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Editorial on the Research Topic

Skeletal Muscle Immunometabolism

INTRODUCTION

Skeletal muscle inflammation is triggered by multiple physiological and pathological processes.
Resident immune cells such as macrophages and dendritic cells respond to the inflammatory state
of skeletal muscle, and circulating immune cells can be recruited to muscle tissue (Pillon et al.,
2013). Skeletal muscle adaptation depends on sequential stages of degeneration, inflammation, and
regeneration (Chazaud, 2016). This remodeling process results from a finely tuned orchestration
of cellular, molecular and metabolic responses involving both muscle and non-muscle cells
(inflammatory cells, endothelial cells, fibro-adipogenic cells, pericytes). If unbalanced, this response
leads to muscle atrophy, and/or fibrosis. This Research Topic on immunometabolism incorporates
reviews and original studies to elucidate the many implications of skeletal muscle inflammation in
metabolism, health, and disease.

SKELETAL MUSCLE-IMMUNE CROSSTALKS

The inflammatory response needed for optimal muscle adaptations involves crosstalk between the
immune and non-immune cells. Bonomo et al. summarize the interactions between macrophages,
dendritic, and T-cells in inflammatory responses associated with idiopathic inflammatory
myopathies, Duchenne muscular dystrophy, and muscle regeneration. The review by Howard
et al. describes the orchestration of the inflammatory response mediated by satellite cells and
immune cells during skeletal muscle recovery from injury. The activation state of immune
cells attracted to skeletal muscle is paramount to adequately trigger pro- or anti-inflammatory
responses, and the use of glycolysis or fatty oxidation as the primary energy source influences this
activation (Van den Bossche et al., 2017). Based on this concept, Rousseau et al. reduced fatty
acid oxidation selectively in T cells by deleting the Peroxisome Proliferator-Activated Receptor
beta/delta (PPARβ/δ). Deletion of PPARβ/δ in T cells increased the infiltration of T cells during
skeletal muscle regeneration and prevented the age-induced decline in lean mass and endurance
capacity. These effects are likely due to the inability of T cells to adjust their activation state. These
three articles emphasize the role of resident and infiltrating immune cells in promoting skeletal
muscle regeneration and maintenance.
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SKELETAL MUSCLE AS A SECRETORY

ORGAN

Skeletal muscle is able to release “myokines” and small molecules
to other types of cells and organs, with autocrine, paracrine, and
long-distance endocrine effects. Bay and Pedersen discuss the
role of skeletal muscle as a secretory organ, particularly regarding
cytokines and growth factors acting on remote tissues such as
adipose tissue, pancreas, liver, gut, and brain. Rogeri et al. focus
on the role of glutamine and the myokine IL-6 in skeletal muscle
and monocyte/macrophage functions. Under metabolic stress,
such as exercise or an excess of fatty acids, skeletal muscle can also
release small molecules such as ATP (Groen et al., 2019), a potent
attractant and activator of immune cells (Pillon et al., 2014).
Cruz and Beall demonstrate that extracellular ATP released by
myotubes does not mediate fatty acid-induced insulin resistance
but acts on myocytes to improve glucose uptake and glycolysis.
These three studies illustrate the multiple inflammatory and
metabolic roles of soluble molecules released by skeletal muscle.

SKELETAL MUSCLE ATROPHY

Loss of skeletal musclemass hasmajor health consequences, from
decreased immunity to a higher risk of falls and fractures, leading
to an increase in functional dependency and mortality (Marzetti
et al., 2017). Muscle atrophy involves multiple factors including
protein degradation by the ubiquitin-proteasome system (UPS).
Tortola et al. reveal new regulators of the E3 ubiquitin ligase
TRIM63 (MuRF1), which plays essential roles in UPS-mediated
muscle atrophy. Using overexpression systems they propose the
involvement of the transcription factor TFE3, protein kinase D
(PKD2/3), and HDAC isoforms (HDAC-4 and HDAC-7). To
promote skeletal muscle mass, Hagg et al. suggest a strategy to
target the transmembrane prostate androgen-induced (TMEPAI)
which inhibits the SMAD2/3 pathway. In mice, overexpression
of TMEPAI increases skeletal muscle mass by as much as 30%
and prevents muscle atrophy in a rodent model of cancer
cachexia. With the same objective to prevent atrophy, Shen
et al. find that the flavonoid isoquercitrin reduces inflammation,
oxidative stress, UPS, andmitophagy, and overall protects against
denervation-induced muscle mass loss. These three studies add
to the current understanding of the molecular mechanisms
underlying skeletal muscle atrophy.

SKELETAL MUSCLE ADAPTATION TO

EXERCISE

Optimized exercise protocols to promote muscle force and
hypertrophy have a wide range of applications, from improving
performance in athletes to preventing metabolic diseases and
cachexia, or delaying aging-associated sarcopenia (Cartee et al.,
2016). Peake et al. investigate the effects of cold water immersion
on the genes and proteins regulating muscle hypertrophy
following an acute bout of resistance exercise. Their findings
show that post-exercise cold water immersion can blunt muscle
hypertrophy irrespective of exercise-induced alterations in

factors that control skeletal muscle myogenesis, proteolysis, and
extracellular matrix remodeling. Although this study did not
directly look at this, it is plausible that cold water immersion
would affect inflammatory responses and consequently impair
skeletal muscle response to exercise (Tipton et al., 2017).
Resistance exercise increases skeletal muscle inflammation, and
macrophages play a critical role in the repair of skeletal muscle
tissue in response to inflammation. However, in aged skeletal
muscle, this tissue repair appears dysfunctional. Jensen et al.
provide a 7-day time course of muscle macrophage activity and
the response of downstream molecular targets following a single
bout of resistance exercise. They observe a trend toward greater
macrophage content in muscle biopsies from the elderly, and
their findings further reveal that classically defined pro- and anti-
inflammatory macrophage subtypes do not appear to exist in
healthy aged skeletal muscle.

SKELETAL MUSCLE IN CANCER

CACHEXIA

Cachexia is characterized by extreme weight loss, muscle wasting,
systemic inflammation, and severe metabolic dysregulation
(Argilés et al., 2018). Webster et al. describe pro-inflammatory
cytokines and cellular processes associated with cachexia and
their possible contribution to skeletal muscle atrophy. Focusing
on the skeletal muscle microenvironment, VanderVeen et al.
provide insights into the integrated networks of responses
between immune cells, satellite cells, fibroblast cells, and
endothelial cells and their regulatory role on myofiber size
and plasticity. In mice, VanderVeen et al. demonstrate that
the chemotherapy drug 5-fluorouracil can contribute to muscle
wasting by depleting skeletal muscle immune cell populations.
They demonstrate that infiltrating and resident immune cells
in skeletal muscle are disrupted due to a sensitivity of skeletal
muscle to the off-target effects of 5-fluorouracil.

Physical inactivity is commonly associated with cancer
and contributes to muscle wasting. Yamada et al. describe
that cancer-induced and inactivity-induced muscle atrophy are
regulated by different mechanisms. In a preclinical mouse
model of cancer cachexia, cancer exacerbated muscle wasting
in denervated skeletal muscles, due to selective myosin loss,
increased autophagy, and decreased protein synthesis. On the
opposite, Leal et al. review the benefits of exercise training in
cancer cachexia. Cellular and biochemical mechanisms by which
exercise may counter cancer cachexia are discussed, as well as
the challenges to the application of exercise protocols in clinical
practice. These articles provide insights into the inflammatory
state of skeletal muscle during cancer cachexia and the role of
exercise as a countermeasure to prevent muscle mass loss.

SKELETAL MUSCLE IN METABOLIC

DISEASES

Obesity and type 2 diabetes are associated with a chronic state
of inflammation. Under metabolic stress, activated immune
cells infiltrate the adipose, liver, and skeletal muscle tissues,
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a mechanism contributing to the development of insulin
resistance (Hotamisligil, 2017). In a transcriptomic meta-
analysis, Manti et al. compare the signature of skeletal muscle
in women with obesity and polycystic ovary syndrome (PCOS),
a condition associated with metabolic dysfunction in women
of reproductive age. They find a negative enrichment in
inflammatory pathways, suggesting impaired immune function
in skeletal muscles from women with PCOS. Both obesity and
PCOS are associated with insulin resistance, which highlight the
context-dependent ambivalent roles of the immune system on
whole-body metabolism.

PERSPECTIVES

Inflammation is a key element of skeletal muscle adaptation to
pathophysiological stresses, and which involves cellular (pro-
and anti-inflammatory monocyte/macrophages, dendritic cells,
T cells), and molecular actors (IL-6, TNFα, TGFβ, and TWEAK)
that largely depend on whole-body homeostasis. An appropriate
response involves an adequate and timely expression of
inflammatory molecules (Chazaud, 2016). Elevated/uncontrolled
inflammation leads to deleterious skeletal muscle adaptations

and contributes to sarcopenia, cachexia, and metabolic diseases.
This is also the case in several muscular dystrophies where
inflammation, fibrosis, and/or muscle atrophy are major
complications, often due to continuous muscle fiber breakdown
(Serrano and Muñoz-Cánoves, 2017). In the context of muscular
dystrophies, future directions will have to include combined
approaches to holistically treat the primary genetic cause but
also these secondary consequences (Cordova et al., 2018). More
generally, future directions to finely tune muscle inflammation
should not only include local pro- or anti-inflammatory strategies
but should also consider holistic approaches to improve the
overall skeletal muscle homeostasis through exercise, nutrition,
as well as regulation of the immune system and metabolism.
Future studies are needed to further understand the skeletal
muscle immunometabolic signature in each of these contexts.
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