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Abstract

Recent advances suggest that toll-like receptors, various cytokines, cicosanoids, free
radicals and macrophage migration inhibitory factor (MIF) play an important role in the
pathobiology of septicemia and septic shock. Anti-MIF antibodies can decrease the plasma
concentrations of tumor necrosis factor (TNF), lower bacterial circulating counts and
enhance survival of animals with septicemia and septic shock. Monocyte expression of
MHC-class II antigens, neutrophil expression of the integrin CD11b/CD18 and neutrophil
activation can be related to the development of, and/or recovery from, post-operative sepsis.
Thus, biological variations in the response of an individual to a given stimulus, appears to
determine his/her ability or inability to develop and also recover from sepsis and septic
shock. This suggests that it may be possible to predict the development of septicemia and
septic shock in a given individual and take appropriate action both to prevent and treat them
adequately.
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Introduction
One of the most frequent and serious problems that clini-
cians face is the management of serious infections that
trigger a systemic inflammatory response, termed ‘sep-
ticemia’. When sepsis results in hypotension and organ
dysfunction, it is referred to as ‘septic shock’. Septic
shock is the most common cause of death in intensive
care units. In the USA alone it is estimated that more than
100 000 deaths occur each year due to septicemia and
septic shock [1].

The mortality rate in patients with septic shock ranges
from 20 to 80%, and it can be related to both the severity
of sepsis and the underlying disorder. Systemic inflamma-
tory response can be triggered not only by infections, but
also by noninfectious disorders such as trauma and pan-
creatitis. Sepsis associated with hypoperfusion that
results in organ dysfunction syndromes, such as oliguria,
lactic acidosis and altered mental function, and/or in
hypotension can be referred to as ‘septic shock’, and has
a poor prognosis [1]. As the population ages, the chances
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are that physicians may have to manage more and more
patients with septicemia and septic shock. In view of this,
it is important that the underlying pathophysiologic mecha-
nism(s) of this syndrome are well understood.

Innate immunity, septicemia and septic shock
The survival of humans and animals depends on their
ability to recognize invading pathogenic organisms and
respond to them rapidly and adequately. These defenses
against microbial organisms are innate to the particular
organism. The immune system is programmed to recog-
nize the biochemical patterns displayed by these microbial
organisms and to mount rapid responses to them. The
innate immune system includes neutrophils, macrophages
and natural killer cells, which can act directly against
invading pathogens and eradicate them without involve-
ment of the adaptive immune system. However, when nec-
essary, these cells of the innate immune system release
cytokines and express certain other stimulatory molecules
that, in turn, can trigger adaptive immune responses by
activating T and B cells. The adaptive immune system
differs from the innate immune system in that it is highly
evolved, specific in its responses and ‘remembers’ the
antigens presented to it. Thus, the innate immune
response is a nonspecific one that attempts to keep the
invading foe at bay until the adaptive immune system is
ready with its more specific antibodies and T cells [2•].

Septic shock is a multisystem response to infection and/or
injury in which hypotension and insufficient perfusion of
vital organs occurs that does not respond to fluid adminis-
tration. It is believed that septic shock is due to inappropri-
ate increase in innate immune response. Hence, to learn
about septic shock, one has to understand how innate
immunity functions and interacts with cell-mediated
immune responses and the antibody recognition system.

Toll-like receptors, lipopolysaccharides and
septicemia
The Toll gene was identified while screening for mutations
that disrupt proper formation and development of the front
and back of the fruit fly Drosophila melanogaster. At the
time of the discovery, it was never thought that this Toll
gene and its encoded protein(s) would have any role in
the regulation of innate immunity. However, subsequent
studies showed that the Toll gene encodes a receptor
protein that can bind to pattern-recognition receptors of
the infectious agents and send these signals from the cell
membrane to the nucleus [3].

The innate immune system identifies the infectious agents
by means of pattern-recognition receptors that are situ-
ated on the surface of macrophages. The best examples
for this are the mannose receptors of macrophages, which
bind to structures that contain polymannose repeats of the
micro-organisms; and CD14, which has the capacity to

bind to lipid-containing ligands, including lipopolysaccha-
rides of Gram-negative organisms, and bacterial peptido-
glycan and cell-wall constituents of Mycobacterium
tuberculosis [2•]. Lipopolysaccharides induce macro-
phages to secrete cytokines, which in turn can act on T
and B cells to upregulate the adaptive immune responses.
However, this binding of lipopolysaccharides to CD14
does not transmit the signal across the cell membrane,
because CD14 lacks a cytoplasmic signaling domain.
Instead, a glycosyl phosphatidylinositol linkage tethers it to
the cell surface, suggesting the presence of another
receptor that has the capacity to signal macrophages to
release cytokines. This receptor turned out to be the
protein encoded by the Toll gene, a protein that has a
crucial role in the regulation of immune response. At least
six mammalian TLRs have been identified thus far. TLRs
can bind to the bacterial cell-wall components and trigger
a series of reactions that ultimately result in the death of
the microbes and also help to switch on the adaptive
immune system [4]. When this interaction between TLRs
and the bacterial cell-wall components occurs in excess,
septic shock may ensue [5].

Toll-like receptors and nuclear factor-κκB
Inflammation, an important component of innate immunity,
is dependent on the activation of nuclear factor-κB
(NF-κB) genes. The activation of NF-κB involves
phosphorylation and degradation of IκB, an inhibitor of
NF-κB, which leads to the translocation of NF-κB hetero-
dimer to the nucleus to bring about its action. The
NF-κB/IκB system can exert transcriptional regulation on
proinflammatory genes. Most genes that encode various
adhesion molecules, cytokines, and other proinflammatory
genes have functional NF-κB-binding elements in their
promoter regions [6]. It is now known that NF-κB can be
activated by several cytokines such as IL-1, TNF and IL-6,
among others, that are not only proinflammatory mole-
cules, but can also induce fever.

A protein named Dorsal, which has a role in the develop-
ment of organisms, is structurally similar to NF-κB [3].
Both Dorsal and Dif, a protein that is related to Dorsal,
have the ability to travel to the nucleus in response to
infection, suggesting a close relationship between devel-
opmental genes and proteins and immune response. In
addition, proteins that closely resemble Toll proteins help
plants to fight infections against bacteria and fungi. The
first link between the Toll proteins and human immunity
came from the observation that TLR-4 has the capacity to
activate NF-κB [4]. Furthermore, when immune cells were
exposed to lipopolysaccharide, increase in the synthesis
of TLR-2 was noted [6]. This increase in the formation of
TLR-2 is associated with an increase in the activity of
NF-κB [7,8]. Because there are at least six types of TLRs,
and many more may be found in the future, it is believed
that different types of TLRs are designed to respond to
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different types of pathogens. Current evidence indicates
that TLR-4 is essentially specific for lipopolysaccharide
and perhaps lipoteichoic acid. On the other hand, TLR-2 is
much less specific, and responds to a number of different
antigens including peptidoglycan and Gram-positive bac-
teria. This suggests that it is important to look at each indi-
vidual TLR separately and in combination for their possible
response(s) to specific micro-organisms in order to find
specific protein pathways for the different types of
pathogens. This will ultimately enable us to understand the
way(s) that the innate immune system responds to differ-
ent stimuli, which may help us to devise methods to treat
or manage different types of inflammatory diseases by
selectively shutting down specific pathways.

Lipopolysaccharide, CD14, Toll-like receptors,
nuclear factor-κκB and cytokines
It is clear that various Toll proteins provide a link between
the adaptive and innate immune systems. However, it is
still not clear exactly how this relationship works, although
certain generalizations are possible. For example, naïve T
cells (which are constituents of the adaptive immune
system) that have not been exposed to antigens need at
least two signals to become active, to proliferate and to
produce various cytokines. The first stimulus appears to
be the binding of the unknown antigen and the second is
either CD14 or a protein called B7.1 or other similar pro-
teins such as B7.2 or CD40, which are glycoproteins
expressed on antigen-presenting cells such as
macrophages and human polymorphonuclear leukocytes
[9]. These proteins are related to the Toll pathway
because TLR-4 increases the production of B7.1. The
importance of the TLR family lies in the fact that C3H/HeJ
mice, which have defective lipopolysaccharide signaling,
are homozygous for a TLR-4 mutation. Because C3H/HeJ
mice are highly susceptible to Gram-negative sepsis, this
suggests that TLR-4 is necessary to protect against
Gram-negative infections.

Thus, the CD14 of the macrophages recruits lipopolysac-
charides to TLR proteins. Because TLRs contain a cyto-
plasmic portion that is homologous to the IL-1 receptor,
this will lead to the induction of a signaling pathway that
involves the recruitment of IL-1 associated kinase 2,
TNF-associated factor 6, and activation of NF-κB. This
induces the synthesis and secretion of various cytokines,
including TNF, by macrophages and other cells of the
innate immune system. These cytokines, in turn, stimulate
T and B cells of the adaptive immune system. The acti-
vated immune cells of the adaptive immune system
produce several soluble factors that include various
cytokines, such as TNF, and immunoglobulins in order to
kill the invading organisms and protect the host. Failure of
this seemingly excellent defense system in the form of
over-responsiveness to the invading micro-organisms may
result in septicemia and septic shock.

Macrophage, cytokines, eicosanoids, and free
radicals in sepsis and septic shock
Gram-positive organisms, malarial parasite, fungi, endo-
toxin-containing Gram-negative organisms and other micro-
bials can trigger septicemia. The invading micro-organism
can proliferate and produce bacteremia, or may release
endotoxin, exotoxin and other toxins that stimulate the
monocytes, macrophages, endothelial cells, neutrophils
and other cells. These stimulated cells release mediators of
sepsis and septic shock, including IL-1, IL-2, IL-6, IL-8,
TNF, platelet-activating factor, endorphins, various
eicosanoids, nitric oxide, high mobility group 1 (HMG-1),
and macrophage MIF [10–12]. These mediators have pro-
found effects on the cardiovascular system, kidneys, lungs,
liver, central nervous system, and coagulation system. As a
consequence of their action(s), renal failure, myocardial
dysfunction, acute respiratory distress syndrome (ARDS),
hepatic failure, and disseminated intravascular coagulation
can occur, which may result in death.

Administration of endotoxin results in changes in cardio-
vascular function that are very similar to those seen in
sepsis. Also, TNF can induce depression of cardiovascular
function similar to that observed in sepsis. Pretreatment
with antibodies against TNF prevented death both in mice
and in nonhuman primates that received endotoxin. In
humans, however, monoclonal antibodies directed against
TNF failed to produce substantial benefit (for review [13]),
suggesting that there may be other mediators that may
play a more important role in septicemia and septic shock.

In patients with septic shock, maldistribution of blood flow,
aggregation of neutrophils and platelets, damage to
endothelium and coagulation abnormalities are seen. Neu-
trophils release reactive oxygen species including super-
oxide anion and nitric oxide, which can damage cells.
Inflammatory mediators derived from arachidonic acid
such as prostaglandins and leukotrienes (referred to as
eicosanoids) are also released from various cells, and
these have effects on the microvasculature, resulting in
microvasculature failure (for review [1]). TNF-α and IL-1β
can incite the production of free radicals, nitric oxide and
eicosanoids from various cells that can also produce
several of the pathophysiologic changes seen during
sepsis and septic shock. In view of this, it was believed
that TNF-α and IL-1β may be critical mediators of septic
shock [14]. Contrary to this, anti-TNF monoclonal antibody
and IL-1 receptor antagonist failed to benefit patients with
severe sepsis (for review [13]). This led to further studies
that revealed that macrophage MIF could be a major medi-
ator of sepsis and septic shock.

Migration inhibitory factor in septicemia and
septic shock
MIF is secreted by antigen-sensitized lymphocytes, pitu-
itary gland, cells of the brain, kidney, lung, prostate and
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testis, and macrophages [15•,16•]. MIF enhanced the
lethality of mice exposed to lipopolysaccharides and neu-
tralization of MIF protected mice from the lethality of
lipopolysaccharides [17–19].

The macrophage is an important source of MIF, and it is
also the target of the action of MIF [20]. Low concentra-
tions of hydrocortisone (10–14 mol/l) induce MIF produc-
tion by macrophages, whereas at higher concentrations
(10–7 mol/l) it completely inhibits the production of
lipopolysaccharide-induced TNF-α by the same
macrophages [21]. MIF is also released from the pituitary
after infection and stress [18,22]. Exposure to bacterial
toxins such as lipopolysaccharide, toxic shock syndrome
toxin-1, and cytokines (TNF-α and IFN-γ) incites
macrophages to produce MIF [22,23], which in turn pro-
motes inflammation by stimulating the production of
eicosanoids and TNF-α.

The critical role played by MIF in inflammation is evident
from the fact that glucocorticoids enhance its production,
whereas MIF can effectively antagonize the anti-inflamma-
tory and immunosuppressive effects of glucocorticoids on
macrophages and T cells [24,25]. Antibodies against MIF
can decrease inflammation in experimental models of
glomerulonephritis, arthritis and allograft rejection
[26–28]. These studies suggest that MIF and glucocorti-
coids function as physiologic antagonists.

MIF expression is increased in experimental animals
exposed to Gram-negative (ie lipopolysaccharide) and
Gram-positive (ie toxic shock syndrome toxin-1 and strep-
tococcal pyrogenic exotoxin A) bacterial toxins [29], and
neutralization of MIF or deletion of MIF gene can protect
mice from lethal endotoxemia or staphylococcal toxic
shock [30]. High concentrations of MIF are present in the
peritoneal exudate and in the systemic circulation of mice
with bacterial peritonitis, and anti-MIF antibody protects
TNF-α knockout mice from sepsis and septic shock [31••].
Because TNF-α knockout mice were used in that study,
most of the beneficial results obtained can be attributed to
the anti-MIF antibody used. However, this does not rule
out an important role for TNF-α in sepsis and septic
shock. A similar benefit of anti-MIF antibody even in
Escherichia coli-induced sepsis and septic shock in mice
was reported [31••]. Anti-MIF antibody protected normal
mice from lethal peritonitis induced by cecal ligation and
puncture and E coli, even when used 8 h after cecal liga-
tion and puncture [31••]. High concentrations of MIF were
detected in the plasma of patients with septicemia and
septic shock, indicating that this molecule may have a role
even in humans.

Furthermore, the improved survival obtained with anti-MIF
antibody in sepsis and septic shock was associated with a
reduction in the plasma concentrations of TNF and lower

bacterial circulating counts [31••]. Even MIF gene-knockout
mice showed reduced circulating levels of TNF-α [30,31••].
These results suggest that MIF can augment the synthesis
and release of TNF-α, and that when this stimulus is
removed the plasma levels of TNF-α should fall. MIF-knock-
out mice also cleared Pseudomonas aeruginosa from the
lungs faster than did wild-type mice [30], which was not
due to the effect of MIF on the growth of the bacteria,
unlike IL-1β, which can enhance the growth of E coli [32].

Migration inhibitory factor and eicosanoids
What is the main mechanism(s) by which MIF causes
sepsis/septic shock? Mitchell et al [25] showed that MIF
stimulates the cytosolic phospholipase A2, inducing the
release of arachidonic acid, the precursor of 2 series
prostaglandins and 4 series leukotrienes, which have
potent proinflammatory actions. Hence, it is likely that MIF
produces its systemic inflammatory response by the acti-
vation of the arachidonic acid–prostaglandin–leukotriene
pathway. If this is true, it also suggests a role for n-3 fatty
acids such as α-linolenic acid and eicosapentaenoic acid
in the treatment of sepsis/septic shock, because n-3 fatty
acids can inhibit the metabolism of arachidonic acid [33].
A diet rich in n-3 fatty acids or continuous tube feeding or
intravenous infusion of n-3 fatty acids suppressed the pro-
duction of proinflammatory eicosanoids and improved sur-
vival of experimental animals challenged with endotoxin
[34–36]. Patients with septicemia showed low concentra-
tions of γ-linolenic acid, dihomo-γ-linolenic acid, arachi-
donic acid of the n-6 series and α-linolenic acid, and
eicosapentaenoic acid of the n-3 series in their plasma
phospholipid fraction [37]. This suggests, but does not
prove, that n-3 and n-6 fatty acids may inhibit MIF secre-
tion, similar to their suppressive effect on TNF production
[38–40]. If this is true, then this suggests that n-3 and n-6
fatty acids may have some therapeutic value in the treat-
ment of patients with sepsis and septic shock.

HLA-DR antigens, neutrophil activation and
free radicals in postsurgery/trauma sepsis
It is known that, whereas some patients succumb to over-
whelming sepsis after surgery, others will recover unevent-
fully, having received an identical course of management
for the same condition. It is not yet clear why some
patients never develop sepsis and why some develop
sepsis but recover, whereas others succumb to sepsis
with multiorgan failure. It is likely that there are some very
clear biologic variations in the response of different indi-
viduals to a given stimulus that determine their ability or
inability to recover from sepsis and septic shock. Some of
these may include the positive and negative interactions
between CD14, TLRs, MIF, TNF-α and other cytokines;
TNF-α receptor density on macrophages; Fas; CD11b;
DNA polymorphism for genes for the coagulation system;
eicosanoids; glucocorticoid secretion; and free radical
generation, including nitric oxide and antioxidant status.
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Guillou [41•] showed that there could be individual varia-
tion(s) in the levels of monocyte expression of major histo-
compatibility complex class II (HLA-DR) antigens,
neutrophil expression of the integrin CD11b/CD18 (which
is necessary for adhesion of neutrophils to endothelium),
and the production of hydrogen peroxide and hypochlor-
ous acid (a marker of neutrophil activation) in patients with
uncomplicated abdominal surgery. In patients with an
uneventful recovery from severe trauma or surgery the
level of monocyte HLA-DR expression fell within hours of
trauma or surgery, but returned to normal within a week,
whereas in those who developed infection but recovered it
took 3 weeks for HLA-DR expression to return to normal.
On the other hand, in those who developed infection and
sepsis and who died as a result, HLA-DR expression fell
and never returned to normal [41•,42]. Similarly, after
uncomplicated elective major abdominal surgery, the
expression of CD11b was unchanged throughout the
postoperative period. By contrast, in patients who devel-
oped postoperative sepsis, the expression of neutrophil
CD11b was significantly elevated within 24 h of surgery
[41•,43]. Even the production of hydrogen peroxide by
neutrophils followed a pattern similar to that of CD11b
expression in these two groups of patients. Carey et al
[44] noted that hypochlorous acid production, a marker of
neutrophil activation, was reduced after uncomplicated
abdominal surgery compared with those who developed
sepsis 7–10 days later, in whom the hypochlorous acid
production was found to be augmented to supranormal
levels on postoperative day 1 [44]. These changes in
HLA-DR and CD11b expression, hydrogen peroxide and
hypochlorous acid production were noted even when
there was no clinical or bacteriologic evidence of infection.

On the basis of these results, it was concluded that, in
those patients who are destined to develop postoperative
or post-trauma sepsis, neutrophil activation is an early
event. The variations in neutrophil activation and HLA-DR
expression between these different groups of patients was
noted not preoperatively, but only after trauma or surgery.
Hence, it was concluded that there is a wide biologic vari-
ation in the way that a person responds to injury. It is inter-
esting to note that various cytokines, MIF and eicosanoids
can influence neutrophil activation and HLA-DR expres-
sion. Hence, it is likely that the biologic variation observed
with regard to neutrophil activation and HLA-DR expres-
sion may also exist between different types of individuals
in their response to MIF, TNF-α, various interleukins,
eicosanoids, free radicals and nitric oxide.

Conclusion
It is evident from the preceding discussion that there is a
complex network of events that occur in sepsis and septic
shock. Because there is strong evidence for the involve-
ment of MIF in sepsis and septic shock from animal
studies, it may be necessary to evaluate its role in humans.

Donnelly et al [45] showed that MIF is detectable in the
serum and the lung fluids and in alveolar macrophages of
patients with ARDS. Furthermore, MIF inhibited the sup-
pressive effects of dexamethasone on IL-8 production by
lung macrophages [45]. There is a close relation between
the presence of IL-8 (a neutrophil chemotactic factor [46])
in early bronchoalveolar lavage fluid samples and the devel-
opment of ARDS [47]. This suggests that both IL-8 and
MIF can be used as prognostic indicators for the develop-
ment of ARDS, which is common in septicemia and septic
shock, and reinforces the significance of macrophages in
the pathobiology of both ARDS and sepsis.

It is possible that methods designed to suppress the pro-
duction of TNF and interleukins may still prove to be useful
in septicemia and septic shock, even though anti-TNF anti-
body and IL-1 receptor antagonist have failed to benefit
these patients. In this context, it is interesting to note that
providing adequate amounts of glucose and insulin has
been shown to antagonize the harmful actions of TNF-α
[48••]. It was also observed that treatment with insulin can
almost completely reverse the nutritional and histopatho-
logic toxicity of sublethal doses of TNF in rats [48••]. Fur-
thermore, insulin may have a regulatory role in superoxide
generation [49•]. In addition, the expression of MIF in
adipocytes can be modulated by insulin and glucose [50].
It has also been found that MIF is secreted together with
insulin from pancreatic β cells and acts as an autocrine
factor to stimulate insulin release [50].

This evidence suggests that, during systemic inflammatory
processes, MIF is secreted from the pituitary gland
accompanied by an increase in glucocorticoid secretion
(and macrophages will also produce MIF and TNF). The
increase in plasma glucose concentration that occurs as a
result of this glucocorticoid production is probably con-
trolled by MIF, which has a positive effect on insulin secre-
tion [51]. Thus, glucose homeostasis during septicemia
and septic shock is maintained by glucocorticoids, insulin
and TNF by inducing insulin resistance. Because there is a
feedback control between MIF, glucose and insulin
[50,51], it is possible that infusion of insulin and glucose
can inhibit MIF production and release [51], which is
similar to their action on TNF [48••]. If this hypothesis is
correct, it suggests that a glucose–insulin–potassium
regimen (which is used in the management of diabetic
ketoacidosis) may be useful in the management of sep-
ticemia and septic shock [51], in which excess production
of TNF-α and MIF seem to play an important role.
However, this concept remains to be verified. It is impor-
tant to measure plasma TNF and MIF concentrations both
before and after the glucose–insulin–potassium regimen
in these patients, and to determine whether there is any
correlation between the progress and outcome of sep-
ticemia and septic shock and the concentrations of TNF
and MIF.



Although animal studies indicated that anti-MIF antibody
can prevent mortality due to septicemia and septic shock,
many questions remain to be answered. Some of these
include the following: what exactly is the relationship
between MIF and TNF and other cytokines?; can the
plasma levels of MIF be a guide to predict the outcome
from septicemia and septic shock?; is it possible that
patients who recover from septicemia and septic shock
secrete substances that can neutralize the actions of
MIF/TNF/interleukins?; if eicosanoids are the major media-
tors of the inflammatory response of MIF, why are
cyclooxygenase and lipoxygenase inhibitors not useful in
septicemia/septic shock?; is there a relationship between
the number of TLRs expressed and MIF levels?; and,
finally, can human monoclonal antibody directed against
MIF prevent and/or improve prognosis in septicemia and
septic shock?
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