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Abstract: In recent years, growing interest in deep learning neural networks has raised a question on
how they can be used for effective processing of high-dimensional datasets produced by hyperspectral
imaging (HSI). HSI, traditionally viewed as being within the scope of remote sensing, is used in
non-invasive substance classification. One of the areas of potential application is forensic science,
where substance classification on the scenes is important. An example problem from that area—blood
stain classification—is a case study for the evaluation of methods that process hyperspectral data.
To investigate the deep learning classification performance for this problem we have performed
experiments on a dataset which has not been previously tested using this kind of model. This dataset
consists of several images with blood and blood-like substances like ketchup, tomato concentrate,
artificial blood, etc. To test both the classic approach to hyperspectral classification and a more
realistic application-oriented scenario, we have prepared two different sets of experiments. In the
first one, Hyperspectral Transductive Classification (HTC), both a training and a test set come from
the same image. In the second one, Hyperspectral Inductive Classification (HIC), a test set is derived
from a different image, which is more challenging for classifiers but more useful from the point
of view of forensic investigators. We conducted the study using several architectures like 1D, 2D
and 3D convolutional neural networks (CNN), a recurrent neural network (RNN) and a multilayer
perceptron (MLP). The performance of the models was compared with baseline results of Support
Vector Machine (SVM). We have also presented a model evaluation method based on t-SNE and
confusion matrix analysis that allows us to detect and eliminate some cases of model undertraining.
Our results show that in the transductive case, all models, including the MLP and the SVM, have
comparative performance, with no clear advantage of deep learning models. The Overall Accuracy
range across all models is 98–100% for the easier image set, and 74–94% for the more difficult one.
However, in a more challenging inductive case, selected deep learning architectures offer a significant
advantage; their best Overall Accuracy is in the range of 57–71%, improving the baseline set by the
non-deep models by up to 9 percentage points. We have presented a detailed analysis of results and a
discussion, including a summary of conclusions for each tested architecture. An analysis of per-class
errors shows that the score for each class is highly model-dependent. Considering this and the fact
that the best performing models come from two different architecture families (3D CNN and RNN),
our results suggest that tailoring the deep neural network architecture to hyperspectral data is still an
open problem.
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1. Introduction

Hyperspectral imaging (HSI) records the spectral data in the visible (VIS) and near- or short
wave infrared (NIR/SWIR) ranges. This allows to observe wavelength-specific interaction of light
photons with molecules in the observed scene. Those interactions, identifiable through analysis of
the pixels’ spectra, can be used to infer the presence or absence of certain materials in the imaged
scene. When complemented with the context of the imaging process, this allows for non-destructive
assessment of a scene, e.g., a detection of organic compounds [1], classification of crops [2] or food
decay verification [3].

In this paper, we focus on the problem of hyperspectral classification. In previous years, a number
of methods have been proposed for solving the general hyperspectral classification problem [4].
Hyperspectral classification methods can be divided into spectral only classifiers, e.g., Support Vector
Machine (SVM) [5] applied to single pixel information, or spatial–spectral [6] approaches which
supplement spectra information with pixel position in the image. Since typically the number of
training examples is low in HSI, semi-supervised methods [7], which use both labelled and unlabelled
data, are sometimes used to improve the accuracy. Recently, deep learning neural networks [8]
have been applied to hyperspectral data classification, following their success in solving general
computer vision tasks [9]. Various network architectures were used for building deep hyperspectral
classifiers [8], e.g., spectral only convolutions [10], spatial-spectral convolutions [11], autoencoders [12],
semi-supervised approaches [13] and recurrent networks [14].

In the authors’ opinion, a particularly interesting case study of hyperspectral classification
may be defined in relation to the problem of blood stain identification. Detecting dried patches
of blood in a physical scene is an important problem in forensic science [15], while analysis of blood
spectral components within the skin can be used for wound severity estimation [16]. The hemoglobin
derivatives present in the blood, such as oxyhemoglobin (oxyHb) and methemoglobin (metHB), have
characteristics peaks in VIS range spectra, referred to as β (≈542 nm) and α (≈576 nm), which can
be used to detect blood or distinguish it from other substances [17]. Moreover, time-inducted decay
following the exposure to the elements leads to changes in spectra, which can be used to assess the age
of the stains [18].

To explore this problem, we perform two kinds of experiments. The first is a typical scenario of a
single image hyperspectral classification, similar to experiments done on Indian Pines and University
of Pavia datasets e.g., in [19] or [4]. In this scenario the classifier is trained on a subset of pixels
with known labels, sampled from the image itself, and is expected to assign a label to the remaining
pixels. We can find similarities to the concept of transductive learning proposed by Vapnik [20]. This is
because the set of observations is known and limited to pixels in the image and the task is focused
on assigning a label to unlabelled observations in this set. Therefore we call this a Hyperspectral
Transductive Classification (HTC) scenario. In HTC the training set is a good representation of data,
therefore we can usually expect high accuracy, even for small training sets [7].

In the second experiment, the classifier is trained on a subset of pixels from one image and
tested on an image of a different scene, containing the same materials. This experiment simulates a
forensic application, i.e., the classifier is prepared in laboratory conditions and used in the process
of a forensic scene analysis. The task is more challenging, compared to the HTC scenario, due to
significant differences between training and test images. These differences result e.g., from variations
in lighting, the fact that class spectra are mixed with spectra of different, diverse backgrounds [21]
and from different acquisition times for images which results in age-inducted changes in class spectra.
Because the task is focused on constructing of an accurate classifier function and on a generalization,
by analogy to inductive learning, we call this scenario a Hyperspectral Inductive Classification (HIC).
The schema of the HTC and HIC scenarios are presented in Figure 1.
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TRAINING SET TEST SET

(a) The scheme of the Hyperspectral Transductive Classification (HTC) scenario

TRAINING SET TEST SET

(b) The scheme of the Hyperspectral Inductive Classification (HIC) scenario

Figure 1. The visualization of the classification scenarios tested in our research. The first row presents
the basic scenario in which a training and a test set come from the same image (HTC) while the second
row shows the case when a test set is chosen from the another image than a training set (HIC). The HIC
scenario is more useful from the point of view of forensic science.

We are particularly interested in comparing, in these two scenarios, the accuracy of classifiers
that belong to one of the leading groups of machine learning methods, namely deep neural networks
(DNNs). DNNs are known to be able to extract complex features, and they perform very well in the
HTC scenario [22]. However, a question arises: how do they perform for images with different spatial
and spectral structure and in a more challenging scenario? We intend to answer this question by
applying a diverse set of deep learning architectures to blood stain classification problem in the HTC
and HIC scenarios. For this task we use a dataset [23] which contains several hyperspectral images
of blood and blood-like substances (such as ketchup, artificial blood, tomato concentrate, poster and
acrylic paint). These substances are visually similar and their distinction based on traditional photos is
difficult. The images in the dataset simulate different acquisition scenarios (laboratory, crime scene,
blood splatter), and were captured at different time intervals. Annotation of classes presented in
images is provided by their authors [23].

For our experiments, we selected different state-of-the-art architectures of neural networks
(convolutional, recurrent and multilayer perceptron) designed for HSI analysis. Their efficiency
was compared with multilayer perceptron and Support Vector Machine classifiers.

Our main contributions are:

1. We perform a study of blood stain classification from hyperspectral images with deep neural
networks. To the best of the authors’ knowledge, this study is the first of its kind.

2. Through the presented case study, we investigate the performance of deep neural networks on a
real-life hyperspectral dataset that complements the typical tests done on remote sensing images
e.g., Indian Pines or University of Pavia images. While the remote sensing transductive scenario
is popular, we argue that the proposed dataset is, in terms of scene contents and acquisition
conditions (camera distance, lighting, image preprocessing), close to many practical applications
(e.g., food and materials inspection, forensic detection, medical imaging). While individual
papers introducing DNN architectures (e.g., [24] or [11]) present comparisons to a selection
of reference algorithms, the authors are aware of only two studies [8,19] that present a broad
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comparison and discussion of methods, both focus on remote sensing data. Our study extends
that work by discussing the performance of networks in a different, ‘local’ sensing.

3. We compare the performance of transductive and inductive hyperspectral classification.
The inductive classification scenario is much less investigated, while at the same time it is
both more difficult and relevant for practical application.

Related Work

Sensitivity to hemoglobin makes hyperspectral imaging a promising tool for medical
diagnosis [16] and non-invasive blood detection [25]. For this reason, blood detection has been
extensively studied, e.g., in [26] blood was spilled on various multicoloured materials along with
other substances like red wine or lipstick. Authors pointed out that blood is harder to detect on
darker materials. A similar study was described in [27] where HSI is applied for detection of
bloody fingerprints. The process of hemoglobin degradation can be observed through changes in
reflectance spectra [28], which can be used to assess the age of blood. This problem was studied in [29];
in their experiments, the authors used various clustering algorithms on samples aged up to 200 days.
They observed that blood age estimation can be a challenging task without the knowledge about the
acquisition environment.

Another actively studied research area is a hyperspectral data classification [4]. Different machine
learning methods like SVM [30], random forests [31] or neural networks such as Extreme Learning
Machines (ELM) [32] were used. Recently, deep neural networks have become popular, following their
successful application for classic image classification [33,34] and object detection [35]. Examples of
architectures employed for HSI classification include one [10], two [36] or three-dimensional [22]
convolutional models for more efficient use of spatial and spectral information [37].

Deep learning architectures have been actively developed over the recent years. An up-to-date
summary of the latest architectures used for hyperspectral classification, along with a discussion of
results for common datasets can be found in [8,19]. Another wide comparison of neural network
architectures for well-known HSI datasets is presented in [38]. What is particularly interesting in
the latter study is that the authors performed experiments with relatively small training sets and
discussed the impact of data augmentation, transfer learning and residual learning on classification
accuracy. The problem of learning from a limited training set is important in HSI classification, as
training labels are often difficult to obtain [7]. Typically, deep learning requires a large number of
labelled examples; therefore, the emergence of architectures designed to limit this requirement, such
as e.g., [39] is promising. Another novel, interesting approach is the use of hybrid dilated residual
networks, which is presented in [40]. Sometimes, deep learning is combined with classic machine
learning algorithms. For example, in [41], the authors presented a hybrid classification method which
combines deep learning with SVM. Another example is the method based on deep metric learning
presented in [42].

In the inductive classification scenario in our experiments, features of training and test images are
different. It is a demanding scenario for a classifier, similar to the problem studied as a covariate shift
in [43]. To alleviate the impact of such differences in data, authors of [44] propose the density ratio
estimation. In the field of deep learning, such a problem is related to transfer learning and domain
adaptation e.g., in [45] authors train their networks on the source dataset and try to find the most
efficient way of fine tuning the network to the target. It turns out that saving some layers from the
pretrained network while retraining the others with new data can increase the classification accuracy.
On the other hand, authors in [46] present the transductive algorithm applied in the feedforward
neural network. Its main purpose is to improve the global classification accuracy on the dataset using
a subset of the input vectors, called prototypes. This approach is compared to the inductive case.
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2. Methods

In our experiments, we tested six state-of-the-art deep learning network architectures for
hyperspectral imagery from DeepHyperX library [19]: a multilayer perceptron, four convolutional
neural networks (CNNs) and one recurrent neural network (RNN). Results were also compared with a
Support Vector Machine (SVM) classifier as a standard reference algorithm that achieves competitive
results in hyperspectral classification [4]. In this section we describe the chosen architectures and their
parameters. All networks hyperparameters, such as the number of neurons, kernel sizes, activation
functions, number of epochs, batch size, etc., were taken from their implementation in DeepHyperX [19]
(unless explicitly stated otherwise like in the case of 1D CNN [10] architecture). The authors in [19]
declare that their implementation is as similar as possible to the approaches of individual authors.
We rely on optimization of hyperparameters done by the authors of referenced papers. Our objective
was to keep our results comparable with [19].

2.1. Multilayer Perceptron

Despite its simplicity, a multilayer perceptron [47] achieves high accuracy in hyperspectral
classification tasks [4] and is often used as a reference for more complicated architectures [19].
The implementation used in our experiments consists of three hidden layers (2048, 4096 and 2048
neurons), with cross-entropy loss function [19]. The scheme of the MLP architecture is presented in
Figure 2.

Input

Hidden layers

   Output
classification

Figure 2. Schematic of the MLP architecture [19] used in experiments.

2.2. Deep Recurrent Neural Network

In [14], the authors propose a deep recurrent neural network (RNN) that uses gated recurrent
units (GRU). The RNN architecture includes loops in its design, which allows it to process sequential
data, i.e., data where the output for a given example depends on the previous examples processed by
the network. GRU unit was designed to work effectively with long-term sequences but in contrast to
the long short-term memory (LSTM) unit it also has fewer parameters. The authors treat hyperspectral
pixels as sequences to train the RNN. To produce bounded and sparse output authors propose new
activation function PRetanh given by the following equation:

f (ai) =

{
tanh(ai), ai > 0,
λi tanh(ai), ai ≤ 0,

(1)
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where ai is the input of the activation f for the i-th channel and λi ∈ [0, 1] is a learnable parameter
which can differ for different channels. The network diagram with sketch of GRU layer is presented in
Figure 3.

The GRU layer has a size of 64 units with sigmoid gate activation and PRetanh activation function
for hidden representations. To address the problem of small and unbalanced training set, authors utilize
dropout with probability of 0.5 on the output of recurrent layer, as well as a dropout of 0.2 on the
weight matrices of the proposed model. Moreover, the batch normalization is used. In the output
layer the softmax activation function is utilized to provide class probabilities. The cross-entropy loss
function is used to train the network.

Input
     Output
classification

Gated Recurrent Units (GRUs)

Fully-connected
         layer

RESET UPDATE ACTIVATION

hk

x
1-

x

xk

hk-1

x

RESET UPDATE ACTIVATION

hk

x
1-

x

xk

hk-1

x

Figure 3. Schematic of the RNN architecture [14] used in experiments, we denote the value of k-th
spectral band as xk and the hidden state of the previous and the current step as hk−1 and hk, respectively.

2.3. Convolutional Neural Networks

Convolutional neural networks [47] (CNN) use convolutional layers which create feature maps
from input data followed by pooling layers that reduce dimensionality of feature maps. When used
to process hyperspectral images, depending on the type of the network, the convolutions can be
defined as:

• one-dimensional, taking into account only spectral vectors and ignoring spatial relationships
between pixels;

• two- and three-dimensional, exploiting local neighbourhoods of hyperspectral pixels and
spatial-spectral relationships.

This flexibility in defining the convolution allows to customize the network for different types of
hyperspectral data. In most of the architectures, convolutional layers are followed by fully connected
layers that classify examples using extracted features. CNNs may also use dropout regularization that
randomly removes neurons with a predefined probability to avoid overfitting.

2.3.1. 1D Convolutional Neural Network

One of the proposed CNNs applied for the presented HSI classification problem is the architecture
based on [10]. It consists of one 1D convolutional layer, one 1D max pooling layer and two fully
connected layers. Its advantage is the simplicity of the model. The convolutional layer is composed of

20 kernels of size c =
⌈nB

9

⌉
, where nB is the number of hyperspectral bands. In the next step, data is

processed by the max pooling layer with the kernel size m =
⌈ c

5

⌉
. During these two stages padding
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and dilation are equal to 0 and 1, respectively. For the convolutional layer the stride is set to 1 while for
the pooling layer it equals m. Then, the extracted features are inserted into the fully connected layer of
100 neurons. Finally, the last layer is responsible for the classification (the number of neurons equals
the number of classes). As a loss function the cross-entropy is chosen. The illustration of the described
network is shown in Figure 4.

Max pooling

Input

1D convolution
        20 kernels

Fully-connected layers

  Output
classification

Figure 4. Schematic of the 1D CNN architecture [10] used in experiments.

2.3.2. 2D Convolutional Neural Network

We use the 2D architecture proposed in [24]. First, data is processed with a 2D convolutional
layer with kernels of different sizes, which the authors called a multi-scale filter bank. The authors
emphasized the similarity to the Inception module [48]. In the implementation from [19], two filters
were applied: 3× 3 and 1× 1 and results of filtering are combined. Then, data is processed by multiple
2D convolutional layers. Each layer except the last one (classification layer) has 128 filters. After the
multi-scale filter bank, as well as the 2nd, 3rd, 5th, 7th and 8th convolutional layers, the ReLU(·)
activation function was used.

In addition, two residual connections are used, which improve the gradient flow through the
network and local response normalization (LRN) is used after the first two convolutional layers,
which normalizes activations of neighbouring filters. Dropout was applied after 7th and 8th layers.
Similarly, as in the previous models, the cross-entropy is used for the training. The schema of this
network is presented in Figure 5.

Multi-scale filter bank

3x3

1x1

+ +

Number
of kernels: 256              128          128          128            128          128         128            128         128          128

Residual blocks    2D convolutions
Output

classification
Input

Figure 5. Schematic of the 2D CNN architecture [24] used in experiments.

2.3.3. 3D Convolutional Neural Network

We used two architectures of this type in our experiments. The first one is the architecture
presented in [11], consisting of two 3D convolutional layers and one fully connected layer (without
pooling layers), as can be seen in Figure 6 where the schema of the network is presented. Kernel sizes
(width, height, depth) were set as (3, 3, 7) and (3, 3, 3) respectively, and padding dimensions are (1, 0, 0)
in both layers. The second convolutional layer has twice as many kernels as the first one. Furthermore,
after each convolutional layer, the ReLU(·) activation function was applied.
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      2                                 4  

Input

    Output
classification

3D convolutions

Fully-connected
         layer

Number
of kernels:

Figure 6. Schematic of the 3D CNN architecture [11] used in experiments.

The second 3D CNN we used is based on [49] and is presented in Figure 7. Apart from 3D
convolutional layers, this architecture uses 1D convolutions. The pipeline of this model consists of
two 3D convolutional layers with kernel size (3, 3, 3) and stride equal to 1 intertwined with two 1D
convolutional layers with kernel size (1, 1, 3) and stride set to 2. Furthermore, the authors use two
consecutive 1D convolutional layers with kernel sizes (3, 1, 1) and (2, 1, 1), respectively, and strides
equal to 1 and 2, respectively. Finally, one fully connected layer with softmax function was used
to create class probabilities. For the two convolutional layers, the number of neurons was set to 20
while for the remaining convolutional layers it was 35. The ReLU(·) activation function was used
for all layers except for the first two 1D convolutions. The two 3D CNNs are trained by using the
cross-entropy loss function.

Input
    Output
 classification

3D 
     convolution

Fully-connected
         layer

Number
of kernels: 20               20              35            35           35            35

1D 
convolution

3D 
     convolution

1D convolutions

Figure 7. Schematic of the 3D CNN architecture [49] used in experiments.

2.3.4. Performance Measures

In order to compare the presented methods, we used the following metrics: Overall Accuracy
(OA), Average Accuracy (AA), Cohen’s kappa coefficient (κ) and a method based on t-SNE projection
of confusion matrices. OA can be described as a ratio of correctly classified pixels to the total number
of pixels. AA is computed as an arithmetic mean over all classes from ratios of properly classified
pixels belonging to a given class to the total number of pixels from this class. This metric allows for
the detection of discrepancy in the prediction results of individual classes. κ coefficient [50] compares
the agreement of two discrete probability distributions and checks their difference of judgement,
according to the equation:

κ =
po − pc

1− pc
, (2)

where po denotes the relative observed agreement that samples belong to the given class (the accuracy)
while pc indicates the probability that the samples match randomly. In our case, the ground truth is
compared with the predictions of classifiers.

In addition, a method based on t-SNE projection is used for outlier identification in the results
and is described in detail in Section 3.3.2.
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3. Results

This Section presents the details of performed classification experiments: the dataset,
the procedure, evaluation method, results and discussion.

3.1. Evaluation Dataset

Hyperspectral images used in our experiments come from the dataset described in [23], which
is publicly available under an open licence (the dataset with snippet code for data loading: https:
//zenodo.org/record/3984905). The dataset consists of annotated hyperspectral images of blood and
six other visually similar substances: artificial blood, tomato concentrate, ketchup, beetroot juice, poster and
acrylic paint. Images in the dataset were recorded on the course of several days, to capture changes in
spectra related to the process of the time-related substance decay. On every image, hyperspectral pixels
where classes are visible were annotated by authors, therefore they can be treated as labelled examples
i.e., pairs (xi, li) ∈ X from a set of labelled examples X , where vectors xi ∈ Rd are hyperspectral pixels,
d ∈ N denotes the number of bands and li ∈ N are class labels.

The majority of images in the dataset were captured using an SOC710 hyperspectral camera
operating in spectral range 377–1046 nm with 128 bands. Following suggestions in [23] we removed
bands [0–4], [48–50] and [122–128], leaving 113 bands. From six image types in the dataset we decided
to use two that are most useful for our experimental setting. First, the frame scenes, denoted as F
in [23], present class examples on a uniform, white fabric background; this image has the advantage of
distinct separation and clear spectral characteristic of the substances which makes it a good benchmark
dataset for tested models. The other type of images that was used is the comparison scenes, denoted as E.
These present the same substances on diverse backgrounds consisting of multiple materials and fabrics
types. This means that substance spectra are mixed with the background spectra, which provides a
more challenging classification setting. Since one of the classes, the beetroot juice was not present in all
images, it was removed in our experiments, leaving six classes.

Additionally, we used images captured in different days to take into account changes in the blood
spectrum over time. For both scene types we used images from days {1, 7, 21} (6 images in total),
denoted F(1), F(7), F(21) and E(1), E(7), E(21), respectively. For scenes F we additionally used an image
denoted F(1a), taken sever hours later than the image F(1) and two images obtained in the second
day, denoted F(2) and F(2k). The image F(2k) was captured with a different hyperspectral camera.
Spectra in this image were linearly interpolated to match bands from the SOC710 camera. A more
detailed description of the dataset can be found in [23]. Visualization of example images from the
dataset and a comparison of their spectra are presented in Figure 8.

3.2. Experimental Procedure

We performed two types of classification experiments (see Section 1 for motivation
and discussion):

1. Hyperspectral Transductive Classification (HTC) scenario treats every image in the dataset separately.
In every experiment, the set of labelled pixels in the image X is divided between the training and
the test set, i.e., Xtrain ⊂ X ,Xtest ⊂ X ,Xtrain ∩ Xtest = ∅.

2. Hyperspectral Inductive Classification (HIC) uses a pair of images: a set of labelled pixels from one
image is used to train Xtrain ⊂ X1 the classifier which is later tested on full set of labelled pixels
Xtest = X2 from the second image.

Based on the discussion in [23], pairs of images for training and testing the classifier were chosen
in the HIC experiment: a F/frame is used for training, as it simulates the lab acquired reference data,
while a E/comparison scene image is used as test, as it simulates a real-life crime scene. The complexity
of HIC is enhanced by the fact that not every F image has its E counterpart acquired at the same
time. Among pairs are ones with corresponding acquisition times (e.g., F(7)→E(7)), acquisition times

https://zenodo.org/record/3984905
https://zenodo.org/record/3984905
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differing by hours (e.g., F(1a)→E(1)) or days (e.g., F(2)→E(7)). Those differences are introduced on
purpose, to allow examination of the effect of time-related change of spectral shape on the classification
performance. For similar reasons, we have included two pairs F(2)↔F(2k); while they share a similar
scene, they were acquired with different cameras and thus allow to investigate the effect of the
equipment change.

(a) Class GT for image F(1) (b) Class GT for image E(1)
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(c) Class spectra in the image F(1)
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(d) Class spectra in the image E(1)

(e) PCA visualization for the image F(1) (f) PCA visualization for the image E(1)

Figure 8. Dataset visualization. Upper panels present classes as a coloured ground truth on RGB
images created from hyperspectral cubes. Middle panels present mean class spectra. Bottom panels
present PCA projection of data on first two principal components. The images come from [23].

Since some of the architectures considered (e.g., 2D CNN [24] or 3D CNN [11]) use a block of
pixels as an input, there was a need to create a uniform training/testing picture split for every image.
The objective was to avoid patches from the training set having non-empty intersections with patches
from the test set. For each class, a set of ntrain = 5% · ns samples, where ns is the number of pixels
of the least numerous class, was randomly, uniformly selected as training pixels. Each class was
thus represented by the same number of samples. The 2-pixel neighbourhood of the training set—a
maximal size of the neighbourhood used by tested architectures—was marked as unusable, along with
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the margin at the image borders of the same dimension. All of the remaining labelled pixels formed a
test set. An example illustration of the effect of this procedure is presented in Figure 9. For every image
nsets = 10 different sets of randomized training pixels were prepared; the same collection of training
sets was used for each network, ensuring comparability of results between individual architectures.
The results for each scenario of network type/image configuration were averaged over 10 runs with
the above specified fixed training datasets. Given 17 image scenarios, seven methods and ten runs for
each image/method configuration, the total number of runs was nruns = 1190.

Figure 9. An example of the train and test set selection for the F(1) image. The left panel presents a RGB
visualization with superimposed ground truth class labels. The right panel presents selected training
(5% · ns, where ns is the number of pixels of the least numerous class) and test examples. Pixels within
2-pixels neighbourhood of every training point are not used for testing to avoid non-empty intersection
between training and test sets for networks that process patches of pixels.

We have used the implementation of network architectures provided with DeepHyperX
library [19]. The models were initialized with the default values of hyperparameters as distributed with
the library. Initial trial runs were performed to verify the general performance and assess the stability
and suitability of the hyperparameter choice. In all but one case the default parameters were used for
the main experiment. For the one case—1D CNN [10] architecture—a minor adjustment was made:
number of epochs was increased to ne = 400 and batch size was decreased to nb = 50. While there
exists a possibility that extensive hyperparameter tuning would improve performance of the models, it
would also make it more difficult to compare our results with [19] and assess generalization capability
of each network. By applying the architectures to our data with similar hyperparameters as in [19], we
broaden the perspective while at the same time testing the robustness of the default hyperparameter
choice. Additionally, hyperparameter optimisation requires a high degree of intimacy with a given
architecture; this poses a risk to produce more effective optimisations for some models than the others,
thus introducing a bias in the results. Too much optimisation may overtrain a model to a given dataset,
which would introduce additional bias, and would go against our objective of ‘stress testing’ the
selected architectures.

For the reasons discussed in the previous paragraph, we have not used any preprocessing that
would significantly transform the spectra. The only preprocessing performed, as suggested in [23],
was spectra normalisation: for each image, every hyperspectral pixel vector was divided by its median.
This procedure is intended to compensate for non-uniform lightning exposure.

As a reference for the tested deep learning architectures, we tested the SVM classifier [51]. For its
construction, we have used the Radial Basis Function (RBF) kernel and parameters chosen through
internal cross-validation from a range of C ∈ 〈10−3, 103〉 and γ ∈ 〈s× 10−3, s× 103〉, where s = 1

n f×v
with n f is the number of bands and v is the variance of data.

3.3. Evaluation Procedure

3.3.1. Implementation

Experiments were performed using Python 3.7.6 (64-bit). Except for the DeepHyperX [19],
the following libraries were used: PyTorch 1.5.0 [52], scikit-learn 0.22.1 [53], CUDA Toolkit 10.2.89,
numpy 1.18.1 [54], matplotlib 3.1.2 [55], spectral 0.21, scipy 1.4.1, torchsummary 1.5.1 and conda 4.8.2.



Sensors 2020, 20, 6666 12 of 24

The source code for replication of experiments can be found on the github repository (Source code
location: https://github.com/iitis/DeepHyperBlood).

3.3.2. Evaluation Metrics

To compare tested methods we used three measures of classification performance: Overall
Accuracy (OA), Average Accuracy (AA) and Cohen’s kappa coefficient (κ), which are often used to
evaluate the result of hyperspectral classifiers [4].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Example steps of the qualitative inspection of the experimental results (see Section 3.3.2).
The rows present three separate inspected cases. The columns contain the inspected data: a scatterplot
of t-SNE projected confusion matrices, the case confusion matrix and a classification map. On the
scatterplot the grey points represent classification results for all images, while the marked points are
connected with the presented case. Scores of the relevant scenario (network/images) were emphasized.
The first two rows present the scenario of the 3D CNN [11] network on F(2k) image; the result is
relatively high and comparable with others results with mean OA of 99.2%± 1.7%, it contains two
detectable outliers, which results from failure of training. Inclusion of them in the score would drop
the mean OA to 80.9%± 36.7%, which would hide the real capabilities of this network. Such results
were thus excluded. Bottom row: the RNN [14] network on F(1a)→E(1); consistent performance
verified by the low dispersion of the confusion matrices and their similar shape for subsequent runs.
(a) Confusion matrix scatterplot, 3D CNN [11] network, F(2k), (b) Confusion matrix for case selected
in (a), (c) Classification map for case selected in (a), (d) Confusion matrix scatterplot, 3D CNN [11]
network, F(2k) (same as (a)), (e) Confusion matrix for case selected in (d), (f) Classification map for case
selected in (d), (g) Confusion matrix scatterplot, RNN [14] network, F(1a)→E(1), (h) Confusion matrix
for case selected in (g), (i) Classification map for case selected in (g).

Additionally, to ensure the quality of the results, we performed a qualitative inspection of all
results. For that, we have used the following algorithm. First, confusion matrices for each run were

https://github.com/iitis/DeepHyperBlood
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extracted, and projected into a 2D plot using the t-SNE dimensionality reduction algorithm [56].
Each scenario, consisting of a given architecture and image training/test pair, was inspected for
dispersion and presence of outliers in the confusion matrix set. The usage of t-SNE projection allowed
for enhanced capability of examination, compared to analysis of descriptive statistics (i.e., mean,
standard deviation or kurtosis). For example, it allowed us for identification of outliers and comparing
the error patterns for each experimental scenario against the total results. An example snapshot of
this analysis is presented in Figure 10. A similar analysis was also carried out using t-SNE projected
classification maps.

3.4. Experimental Results

The qualitative analysis of the results, discussed in Section 3.3.2, identified n f ail = 11 cases of
failed network training. In all those cases the predicted labels belonged to a single class (In one of
those cases, all but one (13, 563 samples) were classified as one class, and a single sample was marked
as an another class. For the sake of simplicity, we classify this case as in line with the rest of training
failures.). We have removed those cases before computing statistics of the results. The scores—means
and standard deviations of OA, AA and kappa—for the transductive classification (HTC experiment)
are presented in Table 1, while results for inductive classification (HIC experiment) are presented in
Table 2. Additionally, per-class error percentages are presented in Tables 3–6. A graphical presentation
of the results in Tables 1 and 2 is in Figure 11. The detailed information about running times of applied
methods are presented in Appendix A.

Table 1. The results of experiments for the transductive scenario (HTC). In consecutive rows values of
Overall Accuracy (OA, %), Average Accuracy (AA, %) and Cohen’s kappa coefficient (κ) are presented
for each image. The best OA scores are emphasized.

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14]

OA: 99.7± 0.1 99.7± 0.1 99.2± 0.3 98.9± 0.8 99.4± 0.5 99.8 ± 0.2 98.6± 3.0
F(1) AA: 99.8± 0.1 99.7± 0.2 99.5± 0.1 99.2± 0.7 99.3± 0.8 99.9 ± 0.1 97.7± 5.5

κ: 1.00± 0.0 1.00± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 1.00 ± 0.0 0.98± 0.0

OA: 99.7± 0.1 99.6± 0.3 99.1± 0.2 99.3± 0.6 99.8± 0.2 99.9 ± 0.1 99.7± 0.1
F(1a) AA: 99.7± 0.1 99.4± 0.5 99.0± 0.2 99.4± 0.4 99.8± 0.4 99.8 ± 0.2 99.7± 0.1

κ: 1.00± 0.0 0.99± 0.0 0.99± 0.0 0.99± 0.0 1.00± 0.0 1.00 ± 0.0 1.00± 0.0

OA: 99.8± 0.1 99.7± 0.2 99.3± 0.2 99.7± 0.1 99.7± 0.3 99.8± 0.1 99.9 ± 0.1
F(2) AA: 99.7± 0.1 99.4± 0.7 98.8± 0.3 99.4± 0.4 99.4± 0.5 99.6± 0.2 99.8 ± 0.1

κ: 1.00± 0.0 1.00± 0.0 0.99± 0.0 0.99± 0.0 1.00± 0.0 1.00± 0.0 1.00 ± 0.0

OA: 99.9 ± 0.1 99.7± 0.1 99.2± 0.2 98.9± 0.5 99.2± 1.7 99.8± 0.1 96.8± 6.2
F(2k) AA: 99.8 ± 0.1 99.5± 0.1 98.8± 0.3 98.6± 0.8 98.7± 2.8 99.7± 0.2 95.9± 7.5

κ: 1.00 ± 0.0 1.00± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 1.00± 0.0 0.95± 0.1

OA: 99.8± 0.1 99.7± 0.1 99.1± 0.2 99.4± 0.2 99.9 ± 0.1 99.4± 1.4 98.9± 1.0
F(7) AA: 99.7± 0.1 99.5± 0.1 98.6± 0.2 99.3± 0.3 99.9 ± 0.2 98.9± 2.7 98.1± 2.1

κ: 1.00± 0.0 0.99± 0.0 0.99± 0.0 0.99± 0.0 1.00 ± 0.0 0.99± 0.0 0.98± 0.0

OA: 99.8± 0.0 99.8± 0.0 99.4± 0.1 99.6± 0.3 99.9 ± 0.1 99.7± 0.2 98.7± 2.2
F(21) AA: 99.7± 0.1 99.6± 0.2 99.0± 0.2 99.4± 0.5 99.8 ± 0.3 99.5± 0.3 96.9± 5.8

κ: 1.00± 0.0 1.00± 0.0 0.99± 0.0 0.99± 0.0 1.00 ± 0.0 1.00± 0.0 0.98± 0.0

OA: 94.5 ± 0.7 93.5± 1.7 89.8± 0.9 93.4± 0.8 86.4± 8.2 90.8± 4.5 85.1± 8.3
E(1) AA: 93.7 ± 0.8 93.1± 1.3 89.4± 0.6 92.7± 1.0 84.8± 9.3 89.9± 3.7 85.8± 6.0

κ: 0.93 ± 0.0 0.92± 0.0 0.87± 0.0 0.92± 0.0 0.83± 0.1 0.89± 0.1 0.82± 0.1

OA: 90.6 ± 1.7 90.1± 1.9 75.2± 1.0 85.5± 1.9 80.7± 11.3 81.2± 9.5 85.3± 4.4
E(7) AA: 88.9 ± 1.6 89.1± 1.2 74.2± 1.0 84.2± 2.3 78.2± 13.5 79.5± 7.7 83.0± 6.1

κ: 0.88 ± 0.0 0.87± 0.0 0.69± 0.0 0.81± 0.0 0.76± 0.1 0.76± 0.1 0.81± 0.1

OA: 87.8± 1.7 89.4± 1.6 74.0± 2.4 83.3± 3.5 94.3 ± 1.8 87.4± 3.5 85.0± 4.1
E(21) AA: 86.1± 1.6 88.1± 1.5 72.3± 2.3 82.9± 2.8 93.3 ± 2.4 86.9± 3.4 83.0± 3.7

κ: 0.85± 0.0 0.87± 0.0 0.67± 0.0 0.79± 0.0 0.93 ± 0.0 0.84± 0.0 0.81± 0.1
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Table 2. The results of experiments for the inductive scenario (HIC). In consecutive rows values of
Overall Accuracy (OA, %), Average Accuracy (AA, %) and Cohen’s kappa coefficient (κ) are presented
for each image pair. The best OA scores are emphasized.

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14]

OA: 55.9± 2.9 57.8± 3.6 46.4± 2.3 48.5± 5.4 58.1± 2.8 53.8± 3.2 66.8 ± 3.4
F(1)→E(1) AA: 58.6± 3.1 60.3± 3.3 48.4± 2.4 50.6± 5.4 55.2± 3.6 54.6± 2.9 68.2 ± 3.7

κ: 0.48± 0.0 0.50± 0.0 0.36± 0.0 0.39± 0.1 0.49± 0.0 0.45± 0.0 0.60 ± 0.0

OA: 60.7± 2.6 64.8± 2.0 52.1± 1.5 59.0± 4.9 59.3± 4.4 66.6± 2.1 71.8 ± 0.9
F(1a)→E(1) AA: 62.0± 3.1 66.0± 1.9 53.1± 1.5 60.1± 4.7 58.2± 4.4 67.6± 1.7 71.6 ± 1.2

κ: 0.53± 0.0 0.58± 0.0 0.43± 0.0 0.51± 0.1 0.51± 0.1 0.60± 0.0 0.66 ± 0.0

OA: 56.5± 5.0 58.7± 2.0 49.7± 1.0 57.0± 2.3 55.3± 5.0 63.0 ± 2.9 62.2± 1.2
F(2)→E(7) AA: 58.7± 6.0 61.3± 2.2 52.1± 0.9 59.1± 1.9 53.6± 6.9 65.1 ± 3.2 61.7± 1.7

κ: 0.48± 0.1 0.50± 0.0 0.40± 0.0 0.48± 0.0 0.45± 0.1 0.55 ± 0.0 0.54± 0.0

OA: 52.9± 2.6 58.8± 1.2 45.7± 0.9 51.2± 7.1 52.4± 7.7 57.3± 2.7 59.6 ± 4.7
F(2k)→E(7) AA: 54.9± 3.1 60.9± 1.3 47.1± 1.0 52.4± 5.8 52.7± 6.9 59.0± 3.2 57.4 ± 4.5

κ: 0.43± 0.0 0.50± 0.0 0.35± 0.0 0.41± 0.1 0.43± 0.1 0.48± 0.0 0.51 ± 0.1

OA: 54.7± 2.1 57.2± 2.0 47.2± 0.8 54.3± 2.0 60.3± 3.5 59.8± 2.6 63.6 ± 3.8
F(7)→E(7) AA: 59.4± 2.0 60.2± 2.2 50.8± 0.7 56.1± 2.3 57.8± 5.0 62.9± 2.5 65.3 ± 3.7

κ: 0.46± 0.0 0.48± 0.0 0.37± 0.0 0.45± 0.0 0.52± 0.0 0.52± 0.0 0.56 ± 0.0

OA: 45.4± 1.7 49.7± 2.4 44.0± 1.4 49.2± 1.6 54.4± 3.4 57.2 ± 1.3 56.3± 3.1
F(21)→E(21) AA: 48.3± 2.4 51.9± 1.9 45.7± 1.7 51.0± 1.3 51.4± 3.6 59.1 ± 1.4 55.0± 2.0

κ: 0.35± 0.0 0.40± 0.0 0.33± 0.0 0.39± 0.0 0.45± 0.0 0.49 ± 0.0 0.47± 0.0

OA: 98.2 ± 0.5 97.5± 0.6 97.0± 0.3 96.9± 0.5 80.0± 12.1 98.1± 0.5 90.4± 2.0
F(2)→F(2k) AA: 97.7 ± 0.6 96.7± 0.8 95.8± 0.5 95.6± 0.8 77.4± 12.1 97.2± 0.6 87.2± 2.5

κ: 0.98 ± 0.0 0.97± 0.0 0.96± 0.0 0.96± 0.0 0.75± 0.1 0.97± 0.0 0.88± 0.0

OA: 99.5 ± 0.2 99.2± 0.3 98.8± 0.3 96.5± 2.1 85.9± 10.6 99.2± 1.0 93.0± 6.0
F(2k)→F(2) AA: 99.4 ± 0.3 98.8± 0.5 98.5± 0.2 96.6± 1.9 82.5± 13.9 99.2± 0.9 93.2± 6.2

κ: 0.99 ± 0.0 0.99± 0.0 0.98± 0.0 0.96± 0.0 0.82± 0.1 0.99± 0.0 0.91± 0.1

Table 3. Per-class percentage of errors for each method, aggregated over transductive experiments
with F/frame images (first part of the HTC experiment).

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14] (Mean)

B 0.1 0.1 0.3 0.5 0.1 0.1 0.5 0.3
K 0.5 0.7 1.7 1.1 0.4 0.6 1.2 0.9

AB 0.2 0.3 1.2 0.9 0.5 0.2 3.7 1.0
PP 0.1 0.4 0.3 0.4 0.4 0.3 0.4 0.3
TK 0.5 1.1 2.2 1.4 0.6 0.9 5.4 1.7
AP 0.1 0.2 0.6 0.5 0.9 0.5 0.2 0.4

(mean) 0.2 0.5 1.0 0.8 0.5 0.4 1.9 0.8

Table 4. Per-class percentage of errors for each method, aggregated over transductive experiments
with E/comparision scene images (second part of the HTC experiment).

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14] (Mean)

B 9.7 7.9 12.6 10.5 15.6 9.9 12.0 11.2
K 10.2 8.9 26.0 16.2 17.6 15.8 12.9 15.4

AB 18.3 17.7 43.1 21.4 24.6 22.2 37.5 26.4
PP 1.5 1.2 2.3 2.5 1.8 1.9 2.0 1.9
TK 15.3 15.1 26.4 16.4 18.7 22.0 20.8 19.2
AP 4.8 6.4 10.9 9.4 7.1 11.1 8.1 8.3

(mean) 10.0 9.5 20.2 12.7 14.2 13.8 15.6 13.7
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Table 5. Per-class percentage of errors for each method, aggregated over inductive experiments with
F/frame images (second part of the HIC experiment, F(2)↔F(2k)).

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14] (Mean)

B 0.1 0.1 0.1 1.7 10.6 0.0 2.4 2.1
K 1.8 2.4 2.9 4.0 17.0 2.6 8.8 5.6

AB 0.5 0.8 1.7 3.2 16.1 1.3 38.1 8.8
PP 0.9 1.0 1.6 1.9 3.9 0.8 0.3 1.5
TK 4.8 8.1 9.2 11.2 43.4 4.6 8.6 12.8
AP 0.8 1.1 1.7 1.7 32.4 1.5 0.4 5.6

(mean) 1.5 2.2 2.9 3.9 20.6 1.8 9.8 6.1

Table 6. Per-class percentage of errors for each method, aggregated over inductive experiments with
F(i)→E(j) images (first part of the HIC experiment).

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14] (Mean)

B 35.3 30.4 43.8 39.8 44.8 29.4 42.1 38.0
K 48.4 55.1 84.6 73.8 80.8 72.2 42.7 65.4

AB 83.6 82.2 83.4 81.6 77.3 76.7 85.3 81.4
PP 32.0 29.6 38.8 34.0 5.7 16.9 9.0 23.7
TK 20.2 13.9 16.3 13.3 39.3 13.2 14.7 18.7
AP 36.7 26.0 34.4 27.5 21.1 23.3 20.1 27.0

(mean) 42.7 39.5 50.2 45.0 44.9 38.6 35.6 42.4

Figure 11. Graphical visualization of results from transductive (HTC, Table 1) and inductive
(HIC, Table 2) scenario. The presentation is based on the Overall Accuracy scores.

The scores for HTC form two groups, clustered around the F/frame and E/comparison scene
type images. For F/frame scenes the results are consistently high for all methods, often above 99%.
Those images have a simple, uniform white background which does not interfere with individual class
spectra. Left alone, those spectra are easily modelled by methods considered in this study. Inspection
of an averaged confusion matrix reveals that the most common errors are misclassifications between
ketchup and tomato concentrate, which is not unexpected as they represent similar substances. Qualitative
inspection of individual results shows that while the scores are similar, the types of errors for individual
methods are distinct, i.e., some models ‘favour’ certain classes (see Table 3). For example, 1D CNN [10]
has the highest error rate for ketchup (1.7%) and RNN [14] for tomato concentrate (5.4%); another example
is the range of errors, e.g., artificial blood is from 0.2% (3D CNN [49]) to 3.7% (RNN [14]). This suggest
that various architectures are able to model different features of the spectra. Quantitative investigation
of scatterplots of confusion matrices (see Section 3.3.2) reveals that in a small number of cases, errors
are concentrated mostly within a subset of classes, e.g., ‘bloodlust’ when the model has the tendency
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to label a sample as blood, or ‘artistic differences’ when the model tends to misclassify among the paints
classes. We discuss possible reasons for that in the ‘Discussion’ section.

Results are visibly lower for E/comparison scene images, where the decrease in accuracy is about
5–10%. Quantitative inspection reveals that some architectures (SVM, MLP, 1D CNN [10], 2D CNN [24])
have consistent results, i.e., models from different runs have very similar scores and confusion matrices;
while other (3D CNN [11,49], RNN [14]) have some share of underperforming models, which have
lower accuracy and distinct confusion matrices. The latter effect is responsible for both a lower mean
score and the increase in standard deviation. In comparison to a set of scenarios discussed in the
previous paragraph, there is a visible change not only in magnitude of errors for individual classes
(see Table 4), but also in their order—some classes which had lower error rate now have a higher
one. For example, while the blood class has a range of errors 9.9–15.6%, the poster paint has a range
of 1.8–2.5% and tomato concentrate 16.4–26.4%. In those images the scene background is composed of
objects with complex spectra, which forms spectral mixtures with classes to be recognized, making
class spectra more diverse and challenging to model. This phenomenon is known to be present in
many hyperspectral images [21], and the enhanced scene complexity translates into lower scores.

The inductive classification (HIC experiment) is a significantly more challenging scenario,
where different images are used for training and testing. In some cases, e.g., F(2k)→E(7), the difference
can be in: scene composition (frame vs comparison scene), sample characteristics (two day old samples
for training, seven day old for testing) and acquisition equipment (SPECIM vs SOC-710 camera). One of
the tested inductive cases is F(2k)↔F(2), where the same frame scene is independently imaged with
two different cameras. The mean scores are lower than HTC F/frame, but higher than HTC E/comparison
scene. Some networks have their score lowered by particular classes (e.g., 3D CNN [11] with tomato
concentrate, 11.2% errors or RNN [14] with artificial blood, 38.1%, see Table 5). Some networks (3D
CNN [11] in particular) have higher percentage of less performing models, which are responsible for
lower scores. The change in acquisition device produces distinct, in relation to other scenarios, patterns
in the results. The training on higher quality device (SPECIM, F(2k)) produces better scores than the
opposite scenario. Both the MLP and the reference SVM classifier achieve high accuracy in this case.

The final case—training on F/frame and testing on E/comparison scene—is viewed by the authors
as a true application-related test of hyperspectral classification. The F/frame image simulates
laboratory-taken image, which is then used to investigate a sample forensic scene. This adds the
variation of classes spectra and lighting on top of complexities already present in the comparison scene.
The first observation is in that both the reference SVM classifier and the simple MLP architecture are
outperformed by more complex models such as RNN [14] or 3D CNN [49]. In this setting the errors of
classes ketchup and artificial blood again dominate (42.7–84.6% and 76.7–85.3% respectively). The blood
class, detection of which is interesting from an application perspective, has a range of errors 29.4–44.8%.
The confusion matrices show large variations and no noticeable patterns.

Example classification maps for different architectures in the HTC and HIC scenarios are presented
in Figures 12 and 13, respectively. Figure 12 presents example predictions for the HTC scenario:
1D CNN [10] for E(1) image and 2D CNN [24] for F(1) image. Note that in the HTC scenario only
a subset of available pixels could be used as a test set (see Section 3.2) which results in ‘holes’ in
classification maps. In the first row we observe misclassifications of artificial blood class, where some
pixels were incorrectly recognized as tomato concentrate and acrylic paint. The example in the second
row was easier to classify and errors were mainly concentrated on the borders of substances (uncertain
areas where spectra are likely to be mixed).

Figure 13 presents the HIC scenario. The first row is related to F(1)→ E(1) case and presents a
sample run for RNN [14] network. One can observe that almost all pixels of artificial blood class were
incorrectly classified as tomato concentrate, acrylic paint or poster paint. The prediction presented in the
second row i.e., 3D CNN [49] network for F(2)→ F(2k) scenario is highly accurate except for some
border pixels.
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Figure 12. Two selected examples of classification maps for sample runs of the 1D CNN [10] and 2D
CNN [24] architectures in the HTC scenario. Most of the classes were correctly labelled in this scenario,
which resulted in high classification accuracy. (a) Ground truth for E(1) image. (b) Prediction of 1D
CNN [10] network. (c) Ground truth for F(1) image. (d) Prediction of 2D CNN [24] network.

background
blood
ketchup
artificial blood
poster paint
tomato concentrate
acrylic paint

(a) (b)

(c) (d)

Figure 13. Two selected examples of classification maps for sample runs of the RNN [14] and 3D
CNN [49] architectures in the HIC scenario. For the E(1) image, where the training spectra originated
from a distinct data cube i.e., F(1), some classes (e.g., artificial blood and tomato concentrate) were
misclassified. However, for the F(2k) image where the training data cube i.e., F(2) originated from
the same scene, classification errors are minor, despite the fact that both images were acquired with
different hyperspectral cameras. (a) Ground truth for E(1) image. (b) Prediction of RNN [14] network.
(c) Ground truth for F(2k) image. (d) Prediction of 3D CNN [49] network.



Sensors 2020, 20, 6666 18 of 24

3.5. Discussion

3.5.1. Performance of DNNs in the HTC and HIC Scenarios

As explained in the Section 1, the HTC scenario is a common setting in hyperspectral remote
sensing. However, we argue that it limits the possible applications of hyperspectral classifiers.
For example, when considering forensic applications, problems such as blood detection [25] and
blood age estimation [15] are related to the HIC scenario.

Comparing our results in the HTC in Table 1 and HIC in Table 2, we can see that the average
classification accuracy in HTC scenario is much higher. This high performance in HTC confirms the
capability of tested ML algorithms to model class spectra and distinguish between classes, despite their
visual and physical (e.g., ketchup and tomato concentrate) similarity. When considering practical
application, this could be employed e.g., in the scenario where an expert labels a subset of pixels in the
image and uses a classifier as a tool to annotate the remaining pixels. On the other hand, the lower
performance in the HIC scenario, shows that the differences between the sources of training and
test data are indeed a challenge for classifiers. The extent of these differences may be surprising
considering that all images were acquired in laboratory conditions and the substances (classes) are
clearly visible and identical in all images. If we look at last two rows of the Table 2, we notice that
when imaged areas are similar e.g., F(2)→F(2k), the accuracy is closer to that in the HTC scenario.
This indicates that the challenge results come more from the differences in class spectra inducted by
various backgrounds or time of application than from differences in lightning, acquisition noise or
type of acquisition equipment.

3.5.2. Evaluation of Tested Networks

Some of the observations made as a result of our experiments seem to be common to all tested
architectures. In the HTC scenario tested models usually achieved high classification accuracy. In both
the HTC and HIC scenarios, some classes, notably artificial blood seemed to be more challenging for
classifiers while others, e.g., poster paint were easier, which seems consistent with detection results
in [23]. Interestingly, accuracy for the blood class was high in most of the experiments, which may
suggest that DNN architectures can utilize its characteristic features. All models were also comparable
in terms of their computational performance.

Our observations regarding the tested architectures are as follows:

• RNN [14]—In the reference paper [19] results of this architecture were average among tested
methods. In our HIC scenario, this architecture achieved one of the best average accuracies.
Interestingly, it performed particularly well for F(·)→E(·) scenarios. On the other hand, in simpler
scenarios such as e.g., F(2)↔F(2k) it was on average less accurate than other models. In some
experiments e.g., HTC scenario F(1) or E(1) its results had a large standard deviation. Analysis of
per-class scores (see Tables 3–6) reveals that the model made significant errors for the artificial
blood class.

• 3D CNN [49]—Similarly to RNN [14], while not exceptional in [19], in our HIC scenario this
architecture achieved one of the highest average accuracies among tested models. In addition,
it also scored high in the F(2)↔F(2k) classification scenarios. Analysing per-class scores, on average
the architecture made the smallest errors when compared with other DNN models.

• 3D CNN [11]—In the reference paper [19] this architecture achieved the best result for two of the
three tested datasets. It scored high in our HTC scenario, in particular for the E(21) image that was
challenging for most of the tested models. In the HIC scenario its results were on par with the rest
of architectures. However, it had the highest per-class errors in this scenario among tested models
(see Tables 5 and 6). The training of this architecture was sometimes unstable which resulted in
the classifier that assigned all pixels into the one class. Our evaluation procedure described in
Section 3.3.2 allowed us to detect and remove these outliers. In the HIC scenario, we observed
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that the model had significant problems when classifying examples from the tomato concentrate
and ketchup classes. We also observed relatively high standard deviation in the HIC scenario.

• 2D CNN [24]—The results of this network were average among tested models, although in some
cases, e.g., F(2k)→E(7), we observed relatively high standard deviation in the HIC scenario.

• 1D CNN [10]—In the reference paper [19] this architecture achieved one of the highest
classification accuracies. However, in HIC scenario, it performed worse than other models
on average in F(·)→E(·) scenarios and also had the highest per-class errors (see Table 6). We also
noticed that in some of the HTC scenarios, namely E(7) and E(21), its results were also lower
than average.

• MLP—Despite its simplicity, MLP achieved competitive results in our experiments, and in some
scenarios e.g., HTC E(7), it outperformed other models. This seems consistent with results in [19]
or [4]. It suggests that a relatively simple architecture can often compete with more advanced
convolutional neural networks.

In order to evaluate the feasibility of combining results from different analysed architectures,
we also performed an additional experiment using the ensemble learning approach. This technique
achieved slightly better results in the easier HTC scenario but in the more demanding HIC scenario,
results of individual architectures were more accurate. The detailed information about this experiment
can be found in the Appendix B.

3.5.3. Hyperspectral Blood Stains Classification

Compared to other classes, the blood class is relatively easy to classify in F/frame images. It can be
seen by looking at per-class errors presented in Table 3–6. This is consistent with observations in [23]:
blood has the unique spectral characteristics in the VIS range, due to the presence of hemoglobin
derivatives [17], which makes it distinctive from visually similar substances. Blood is moderately
difficult in E/comparison images, especially in the HIC scenario. E/comparison scenes are darker which
introduces noise in the spectra (see [26]). Moreover, spectral responses of hemoglobin change in
time [18] which complicates training set creation in the HIC scenario.

The second factor complicating the classification problem is that usually blood stains only
partially cover the materials present in the scene. That results in pixels rarely having pure blood
spectrum, which is the main reason why E/comparison scenes with a complex background structure
are more difficult. The usual way to approach this problem is using the spectral unmixing [21] to find
blood-related endmembers as e.g., in [57]. However, due to the way unmixing algorithms work, there is
no guarantee that the solution they find, e.g., in the form of a linear combination of spectra, will contain
spectral components that can be unambiguously identified as blood. In addition, a significant change
in the nature of the input data would probably require different hyperparameters and possibly also
new architectures of the neural networks used for classification.

Given the importance of result certainty and stability in forensic analysis applications, the problem
of blood classification is difficult to solve in a typical machine learning scenario. A way to reduce
this difficulty could be to involve the human expert in the classification process e.g., by employing
the Active Learning (AL) methods, as e.g., in [58]. There, the classifier can mark examples crucial
for training process and request their correct labelling from the expert (oracle). The goal of such a
classification is to achieve high accuracy while minimizing the number of queries.

4. Conclusions

This paper presents the classification of blood and blood-like substances in hyperspectral images
using deep neural networks. Experiments were conducted for a new dataset which has not yet been
tested using deep learning models. We performed two series of experiments: the HTC, which is
a common scenario in hyperspectral classification, and the HIC, which is less common but useful
in terms of applications in forensic science. We tested several architectures from the DeepHyperX
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library [19], including 1D, 2D and 3D convolutional neural networks, a recurrent neural network and
a multilayer perceptron. The presented models were also compared with a Support Vector Machine
classifier. In our experiments, we used the output evaluation method based on the analysis of the
confusion matrix projection. This evaluation technique allows to detect and remove failed training
cases which allows the models to be fully effective and reduces their variance.

Our results show that while the majority of models achieved high accuracy in the HTC scenario,
the HIC proved to be more challenging. Interestingly, in the most difficult scenario, where different
images were used for training and testing, complex DNN architectures outperformed simpler models
like the MLP and the SVM. We also noticed that per-class errors were often the result of mixing
physically similar classes such as the ketchup and the tomato concentrate, while the blood class was often
classified correctly.

By comparing classification algorithms in the HTC and the HIC scenarios, our study bridges the
gap between the two approaches, by examining in detail how different models work in cases of varying
difficulty. Along with conclusions from [19], our results help in the assessment of the generalization
capability of tested architectures which allows for a more informed choice of a model.
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Appendix A. Running Times of Methods

In Table A1 mean running times with standard deviation (in seconds) for each method are
presented. These values include not only the training/test time but also data loading time,
application of preprocessing, etc. In some cases (E/comparison scenes, F(2) and F(2k)) test times
were separated into the HTC and HIC scenario. This is due to the fact that test sets designated
for HIC have more pixels than for the HTC scenario. Except for the 2D CNN [24] network, the time
of the full test pipeline was slightly greater than 10 s. The bigger differences were noted in the
running times of the training part. The fastest calculations were performed by MLP and 3D CNN [49]
architectures. A significantly longer computation time has been observed in the case of 2D CNN [24]
network. These differences result e.g., from the complexity of architectures and numbers of layers.
Furthermore, running times for E/comparison scenes are shorter than for F/frames because the number of
non-background pixels is smaller in the first case.

Table A1. The mean computation time with standard deviation (in seconds) of the full pipeline for
each method. Consecutive rows present run times for all images, both for the training and the test of
the given algorithm.

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14]

F(1) training: 72.2± 0.8 27.6± 0.5 69.4± 1.1 251.7± 1.9 44.1± 1.6 24.4± 0.7 32.7± 0.9
test: 4.2± 0.8 10.9± 0.3 9.3± 0.5 76.4± 1.6 11.0± 0.0 11.7± 0.5 14.1± 0.3

F(1a) training: 65.8± 0.7 25.3± 0.5 65.3± 2.7 241.3± 0.5 41.0± 0.5 24.9± 1.1 32.0± 1.1
test: 4.1± 0.8 12.2± 0.8 10.8± 0.4 76.3± 2.0 11.0± 0.0 11.3± 0.5 13.7± 0.5
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Table A1. Cont.

SVM MLP 1D CNN [10] 2D CNN [24] 3D CNN [11] 3D CNN [49] RNN [14]

training: 60.4± 0.8 25.4± 0.5 63.0± 1.3 234.6± 0.5 39.7± 0.8 23.4± 0.5 29.7± 0.5
F(2) test (HTC): 4.1± 0.8 11.4± 1.0 9.6± 0.5 76.1± 1.6 10.9± 0.3 11.3± 0.5 14.2± 0.6

test (HIC): 9.4± 1.5 12.0± 0.0 10.6± 0.5 76.9± 0.7 10.9± 0.3 11.4± 0.5 14.1± 0.3

training: 53.1± 0.8 26.0± 0.5 62.1± 1.3 251.0± 0.7 44.0± 1.8 24.3± 0.5 32.1± 0.3
F(2k) test (HTC): 4.1± 0.9 13.1± 0.3 12.2± 0.4 98.8± 0.6 14.2± 0.4 13.8± 0.4 16.7± 0.5

test (HIC): 9.6± 1.9 13.7± 0.7 12.7± 0.5 98.9± 0.7 13.4± 0.5 14.2± 0.4 17.3± 0.5

F(7) training: 73.5± 1.2 27.7± 0.5 70.6± 1.1 251.3± 0.5 43.0± 0.5 25.7± 0.9 33.1± 1.3
test: 4.6± 0.9 11.1± 0.6 10.6± 1.3 77.3± 0.5 11.0± 0.5 11.0± 0.5 13.7± 0.7

F(21) training: 55.6± 0.7 24.4± 0.5 60.8± 0.8 226.0± 0.0 40.0± 1.8 24.7± 0.5 31.8± 1.8
test: 4.2± 0.7 11.3± 0.5 9.3± 0.5 76.7± 0.5 10.9± 0.3 11.3± 0.5 13.8± 0.4

training: 15.3± 0.7 12.9± 0.3 27.3± 0.8 132.6± 0.5 18.9± 0.3 13.1± 0.6 18.9± 0.7
E(1) test (HTC): 4.1± 0.7 12.0± 1.2 10.7± 0.5 76.8± 0.6 10.8± 0.4 11.3± 0.5 13.9± 0.3

test (HIC): 8.5± 1.6 10.3± 0.5 8.9± 0.3 74.5± 2.8 10.8± 0.4 11.1± 0.3 13.4± 0.5

training: 7.1± 0.6 9.0± 0.0 15.6± 0.5 101.7± 0.5 12.8± 0.4 9.0± 0.0 14.1± 0.9
E(7) test (HTC): 3.9± 0.6 11.9± 0.6 10.6± 0.5 77.0± 1.2 10.8± 0.4 11.2± 0.4 14.1± 0.6

test (HTC): 8.4± 1.6 10.3± 0.5 9.3± 0.7 75.4± 1.9 10.8± 0.5 11.1± 0.6 13.5± 0.8

training: 9.9± 0.7 10.0± 0.0 20.0± 0.0 114.1± 0.7 15.1± 0.3 10.1± 0.3 13.8± 0.4
E(21) test (HTC): 4.0± 0.6 11.4± 0.7 10.9± 0.3 73.9± 2.2 10.7± 0.5 11.1± 0.3 13.4± 0.5

test (HIC): 8.7± 1.4 10.2± 0.4 8.9± 0.3 77.1± 1.0 10.6± 0.5 11.1± 0.3 13.7± 0.5

Appendix B. Ensemble Methods

The list of proposed architectures is limited to singular neural networks. Those can be used to
build more complicated classification algorithms that can be applied to the problem. The convolutional
neural networks have been shown to achieve promising results in committee setting, as noted in [59].
That approach has been successfully explored in GenP classifier in [60] (joint with SVM) or [61] which
explicitly explores ensembles of deep learning neural networks for HSI images.

The diversity statistics of the results, measured as the percentage of points in the test set on which
the classifiers disagree can be found in Table A2. In the HIC scenario its value can be as high as 0.46.
Such a high diversity may suggest that in this particular case, committee approaches might prove
useful. However, while high diversity is indication to consider ensemble approaches, it does not
translate into higher accuracy of the combined classifier in a straightforward fashion.

Looking at the result of majority voting with random tiebreaker, presented in the Table A2, we can
see that in the HTC scenario this result is in most cases better than the result of any individual classifier.
However, in a more realistic HIC scenario, there are often multiple networks from a committee that
perform better than the community as a whole. This suggests that a more sophisticated ensemble may
be needed, e.g., using vote weighing or a modified combiner.

These preliminary results show that while this work focuses on individual neural networks
performance, an expansion into multi network classifiers is feasible.

Table A2. The results of the ensemble learning experiment, assessing the feasibility of combining
outputs of analyzed classifiers. The table presents the minimum, median and maximum diversity for all
pairs of classifiers applied to every scenario, accuracy of majority voting and position of this accuracy
score when compared to classifiers from Tables 1 and 2 (1—highest accuracy, 8—lowest accuracy).

Scenario Min Diversity Med Diversity Max Diversity Majority Voting Position

F(1) 0.0024 0.0099 0.0215 0.9983 1
F(1a) 0.0028 0.0065 0.0104 0.998 3
F(2) 0.0015 0.0036 0.0085 0.9986 2
F(2k) 0.0021 0.032 0.219 0.9984 3
F(7) 0.0021 0.0077 0.0154 0.9984 2
F(21) 0.0017 0.0046 0.0161 0.9984 2
E(1) 0.0617 0.1529 0.276 0.9534 1
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Table A2. Cont.

Scenario Min Diversity Med Diversity Max Diversity Majority Voting Position

E(7) 0.0751 0.2079 0.3728 0.9062 1
E(21) 0.0951 0.2083 0.3441 0.9077 1
F(1)→E(1) 0.1413 0.2481 0.4669 0.5739 4
F(1a)→E(1) 0.1583 0.2501 0.4868 0.6556 3
F(2)→E(7) 0.1563 0.2829 0.4616 0.6005 3
F(2k)→E(7) 0.198 0.2988 0.5253 0.5443 4
F(7)→E(7) 0.1263 0.2684 0.4235 0.5662 5
F(21)→E(21) 0.1701 0.2981 0.4661 0.5279 4
F(2)→F(2k) 0.0143 0.0971 0.2783 0.9813 2
F(2k)→F(2) 0.0084 0.0708 0.3257 0.9943 2
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