 for each tissue, which is named relative flux

potential (rFPk) (Fig 5A).

To calculate FPk, we maximized the flux of the target reaction

such that a weighted sum of all fluxes is limited by an arbitrary

number called flux allowance (a) (Fig 5A). The weight of each reac-

tion in the tissue network acts as a penalty for placing flux in that

reaction, as a larger weight indicates more allowance spent per unit

flux, and therefore, less allowance left for the flux of the target reac-

tion, which is to be maximized. Reaction weights are made inver-

sely proportional to the normalized expression of associated genes,

so that tissues with lower expression are penalized more. The

weights are also made inversely proportional to metabolic distance

(increased by 1 to avoid infinity), so that the flux in reactions more

distant to the target reaction have less influence on FPk. The

distance is raised to a power (n) called distance order, which

controls how fast the influence of remote reactions decays with

distance. In the toy example (Fig 5A), assuming a distance order of

1, the first tissue has a larger rFPk than the other two, thanks to

lower weights in this tissue for two reactions proximal to the target

reaction. The third tissue has zero flux potential as the relevant

pathway is not part of its network.

We used FPA to evaluate lactate production potential of each of

the seven tissues. First, we targeted the LDH reaction (Fig 4B),

which converts pyruvate into lactate (Fig 5B). Since we did not initi-

ally have a trained distance order to use, we calculated flux poten-

tials by varying this parameter (Fig 5B). At high distance orders

(≥ 6), rFP values converged to relative expression levels of ldh-1

(i.e., the weight of the target reaction), as the weights, and hence

the influence, of other reactions decayed to zero. At lower distance

orders, the contribution of other reactions in the pathway became

evident, and the difference between LDH flux potential of muscle

and neurons was reduced. Importantly, FPA used the presumed

pathway (Fig 4B) (Braeckman et al, 2009; Watts & Ristow, 2017) to

A

hyp

int

mus neu

acdh-1
(shunt pathway)

ldh-1
(lactate production)

Expression-flux relationships

gli

hyp

pha

tre-1
tre

glc-D

tre-2
tre-3
tre-4
tre-5

B

ldh-1

pyk-1
pyk-2

pep

pyr

lac-L

Lactate 
secretion

Glycolysis

Trehalose
sink

Lactate production pathway

tre family 
expression (total)

pyk family 
expression (total)

ldh-1 expressionLDH

Figure 4. The need for quantitative assessments.

A Example relationships between gene expression levels and flux for the
indicated gene/pathway pairs.

B Lactate production pathway reconstructed based on Ref. (Braeckman et al,
2009; Watts & Ristow, 2017). Bar charts show gene expression profiles (in
TPM). When multiple genes are connected by “or” in reaction association
(e.g., paralogs), as in the case of pyk and tre families, total expression is
used. LDH, lactate dehydrogenase.
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activate the LDH reaction, which demonstrates the successful inte-

gration of pathway-level information.

Flux potential analysis can also be used at metabolite level by

focusing on a reaction that drains or introduces a metabolite of

interest, such as lactate. The flux potential of a target reaction that

drains this metabolite shows its production potential. Likewise, the

flux potential of one that introduces the metabolite of interest shows

the degradation potential for it. We evaluated lactate production

potential at metabolite level by calculating the rFP of the reaction

that exports lactate (Figs 4B and 5C). At lower distance orders, the

results showed similar differences as in LDH analysis (Fig 5B) as

LDH is the only reaction that produces lactate. At higher distance

orders, all tissues converged to a relative flux potential of 1,

reflecting the fact that there is no gene association for lactate trans-

port, and therefore, the flux penalty for the target reaction itself is

uniformly 1 in all tissues. The lack of a gene expression value for

the target reaction is a general property of metabolite-level FPA, as

most transporters are unknown and demand and sink reactions

have no GPR associations by default (Yilmaz & Walhout, 2016).

This property agrees with our goal of metabolite-level analyses,

which is to evaluate an overall metabolite production or degradation

potential considering all reactions and pathways that may produce

or consume the metabolite of interest.

An appropriate distance order value is needed for the systematic

application of FPA to all reactions and terminal metabolites in the

tissue network models. To optimize the distance order, we analyzed

flux potential of collagen production in different tissues. We chose

collagen production because collagen is both a metabolite in the

network and also a protein whose expression can be approximated

by using the scRNA-seq data using C. elegans collagen-encoding

genes. Furthermore, the hypodermis is known as the main site of

collagen biosynthesis in C. elegans, to support cuticle production

(Johnstone, 1994). Indeed, when we inspected the gene expression

levels of all annotated collagen genes, we found that the hypodermis

expresses most of these genes at the highest level, with glia being a

secondary site (Appendix Fig S4A). To enable metabolite-level anal-

ysis, we first added a collagen demand reaction to the model

(Appendix Fig S4B). Flux potential calculations for this reaction

showed results consistent with our expectations at distance orders 1

through 2.5, with 1.5 showing the largest difference between hypo-

dermis and glia (Fig 5D). Based on this result and visual inspection

of other data (e.g., Fig 5A and B), we selected a distance order of

1.5 for subsequent FPA.

Systematic analysis of tissue function based on flux potentials

Next, we calculated relative flux potentials for all reactions. We

combined this data with OFD and FVA results and divided into reac-

tion-level (i.e., relative flux potential of regular reactions,

Table EV7) and metabolite-level (transport, demand, and sink reac-

tions, Table EV8) predictions. To derive tissue-enriched metabolic

functions from these datasets, we extracted reactions that showed

significant variation of flux potential among tissues and were biased

toward one or two tissues as the sites with the highest potential. For

such reactions, we call the top two tissues in relative flux potential

as primary and secondary sites (Tables EV7 and EV8, Appendix Sup-

plementary Methods).

Out of 1,647 reactions in the reaction-level dataset (Table EV7),

1,114 were tissue-enriched (i.e., assigned to a primary or secondary

tissues) based on rFP differentials. An important question to address

is whether an FPA-based prediction is consistent with the network-

level flux distributions. When a reaction carries flux in the OFD of a

primary or secondary tissue where it was found to have a high flux

potential, we have a higher confidence in our prediction as both

network- and reaction-level analyses agree. Thus, we also separated

out tissue-enriched reactions that carried flux in OFD of the corre-

sponding primary or secondary tissues, which narrowed down

predictions to 790 tissue-specific reactions (Fig 6A, starred primary

and secondary sites in Table EV7). Other tissue-specific reactions

were in the ALT of the primary or secondary tissues and are associ-

ated with a lower confidence. Reaction-level FPA (Fig 6A) revealed

many differential tissue functions missed by the semi-quantitative

approaches. One example includes the relatively large potential of

some reactions in fatty acid beta-oxidation, TCA cycle, and electron

transport chain of muscle, which is consistent with the energetic

requirements of this tissue (Barclay, 2017; Laranjeiro et al, 2017).

Another example showed that neurons have a relatively large poten-

tial in the metabolism of cyclic AMP and GMP, as well as phos-

phatidylinositols (Fig 6A). In the mammalian nervous system,

cAMP and cGMP are key intracellular metabolites for signal trans-

duction (Gorshkov & Zhang, 2014), and different forms of phos-

phatidylinositols play important roles in synaptic transmission

(Frere et al, 2012). In addition to these new predictions, we found

that tissue-relevant functions predicted by semi-quantitative integra-

tion (Fig 3A) were also captured by relative flux potentials (Fig 6A).

The metabolite-level FPA dataset included 396 metabolites

(Table EV8), of which 250 were associated with tissue-specific

◀ Figure 5. Flux potential analysis.

A Flux potential analysis explained with a toy network and three hypothetical tissues that are a subset of a dataset with seven tissues total. The analysis is carried
out for a target reaction (k) shown in red. Flux potential of the target reaction (FP) is calculated in each tissue using FBA. Flux of target reaction is maximized such
that a weighted sum of fluxes (all fluxes are positive values since reversible reactions are divided into two reactions so that every reaction has a single direction) is
constrained by an allowed total flux (a). The formulation of this constraint and reaction weights (w) makes flux potential a function of normalized gene expression
(NGE, bar charts) and metabolic distance (d, top panel) over the network. The theoretical maximum of flux potential is calculated using the super system (S), a
hypothetical tissue that expresses every metabolic gene at the highest level of the seven tissues. To calculate relative flux potential (rFP), flux potentials from
individual tissues are divided by this theoretical maximum. Dashed arrows indicate multiple reactions that are not shown for simplicity. During flux potential
calculations, the contribution of these reactions to the weighted sum is assumed to be 0.5 in every system, as shown in parentheses. The total allowance was
taken as 1.0. All fluxes in the reactions shown must be the same due to mass balance laws. Therefore, the calculated flux potentials are equal to 1.0–0.5 divided by
total weight in each condition. A distance order of 1 (n = 1) is used for weight calculations. Red cross in Tissue 3 calculation indicates the elimination of a reaction
during FBA based on prior FVA analysis (i.e., reaction not part of OFD or ALT solutions). Deleted flux potential value (0.03) indicates what would be found for Tissue
3 if these reactions were not eliminated.

B–D Flux potential of reversed LDH reaction (B), lactate export (C), and collagen demand reaction (D) as a function of distance order. Dashed line (D) indicates order of
choice for subsequent analyses.
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production (N = 138), degradation (N = 50), or both (N = 62) based

on high-confidence predictions (Appendix Fig S2). As different from

the reaction-level analysis, we labeled the tissue-enriched flux

potential predictions for a metabolite with high confidence when the

pertaining OFD showed zero flux for both the degradation and

production of the metabolite in the primary or secondary tissues.

This is because the flux minimization step of iMAT++ (Fig 2B) mini-

mizes metabolite input and output through transport, demand, and

sink reactions, and therefore, a lack of flux in these reactions does

not indicate a real prediction, as was exemplified with the produc-

tion of different ascarosides above.

Assignments of metabolite production and degradation to

primary and secondary tissues (Table EV8) captured many biologi-

cally relevant metabolite–tissue associations. For example, multiple

metabolites produced by the mammalian nervous system were also

predicted to be produced in neurons and glia in C. elegans (Fig 6B).

We accurately predicted additional neurotransmitters to be

produced in neurons, including acetylcholine (ach in Fig 6B), 4-

aminobutanoate (GABA, 4abut), beta-alanine (ala-B), dopamine

(dopa), and histamine (hista). Neurons were also the primary site

for the degradation of amino acids aspartate (asp-L) and glutamine

(gln-L; Fig 6C), owing to the efficient conversion of these metabo-

lites to ala-B and GABA, respectively. Taurine (taur) is also

predicted to be primarily produced by neurons (Fig 6B) and

degraded by glia (Fig 6C) to form glutaurine (glutaur, Fig 6B).

Taurine plays multiple roles in the nervous system as a neurotrans-

mitter, neuromodulator, and neuroprotectant, as well as an osmo-

lyte (Wu & Prentice, 2010; Ripps & Shen, 2012). Glutaurine is a

peptide found in the brain (Bittner et al, 2005). Glia are also

predicted to be a primary site for production of multiple purine and

pyrimidine compounds (Fig 6B) including adenine (ade), adenosine

(adn), guanine (gua), hypoxanthine (hxan), and deoxycytidine

(dcytd). Both purines and pyrimidines are important in neuronal

development (Fumagalli et al, 2017), and purines can serve as

intercellular signaling molecules between neurons and glial cells

(Fields & Burnstock, 2006) and as trophic substances in the same

tissues (Rathbone et al, 1999). These results show that predicted

tissue-level production and degradation potentials for metabolites

can match C. elegans neurons and glia to the mammalian

nervous system.

In the muscle, the predicted production of 3-amino-isobutyrate

(BAIBA, 3aib) is consistent with this molecule being secreted to

blood during exercise in humans (Roberts et al, 2014). Similarly,

methylnicotinamide (1mncam) is produced by human skeletal

muscle during adjustment to differences in an exercise regime

(Strom et al, 2018) and is predicted to be produced in both muscle

and pharynx (which includes pharyngeal muscle) of C. elegans

(Fig 6B). Muscle is also predicted to be the primary degrader of

energy-rich metabolites including fatty acids, branched-chain amino

acids, trehalose, and glycogen (Fig 6C). Interestingly, we predict

that ketone bodies beta-hydroxybutyrate (S3hb) and acetoacetate

(acac) can also be most efficiently degraded by the muscle (Fig 6C).

Thus, both reaction-level (Fig 6A) and metabolite-level (Fig 6C)

analyses identified muscle as a major site that harvests the reducing

power of various metabolites to generate energy.

We also found additional metabolite–tissue associations relevant

to C. elegans physiology such as the production of eumelanin, repre-

sentative of the cuticle melanin (Calvo et al, 2008), in hypodermis;

and the production of chitin, a building block of the grinder of phar-

ynx and egg shells (Zhang et al, 2005; Straud et al, 2013; Stein &

Golden, 2018), in pharynx and gonad (Fig 6B). The pharynx also

has the highest flux potential for the chitinase reaction (RC01206f,

Table EV7), potentially indicative of chitin turnover during the

development and maintenance of the grinder. Finally, metabolite

production predictions based on semi-quantitative integration were

reproduced by FPA (e.g., octopamine, ascarosides, and urea;

Figs 3A and 6B, Table EV8), with the ascaroside production capaci-

ties of intestine and hypodermis revealed for all ascarosides in the

model (Figs 6B and EV1).

Summary of findings with MERGE

Overall, we divide the predictions from the analysis of C. elegans

metabolism with MERGE (Fig 1A) into three categories (Fig 7). The

first category includes functions that were already “known” based

on C. elegans physiology. The second one covers “coherent” predic-

tions, which are consistent with mammalian physiology. The third

category includes “unexplored” predictions that cannot be immedi-

ately verified. The known and coherent predictions validate the abil-

ity of our pipeline to capture biologically relevant functions, and

novel predictions serve as future hypotheses.

In Fig 7, we exemplify some attractive novel predictions based

on what we already know. For example, glia are the secondary site

for eumelanin production (Tables EV7 and EV8, Fig 6B), which may

be related to the presence of neuromelanin in glia and neurons in

mammals (McCloskey et al, 1976; Hopley et al, 2017). The gonad is

predicted to be the main selenocompound producer, including

selenoprotein biosynthesis, which can be potentially linked to the

essentiality of selenium in human sperm cells (Hawkes & Turek,

2001). In agreement with a recent study, we find that the hypoder-

mis may act as liver in C. elegans based on distinct processes

predicted to occur in this tissue, such as kynurenine metabolism

(Kaletsky et al, 2018). The intestine is predicted to be unique for the

processing of some lipids such as saturated medium-chain length

fatty acids, which seems to be related to fat storage and yolk

production functions of this tissue (Hall et al, 1999; Lemieux &

Ashrafi, 2015; Vrablik et al, 2015). Muscle and neurons are

predicted to be the main sites of bicarbonate production, which is

consistent with the predicted lactate production in these tissues

since bicarbonate acts as a buffer against acid accumulation (Beaver

et al, 1986). Finally, the pharynx can efficiently make pyrogluta-

mate (5oxpro) which may be due to the presence of pyroglutamate

residues in the N-terminal of thyrotropin-releasing hormone

peptides found in the pharynx (Van Sinay et al, 2017). Taken

together, our predictions provide a rich resource to gain deeper

insight into tissue metabolism.

Robustness and usability of MERGE

MERGE is composed of three modules (Fig 1A) that use multiple

parameters. To evaluate the robustness of our results to changes in

variable parameters and methods, we performed sensitivity analyses

at each module. Specifically, we changed a key parameter or a

method in the pipeline and redid the entire analysis (Fig EV5,

Appendix Supplementary Methods). First, we checked the sensitiv-

ity of our results to flux thresholds, arbitrary parameters used in
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iMAT++ that define significant flux. We found that changing flux

thresholds in iMAT++ caused mostly numerical differences and did

not affect high-confidence predictions (Fig 7, Tables EV7 and EV8)

significantly (Fig EV4).

We next tried different FVA methods to build metabolic networks

for FPA (Fig 1A). Network building is the rate-limiting step of

MERGE and may cause usability problems with larger models such

as human metabolic networks (Swainston et al, 2016; Brunk et al,

2018). Interestingly, skipping FVA and applying FPA on the entire

network, as if every reaction can carry flux, did not change our key

results in Fig 7 considerably (Fig EV5A), but did have an overall

impact on the high-confidence predictions (Fig EV5B). To improve

the computational performance of the network building step with

minimal compromise, we developed two modified versions of FVA

(Appendix Supplementary Methods), both of which recapitulated all

key findings (Fig EV5A) and had little impact on the entire set of

high-confidence predictions (Fig EV5B). Thus, together with the

original FVA, we provided three versions of the network building

module with three speed levels, which the user can select depending

on the model used and the computational resources available. With

these modifications, MERGE should be applicable to most, if not all,

complex models, including humans (see below).

The last module of the MERGE pipeline is FPA, which is a heuris-

tic approach that uses a distance order to infer the contribution of

Selected relative production potentials

Regular reactionsA

B C

1 Highest potential in muscle: TCA-cyle, fatty acid β-oxidation, oxidative phosphorylation.
2 Highest potential in neurons : Cyclic AMP and GMP, and phosphatidylinositol conversions.   
3 Similar to OFD clusters : Include functions in corresponding regions in Figure 3A.   6

Relative flux potential

0 0.5 1

Selected relative degradation potentials

1

2

3

4

5 6

Figure 6. Systematic analysis of tissue function based on flux potentials.

A Heat map of relative flux potentials for regular metabolic model reactions, which exclude transports, exchanges, and demand/sink reactions. A subset of 1,114
reactions that yield tissue-specific flux potentials with high confidence is shown (see text and Appendix Supplementary Methods).

B Production potential analysis of selected metabolites (extracted from Appendix Fig S2A) that are predicted to be produced at relatively high levels in one or two
tissues with good confidence (see text and Appendix Supplementary Methods). Production potential is calculated based on an export or demand reaction that drains
the metabolite.

C Degradation potential analysis of selected metabolites (extracted from Appendix Fig S2B) that are predicted to be degraded relatively more efficiently in one or two
tissues with good confidence (see text and Appendix Supplementary Methods). Degradation potential is calculated based on an import or sink reaction that
introduces the metabolite.
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neighboring reactions to reaction flux potentials. Although our main

results were largely robust to small changes in distance order (1–2),

extreme values (0 and 10) had a larger impact resulting in the loss

of some of the key predictions (Fig EV5). In this study, we found

that a distance order of 1.5 was optimal to get verifiable predictions.

For future applications of MERGE, we recommend careful tuning of

the distance order for the optimization of predictive power.

Discussion

In this study, we have integrated the C. elegans metabolic network

model (Yilmaz & Walhout, 2016) with high-quality gene expression

data (Cao et al, 2017) to provide insights into metabolism at the level

of seven individual tissues. This work provides system-level insights

into tissue-relevant metabolism that was heretofore not feasible. Our

knowledge of tissue-relevant metabolism in C. elegans was limited

because it is difficult to isolate individual tissues and monitor meta-

bolic activity using metabolomics. To predict tissue-relevant metabo-

lism in C. elegans, we developed MERGE, a novel computational

pipeline that integrates genome-scale metabolic network models with

gene expression data both qualitatively and quantitatively.

Parts of MERGE build on previously developed computational

tools, and other parts are novel. For the first step of MERGE, we

selected the iMAT algorithm (Shlomi et al, 2008) and modified it to

what we refer to as iMAT++. This first step achieves an integration

between the metabolic network model and gene expression data at

the whole network scale, because a global flux distribution is fitted

to the entire metabolic network model. The iMAT++ adaptation uses

a gene-centered rather than reaction-centered approach for the

assignment of reaction fluxes based on gene expression data. As a

result, iMAT++ is tailored to better agree with gene expression data.

The second step of MERGE uses FVA (Mahadevan et al, 2002) to

explore the fitting space at every model reaction and excludes reac-

tions that do not carry flux in this space from the network. Finally,

the third step of MERGE, FPA, is a new method that can be used to

quantitatively predict reaction fluxes in the context of individual

pathways and can also be set up to predict the production and

consumption potentials of individual metabolites that are reactants

in individual reactions. The latter was particularly useful for deriv-

ing tissue-specific functions (Figs 6 and 7). After applying FPA, we

derived a set of high-confidence predictions by combining reaction

flux potentials with the globally fitted flux distributions from the

first and second step of MERGE (Fig 7, Tables EV6 and EV7). Impor-

tantly, most predictions were specifically derived after FPA, which

indicates that this novel step is the most important component of

MERGE with respect to predictive power. Indeed, if we stopped our

analysis at iMAT++ level, we would have missed most of our predic-

tions (Figs 3 and 7, Tables EV7 and EV8).

We show the application of MERGE to the prediction of tissue-

relevant metabolism in C. elegans using a high-quality dataset based

on scRNA-seq with L2 animals (Cao et al, 2017). Longer term, it will

be important to extend MERGE to predictions for all life stages of

the animal, to determine how tissue-relevant metabolism changes

during development. In principle, MERGE should be applicable not

only to tissue-relevant gene expression data, but to other types of

Known
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pharynx

Coherent Unexplored

neurotransmitters↑
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propionyl coa↓

chitin↑
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DNA↑
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lactate↑ trehalose↓
BAIBA↑ methylnicotinamide↑

methylnicotinamide↑

urea↑
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purines and pyrimidines↑

glutaurine↑ eumelanin↑. . .
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Figure 7. Summary of integration analyses.

Summary of functional predictions in Tables EV7 and EV8.
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gene expression data as well, including different conditions, devel-

opmental stages, and genetic perturbations.

MERGE is not specific for use with C. elegans but should be

broadly applicable to any system for which genome-scale metabolic

network models and high-quality gene expression data are avail-

able. As a proof of principle to demonstrate the broad use of

MERGE, we integrated the human metabolic model Recon 2.2

(Swainston et al, 2016) with transcriptomes of 17 tissues from a

publicly available dataset (Uhlen et al, 2015). While applications to

other organisms are beyond the scope of this study, we provide the

code and results for this preliminary analysis in our repository (see

below). The demonstration of applicability to humans shows easily

verifiable predictions including, but not limited to, a relatively high

flux potential of TCA cycle reactions in skeletal muscle, unique lipid

metabolism in the digestive organs, and melanin production

potential in the skin, which are all in concordance with our predic-

tions in the respective corresponding tissues in C. elegans.

In our study, we used mRNA levels as a proxy for enzyme activ-

ity. Although this led to numerous highly valid predictions, it is

likely that this approach will not fully capture all tissue-relevant

metabolism. This is because mRNA levels may not faithfully repre-

sent protein levels, and protein levels may not faithfully represent

enzyme activity. For instance, allosteric mechanism by which

metabolites directly regulate enzyme activity will be missed. In the

future, it should be feasible to use MERGE with proteomic datasets.

MERGE is readily available and can be used in conjunction with

the COBRA toolbox for metabolic network modeling (Heirendt et al,

2019). Finally, in the longer term, scRNA-seq datasets may produce

sufficiently accurate expression data to model metabolic differentia-

tion of individual cells.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental Models

Cell types representing seven major tissues (C. elegans) Cao et al (2017)

Software

Python 2.7 https://www.python.org

MATLAB 2019a https://www.mathworks.com

Gurobi Optimizer 8a https://www.gurobi.com/

Other

iCEL1314 (genome-scale metabolic network model of C. elegans) This study, Yilmaz & Walhout (2016) BioModels (Chelliah et al, 2015): MODEL2007280001

a See Appendix Table S2 for solver parameters used in this study.

Methods and Protocols

Brief descriptions of the main methods used in this study

are included here. Details of computational methods, algo-

rithms, and models are provided in Appendix Supplementary

Methods, following the same order of related sections in the

main text.

Metabolic network models
Generic C. elegans model, iCEL1314

The original reconstruction (Yilmaz & Walhout, 2016) was

manually updated by the addition of new reactions, deletion or

modification of existing reactions, or changes in reaction local-

ization between cytosol and mitochondria. The basis of each

modification is explained in Table EV1 with notes and titles of

issues that are explained in Appendix Supplementary Methods.

The targeted functionality of each modification was verified by

FBA. The integrity of the updated model was checked with the

help of MEMOTE (Lieven et al, 2020). The reactions and

metabolites of iCEL1314 are presented in Tables EV2 and EV3,

respectively.

Dual-tissue model

Reactions of iCEL1314 were used to build a dual-tissue metabolic

network model of four compartments: lumen (L), intestine (I), other

tissue (X), and extracellular space (E) (Fig 2A). Internal reactions of

the model (i.e., those taking place in cytosol or mitochondria only)

were included in both I and X compartments, except for reactions

that depend on bacterial degradation, which are represented only in

I. Bacterial food and side nutrients (see below) and extracellular

reactions for the intestine were placed in L. Transportable and

exchangeable metabolites and extracellular reactions for the X tissue

were placed in E. Transport reactions were distributed to exchange

metabolites between I and L and between E and X. Exchange reac-

tions were used in L to bring in nutrients from the environment,

and in E to secrete by-products to the environment, with the excep-

tion of oxygen, water, orthophosphate, and protons, which could be

both taken up and secreted through E.

Experimental data
Tissue-level expression profiles were obtained from the reference

study (Cao et al, 2017) as transcripts per million (TPM) and

processed to divide genes, for each tissue, into four sets of expres-

sion levels: high, moderate, low, and rare.
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Categorization of genes by absolute expression levels

A histogram of average gene expression across tissues was gener-

ated using logarithm of TPM values at base 2 (Fig EV2). The result

was a bimodal distribution that could be fitted by two superposed

Gaussian curves (Appendix Equation S1), which represented a high

expression subpopulation (HES) and a low expression subpopula-

tion (LES). The means (l) and standard deviations (r) that defined
these curves were used to set thresholds for high expression

(> lHES), low expression (< lLES + rLES), and rare expression

(< lLES). Then, for each tissue, genes were categorized accordingly

(Appendix Fig S1).

Gene categorization by relative expression levels

Moderately expressed genes were reevaluated with a heuristic algo-

rithm that categorized some of these genes as highly or lowly

expressed depending on their relative expression levels in different

tissues. This algorithm evaluates one gene at a time. First, TPM

values of the queried gene are listed for all seven tissues in an

ascending order. Thus, expression level increases from one tissue to

the next in six intervals. The fold change (FC) difference in each inter-

val is separately evaluated. If FC is > 4 in the first interval or 1.5 in

others, the gene is labeled as highly expressed in tissues after the

interval evaluated. Likewise, if the expression level increases by 4 in

the last interval or 1.5 in others, the gene is labeled as lowly

expressed in tissues before the interval. If a tissue expression is incon-

sistently labeled as high and low during the evaluation of different

intervals, then it was maintained as moderate. To minimize the effect

of noise at low expression levels, the jump in TPM value in an inter-

val was considered significant only if the greater value was higher

than a threshold (srel = lHES � rHES). Also, moderate expression

levels were recategorized as high only if they were above this thresh-

old, and as low only if they were below it. The general form of this

algorithm is explained in detail in Appendix Supplementary Methods

(Appendix Equations S2–S5) and is made available for use with any

dataset (Appendix Table S3). Examples of genes recategorized as

highly or lowly expressed in some tissues are provided in Fig EV3.

Integration of model and experimental data
Constraint-based FBA and nutritional conditions

Data integration always included a steady-state mass balance of

metabolites and constraint of flux between lower and upper bounds

for each reaction of the model (Appendix Equations S5 and S6).

Typically, reversible reactions were limited to values between

�1,000 and 1,000 units of flux and irreversible reactions between 0

and 1,000, where the value 1,000 indicates a practically infinite flux

and a negative value indicates a flux in the reverse direction of a

reaction. A reaction that represents the usage of ATP for mainte-

nance (RCC0005) (Yilmaz & Walhout, 2016) was constrained to

carry at least 10 units of flux in both I and X compartments of the

dual-tissue model (Table EV5).

The nutritional input of the model consisted of bacteria (a

metabolite, BAC, which represents bacterial biomass), 243 side

nutrients, and three storage molecules (Table EV3). When degraded

in the intestine compartment, BAC provides a nutritional input

consistent with the biomass composition of Escherichia coli (Yilmaz

& Walhout, 2016). Side nutrients were selected from all exchange-

able metabolites to provide the network with additional bacterial

nutrients that may be quantitatively underrepresented in the

assumed bacterial biomass composition (e.g., individual amino

acids) or nutrients that may be present only in the growth media

(e.g., cholesterol). These additional nutrients and storage molecules

were prevented from dominating the diet using a set of constraints

and stoichiometric manipulations in uptake reactions

(Appendix Equations S7–S12), which allow the limitation of the

total uptake of side and storage nutrients to a small percentage of

the bacterial intake by mass (see below for the choice of percent-

ages). Together with an objective function that maximizes or mini-

mizes a linear combination of fluxes (Appendix Equation S13), all

applied constraints and mass balance equations constitute a regular

FBA problem (Raman & Chandra, 2009) defined for the dual-tissue

model. During data integration, bacterial intake was set unlimited,

specific constraints and integer variables were added, and different

objective functions were used, as will be explained below.

Flux thresholds

To force reactions associated with highly expressed genes to carry

flux during integration, the minimum value of a significant flux

should be determined a priori (Shlomi et al, 2008). This threshold,

designated e, was set at 0.01 for > 90% of model reactions associ-

ated with genes. Setting the same threshold for some other reactions

was not feasible since forcing that much flux in these reactions

would require excessively large flux values (i.e., those greater than

the default boundary of 1,000 units) in some parts of the network or

a very large bacterial intake flux (≫ 1 unit). This is because some

metabolites have very small stoichiometric coefficients in reactions

that appear during bacterial digestion or biomass assembly. To

avoid this scaling problem, the maximum flux capacity of each reac-

tion was first determined in each available direction (forward or

reverse) using FVA (Mahadevan et al, 2002). FVA uses FBA by

setting the objective function as maximization (to get the maximum

forward flux) or minimization (to get the maximum reverse flux) of

the flux of a single reaction. For this FVA problem, nutritional input

was arbitrarily constrained by one unit of bacterial intake and the

uptake of side and storage nutrients were each limited to 1% of

bacterial intake by mass. Then, the maximum value obtained for

the flux of a reaction was divided by 2. If this number was smaller

than the default value of 0.01, then it was used as the flux threshold

for the pertaining reaction in the pertaining direction, or else, the

default value was used.

iMAT++

iMAT++ was modified from the iMAT algorithm (Shlomi et al,

2008). iMAT++ follows the steps below to integrate a metabolic

model with categorized experimental data:

• Define a binary integer variable (yi) for each reaction that depends

on rarely expressed genes, such that yi is 1 if the reaction has no

flux and 0 otherwise (Appendix Equation S14). Flux through reac-

tions identified this way is going to be blocked in as many cases

as possible. These reactions make the reaction set ROFF.

• Define binary variables also for each reaction associated with

highly expressed genes but not dependent on lowly or rarely

expressed genes (yi
f for the forward and yi

r for the reverse direc-

tion), such that yi is 1 if the reaction carries flux greater than e in
the pertaining direction and 0 otherwise (Appendix Equations S15

and S16). These reactions will be promoted to carry flux and

make the set RON.
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• Define an integer variable (zi) for each highly expressed gene that

is associated with at least one reaction in RON. These genes are

expected to be associated with flux-carrying reactions and make

the set GON. Constrain zi to be less than or equal to the sum of y

values for all RON reactions associated with the gene

(Appendix Equation S20). At the same time, constrain zi to be less

than or equal to 1 (Appendix Equation S21). Thus, zi takes the

value of 1 if at least one reaction associated with the pertaining

gene carries flux, else it is 0.

• Perform FBA to maximize the sum of all z values for GON and all y

values for ROFF combined (Appendix Equations S22 and S19). This

sum is designated as Zfit and its maximum value as Zfit,max.

Constrain Zfit at Zfit,max for subsequent steps.

• Perform FBA to minimize total flux of reactions that depend on

lowly or rarely expressed genes (Appendix Equations S23 and

S24). The total flux of these reactions is designated as Zlow and its

minimum value as Zlow,min. Constrain Zlow to be less than or equal

to Zlow,min plus a small tolerance value (dlow) for subsequent steps.
The dlow value used in this study was 1E-5.

• Perform FBA to minimize total flux of all reactions (Appendix Equa-

tions S25 and S26). The total flux is designated as Ztotal and its mini-

mum value as Ztotal,min. Constrain Ztotal to be less than or equal to

Ztotal,min plus a small tolerance value (Dtotal) for subsequent steps.

The Dtotal value used in this study was 0.05Ztotal,min. The flux

distribution obtained in this step defines PFD (Fig 2B).

• Determine active metabolites in the previous flux distribution,

i.e., those with a non-zero product sum of coefficients and abso-

lute fluxes of associated reactions. Then, determine zero flux reac-

tions that are associated with only highly expressed genes and

that have only active metabolites as reactants (reversible reactions

that do not carry flux are evaluated separately in either direction).

These are latent reactions.

• To force latent reactions to carry flux, perform FBA to maximize

the sum of the y values (see above) of latent reactions determined

(Appendix Equations S27 and S28). This sum is designated as

Zlatent and its maximum value as Zlatent,max. Constrain Zlatent at

Zlatent,max for the next step.

• Perform FBA to minimize the total flux of all reactions as before

(Appendix Equation S29). Since the resulting flux distribution may

produce more latent reactions, iteratively go through the last three

steps (including this) until no further latent reactions are added.

• The last flux minimization step produces the OFD (Fig 2B).

Integration in the dual-tissue model context

Steps of integrating the dual-tissue model with experimental data

are as follows:

• Constrain the uptake of stored metabolites (TAG, glycogen, and

trehalose) as a percentage of bacterial intake by mass (see above

for the method of constraining). An arbitrary upper limit of 1%

was used for all stored metabolites combined.

• Constrain the uptake of side nutrients as a percentage of bacterial

intake by mass. The overall uptake of these nutrients was limited

by 2% of bacterial intake and the uptake of individual nutrients

by 0.5% (see below for the choice of parameters).

• Integrate gene expression of the six non-intestinal tissues one by

one with the model. Use all categorized genes in the target tissue

to constrain reactions in X and E compartments. Use only rarely

and lowly expressed genes in the intestine to constrain reactions

in the I and L compartments. Highly expressed genes in the intes-

tine are ignored in this step.

• After flux distributions for all six non-intestinal tissues are

obtained, calculate the sum of fluxes (from all six flux distribu-

tions) of reactions that carry material to and from the X compart-

ment and constrain the model with these fluxes for the next step.

An efficient method is taking a weighted sum of the fluxes

through the metabolites of the E compartment and adding

exchange reactions that exchange these metabolites, which are

then constrained with the calculated metabolite fluxes

(Appendix Equations S30–S32). The weights of this flux sum

should reflect the differences in the metabolic activity of tissues

(e.g., due to the differential tissue size). In this study, unique

molecular identifiers (UMI) provided by the reference study (Cao

et al, 2017) were used to approximate the relative activity of the

tissues (Appendix Equation S33).

• Finally, integrate all categorized intestine genes with I and L

compartments, while the flux to and from the X compartment is

taken into account by the constraints from the previous step.

Since all tissues are taken into account in the last step, the inte-

gration from that step shows the overall flux load and nutritional

requirements. To warrant a bacterially dominated diet, different

side nutrient uptake rates were tested for the second step. Because

the intake of bacteria itself is not constrained, strict limitation of

side nutrients as a percentage of bacterial intake results in the

excessive intake of bacteria to allow sufficient uptake of side nutri-

ents for the integration, as a result of which bacterial biomass is

wasted and the ratio of side nutrients within the used resources is

increased. Based on trials with different ratios (Appendix Fig S3A),

the overall uptake of side nutrients was limited by 2% of bacterial

intake and the uptake of individual metabolites by 0.5%. With

this setting, bacterial nutrients dominated the resources used by

about 95%.

Determination of tissue metabolic networks

Whether a reaction was part of the metabolic network of a

tissue was determined based on OFD (see above) and FVA

(Mahadevan et al, 2002). Reversible reactions were evaluated

separately in each direction. The algorithm is applied to each

reaction as follows:

• Perform FVA: Use FBA, with constraints from iMAT++ integra-

tion for the tissue, to determine the maximum flux the reaction

can take, which shows the flux capacity in the forward direction,

and also (if applicable) the minimum flux the reaction can take,

the negative of which shows the flux capacity in the reverse direc-

tion (Appendix Equation S35).

• Use the flux of the reaction from integration (i.e., in OFD for

the tissue of interest) and the flux capacity of the reaction

calculated by FVA to determine whether the reaction is in the

tissue network:
o If the reaction has non-zero flux in the tissue OFD, then it is

part of the tissue metabolic network. These reactions were

labeled as OFD (Tables EV7 and EV8).
o If the reaction carries no flux in OFD, but has non-zero flux

capacity based on FVA, then it carries flux in alternate solu-

tions of integration for the tissue of interest and is therefore

part of the tissue network. These reactions were labeled ALT.
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o If the reaction has zero flux capacity, then it does not carry flux

in the solution space (SLNS) of the tissue of interest, and hence

not part of the tissue network. These reactions were labeled NONE.

All FVA and OFD analyses were carried out with the dual-tissue

model. However, tissue networks were eventually defined in a

single-tissue format (Tables EV7 and EV8) using the reaction states

in the I and L compartments for the intestine, and those in the X

and E compartments for the other tissues. As an exception, if a reac-

tion in the I or L compartment was labeled ALT for intestine integra-

tion but was not in SLNS for any other tissue integration, then it

was considered as not part of the intestine network.

Flux potential analysis
Algorithm

Flux potential analysis in a tissue is performed with the following steps:

• Divide reversible reactions into two separate reactions, one represent-

ing the forward direction and the other representing the reverse. The

reverse reaction has the reactants and products swapped. Therefore,

all reactions in the modified model have only a forward direction.

• Choose a target reaction. If the analysis is targeting a metabolite,

choose a demand or export reaction that drains the metabolite to

analyze its production potential, or a sink or import reaction that

introduces the metabolite to analyze its consumption potential. If

these reactions do not exist, insert a demand or sink reaction to

the model accordingly.

• Calculate gene expression coefficients (c) for each reaction for the

tissue of interest (see below). This calculation is done only once

for all FPA performed for a particular tissue. For the dual-tissue

model, expression coefficients in I and L compartments are always

those based on intestine gene expression, while the coefficients of

X and E reactions are variable.

• Calculate the metabolic distance (d) of each reaction in the

network from the target reaction (see below).

• If the target reaction is part of a reversible reaction in the unmodi-

fied model (see above), block the reaction that represents the

other direction in the original model. This step prevents loops.

• If the target reaction is a sink, demand, or transport (to or from

extracellular space) reaction, block all other reactions of these

types that act on the same metabolite. This step prevents short

cuts during metabolite-level analyses.

• Block all reactions that are not part of the tissue network (see

above for the determination of tissue networks).

• Perform FBA such that:
o The objective function is the maximization of flux in the target

reaction (Appendix Equation S36).
o All reaction fluxes are constrained between 0 and 1000

(Appendix Equation S37).
o A weighted sum of all fluxes is less than or equal to a constant

allowance (a) (Appendix Equation S38). The weight of a reaction

in this sum is a function of the gene expression coefficient for that

reaction and its metabolic distance from the target (Fig 5A,

Appendix Equation S39). The allowance used in this studywas 1.

• The maximum flux obtained from the FBA step gives the flux

potential (FP) of the target reaction in the tissue of interest.

• Calculate FP for the super system, i.e., for the same target reaction

when gene expression coefficients are 1 for all reactions associ-

ated with genes.

• The ratio of FP calculated for the tissue to that calculated for the

super system gives the relative flux potential (rFP) of the target

reaction in the tissue of interest.

In the dual-tissue model context, reactions in I and X compart-

ments were not targeted when FPA was performed on non-intestinal

tissues and intestine, respectively. As a specific rule, during FPA for

the intestine, all reactions in the X compartment were blocked.

Calculation of gene expression coefficients

Tissue expression profiles (i.e., TPM values of a gene for the seven

tissues) were used to determine gene expression coefficients of each

reaction for each tissue. If a reaction was associated with only one

gene, the profile was first normalized by the maximum value, and

then the reciprocal of the normalized value for a tissue defined the

coefficient of the reaction in that tissue (Appendix Equation S40). If

multiple isozymes formed the reaction GPR, then the sum of TPMs

for all isozymes was used to first generate a cumulative expression

profile, and then normalization and derivation were carried out with

this profile (Appendix Equations S40 and S41). If different proteins

were involved in the GPR as in a protein complex, then the coeffi-

cient was derived for each protein, and the maximum value was

used (Appendix Equations S40 and S42).

Reactions that are not associated with any genes were typically

assigned an expression coefficient of 1. Exceptions included bacte-

rial intake and degradation reactions and all exchange reactions (E

compartment), which were assigned a zero coefficient for all tissue

evaluations. Also, transport reactions between I and E compart-

ments were assigned a zero coefficient when the target reaction is in

the X compartment. This rule prevents the penalization of a non-

intestinal tissue for having to transport a metabolite through a

longer route than the intestine.

Metabolic distance

Metabolic distance between two reactions is defined as the length of

the shortest path to reach from one reaction to the other. Calculation of

guaranteed shortest paths is not possible for large metabolic networks

for which exhaustive searches are not computationally feasible

(Frainay & Jourdan, 2017). In this study, an algorithm was developed

to effectively find the distance between reaction pairs by a non-exhaus-

tive search (Appendix Table S3). The distance between all reaction

pairs of the network can be calculated using this algorithm as follows:

• Convert the metabolic network into a network of only irreversible

reactions (see the first step of the FPA algorithm above).

• Convert this metabolic network to a reaction tree such that each

node represents a particular reaction and is connected to two

types of other nodes called “to” nodes and “from” nodes. The

“to” nodes represent reactions that consume the products of this

reaction and the “from” nodes represent ones that produce its

reactants. To prevent creating short cuts in the network, ignore

hub metabolites such as atp, nadh, and h2o when linking reaction

nodes. In this study, 21 frequent metabolites were ignored.

• Given a query reaction i, first eliminate the reverse of this reaction

in the network (i.e., if the reaction represents one of the two direc-

tions of an originally reversible reaction) and traverse the tree

from this reaction to all others that are reachable. When a reaction

is reached for the first time, fix the path to that reaction before

traversing the tree further to others. Because of this path fixing,
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the path from reaction i to any reaction j will cover the least

number of steps possible, thereby showing the distance from reac-

tion i to reaction j.

• Check for loops in the path from reaction i to reaction j. A loop

occurs when a reversible reaction of the original metabolic

network is traversed twice, i.e., when both the forward and the

reverse reactions originating from a reversible reaction are part of

the path found. Such paths are not valid and cannot be used for

calculating the shortest distance. For all such cases, eliminate the

first reaction in the path that creates a loop and find the shortest

path from reaction i to reaction j again.

• Since the previous step can still produce an invalid path with

loops, repeat that step until a valid path is found from reaction i

to reaction j. The length of this path defines the distance from

reaction i to reaction j.

• Apply the previous three steps to find the distance to all reactions

reachable from reaction i. Use the maximum distance observed in the

network for reactions that are not reachable starting from reaction i.

• Repeat the previous four steps using every reaction in the network as

the query. The result is a square distance matrix that gives distance

from any reaction i to any reaction j in the metabolic network.

• Due to the structural properties of metabolic networks, the

distance from i to j is not necessarily equal to the distance from j

to i. Set the final distance between i and j as the minimum of these

two values. This step converts the distance matrix to a symmetric

one. During FPA, the row of the distance matrix that represents

the target reaction can be used to define the distance between this

reaction and all network reactions (columns).

The loop corrections in the fourth and fifth steps do not warrant

shortest paths to be found. However, such corrections were neces-

sary for < 1% of all distances calculated and more than a hundred

such cases were manually verified to have yielded the shortest

distances. Thus, the compromise made in this algorithm to make

the search for the shortest path computationally feasible had a negli-

gible effect on the accuracy of the calculated distances.

The exclusion of hub metabolites such as NAD and ATP in the

second step means that some redox and energy reactions may

appear very distant to a target reaction, and therefore, the weight

of their flux may be very low during FPA. This does not mean redox

and energy balance can be neglected, as redox, mass, and energy

balances are always established by FBA during FPA. However, the

influence of the relative expression of redox and energy genes may

be diminished by the large distances, depending on the target reac-

tion and the distance order used.

Data availability

The computer code, metabolic models, and datasets produced in

this study are available in the following databases:

• Code for MERGE: GitHub repository created for this project

(https://github.com/WalhoutLab/MERGE), which includes scripts

that reproduces the results here, examples of integration of

iCEL1314 with whole-animal datasets, and a preliminary integra-

tion of a human model (Swainston et al, 2016) with transcrip-

tomic data from various human tissues (Uhlen et al, 2015).

• Metabolic models: iCEL1314 is available at the WormFlux website

(http://wormflux.umassmed.edu/) (Yilmaz & Walhout, 2016), in

BioModels (Chelliah et al, 2015), and in Tables EV2 and EV3. The

dual-tissue model is available in Table EV5. Both models are also

available in the GitHub repository for MERGE.

• Predictions: Tables EV7 and EV8 of this study.

Expanded View for this article is available online.
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