
Molecular Microbiology. 2021;115:623–642.     |  623wileyonlinelibrary.com/journal/mmi

1  | INTRODUC TION

The fission yeast Schizosaccharomyces pombe is a model organism of 
unicellular eukaryotes (Hayles and Nurse, 2018). This yeast is consid-
ered to have diverged from the budding yeast Saccharomyces cerevi-
siae hundreds of million years ago (Hayles and Nurse, 2018; Hedges, 
2002; Sipiczki, 2000), and studies using these yeast species have 
contributed significantly to the understanding of various cellular 
processes. S. pombe has been actively used for research in multiple 
fields, including cell cycle studies, cellular morphology, sexual devel-
opment, splicing, and chromosome structure. Furthermore, much 
information is accumulating regarding the stationary phase of cells, 
particularly chronological lifespan (CLS) (Hayles and Nurse, 2018; Lin 
and Austriaco, 2014; Ohtsuka and Aiba, 2017; Roux et al., 2010b).

There are two yeast lifespan fields of study: replicative lifespan 
(RLS) and CLS (Chen and Runge, 2012; Longo et al., 2012; Roux et al., 
2010b). RLS is the number of divisions a cell can undergo, whereas CLS 
is the length of time a cell can survive. CLS of yeast corresponds with 
the survival period of cells that have entered the stationary phase. 
Both types of lifespans are relatively easy to measure in S. cerevisiae. 
In contrast, it is difficult to distinguish between mother and daughter 
cells in S. pombe and the number of RLS studies is significantly lower 
than that of CLS studies (Erjavec et al., 2008; Ohtsuka and Aiba, 2017). 
However, in S. cerevisiae, although several common factors are related 
to RLS and CLS, the exact relationship between these two lifespans 
has not been clarified yet (Longo et al., 2012).

Recently, microfluidic devices were established to study yeast 
lifespan, allowing the study of RLS in S. pombe (Nakaoka, 2017; 
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Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of 
Schizosaccharomyces pombe (fission yeast) have been reported. In this mini-review, 
we arrange and summarize these genes based on the reported genetic interactions 
between them and the physical interactions between their products. We describe 
the signal transduction pathways that affect CLS in S. pombe: target of rapamycin 
complex 1, cAMP-dependent protein kinase, Sty1, and Pmk1 pathways have impor-
tant functions in the regulation of CLS extension. Furthermore, the Php transcription 
complex, Ecl1 family proteins, cyclin Clg1, and the cyclin-dependent kinase Pef1 are 
important for the regulation of CLS extension in S. pombe. Most of the known genes 
involved in CLS extension are related to these pathways and genes. In this review, we 
focus on the individual genes regulating CLS extension in S. pombe and discuss the 
interactions among them.
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Nakaoka and Wakamoto, 2017; Spivey et al., 2017). However, 
using this technique, at least two independent laboratories have 
reported that S. pombe is not related to RLS, that is, this yeast does 
not age replicatively and cellular aging and RLS can be unrelated 
in this yeast. Moreover, studies of the CLS of S. pombe are being 
conducted as actively as those of budding yeast. As described in 
detail later, some nutrient signaling pathways, including target of 
rapamycin (TOR) and cAMP-dependent protein kinase (PKA) path-
ways, have been found to affect the CLS of S. pombe as well as the 
lifespans of other model organisms such as nematodes, flies, and 
mammals (Chen and Runge, 2009; Fontana et al., 2010; Lin and 
Austriaco, 2014; Rallis et al., 2013; Roux et al., 2009, 2010b).

Growth environment greatly influences the CLS of S. pombe. Both cal-
orie restriction and restriction of specific nutrients, that is, dietary restric-
tion, are established methods of delaying aging and prolonging lifespan, 
and their effects are conserved widely in many organisms including yeast, 
nematodes, flies, and mammals (Fontana and Partridge, 2015; Fontana 
et al., 2010; Lee and Longo, 2016; Ohtsuka and Aiba, 2017). In S. pombe, 
the limitation of nutrients such as nitrogen, sulfur, specific amino acids, 
and trace metals, as well as restriction of glucose as a carbon source, con-
tributes to CLS extension (Lin and Austriaco, 2014; Ohtsuka and Aiba, 
2017; Ohtsuka et al., 2017, 2019; Shimasaki et al., 2017; Su et al., 1996). 
CLS extension by calorie restriction is known to involve the PKA pathway 
and the stress-dependent mitogen-activated protein kinase (MAPK) Sty1 
pathway in S. pombe (Roux et al., 2009; Zuin et al., 2010a, 2010b). Sty1 
is a stress-dependent MAPK, but it is also involved in the PKA pathway 
and nutrient signaling (Caspari, 1997; Madrid et al., 2004; Sansó et al., 
2011; Stiefel et al., 2004). CLS extension due to the restriction of nutri-
ents, such as sulfur, leucine, and zinc, depends on Ecl1 family genes and 
CLS regulators found in S. pombe, and CLS extensions by some types of 
dietary restriction may be associated with reduced translation including 
reduced ribosome level (Ohtsuka and Aiba, 2017). The relationship be-
tween translational repression and lifespan extension has been reported 
in other organisms including budding yeast and nematodes (Hansen et al., 
2007; MacInnes, 2016; Steffen et al., 2008). Nitrogen restriction causes 
G1 arrest and G0 phase entry, where heterochromatin formation and au-
tophagy have been implicated in the survival of S. pombe (Oya et al., 2019; 
Roche et al., 2016).

Moreover, studies on the effects of drugs on CLS in S. pombe sug-
gest that supplementation with drugs such as acivicin, 3,3′-diindolyl-
methane, mangosteen, monensin sodium, mycophenolic acid, nigericin 
sodium, prostaglandin J2, wortmannin, ribozinoindole-1, diazaborine, 
actinomycin D, tschimganine, β-hibitakanine, and Torin 1 can extend 
the CLS of S. pombe (Hibi et al., 2018; Ohtsuka and Aiba, 2017; Ohtsuka 
et al., 2017; Rodríguez-López et al., 2020; Stephan et al., 2013). 
Ribozinoindole-1 and diazaborine suppress rRNA maturation, and acti-
nomycin D suppresses rRNA translation by acting on RNA polymerase 
(Cooper and Braverman, 1977; Hayashi et al., 2014; Kawashima et al., 
2016; Loibl et al., 2014; Scala et al., 2016). The ionophores monensin 
and nigericin extend CLS by affecting vacuolar acidification (Stephan 
et al., 2013). Prostaglandin J2 reportedly exhibits antiaging properties 
by inhibiting mitochondrial mitosis (Stephan et al., 2013). Acivicin and 
mycophenolic acid inhibit guanosine monophosphate (GMP) synthesis, 

suggesting a relationship between GMP level and CLS (Stephan et al., 
2013). Torin 1 inhibits TOR, which is related to the lifespan regulation 
(Rodríguez-López et al., 2020).

Many studies report the relationship between aging and oxidative 
stress (Berlett and Stadtman, 1997; Fabrizio and Longo, 2003; Lu and 
Finkel, 2008; Muller et al., 2007). The well-known free radical theory 
states that free radicals produced as a byproduct, mainly from mito-
chondria, oxidize cellular components such as DNA, proteins, and lip-
ids, which cause aging. According to this theory, if free radicals cause 
aging, increased antioxidant activity should suppress aging and ex-
tend lifespan. However, in studies using model organisms, including S. 
pombe, increasing antioxidant activity has not always been shown to 
suppress aging and extend lifespan (Lam et al., 2010; Ohtsuka et al., 
2012; Sadowska-Bartosz and Bartosz, 2014; Selman et al., 2013).

Here, we summarize the relationship between gene groups and 
pathways among over 70 reported genes, each of which causes 
the CLS extension when it is overexpressed or deleted in S. pombe. 
Because the interactions of more than 70 longevity genes are ex-
tremely complicated, this review focuses only on the genes that 
cause longevity. Therefore, genes known to be involved in the CLS 
extension pathway, but not reported to cause the CLS extension by 
their activation or suppression, are not described in detail.

2  | NOVEL CL S-AFFEC TING GENES:  git5+, 
SPBC26 H8.13c ,  nop14+,  AND gr x4+

We searched the DNA region of the S. pombe genome that causes 
the CLS extension by overexpression using a multicopy plasmid and 
found that overexpression of each DNA regions containing git5+, 
SPBC26H8.13, nop14+, or grx4+ caused CLS extension (Figure 1a,b). 
Interestingly, the deletion of git5+ also extended the CLS (Figure 1c). 
git5+ encodes the G protein subunit, which acts on glucose response 
and forms a heterotrimer with Gpa2 and Git11. Overexpression of git5+ 
alone in this heterotrimer may disrupt the precise regulation of this 
heterocomplex and, like Δgit5, suppress the glucose signaling pathway.

This review adds these four genes to the 77 previously reported 
genes involved in CLS extension and summarizes the function of a 
total of 81 genes involved in the regulation of CLS extension.

3  | INTER AC TIONS AMONG FAC TORS 
THAT REGUL ATE CL S IN S .  pombe

First, we summarized the physical and genetic interactions of 81 fac-
tors that are involved in CLS extension in S. pombe (Figure 2). Then, 
the factors that interact with many other factors involved in CLS 
extension were extracted and summarized as CLS-regulated gene 
product groups and CLS-regulated signal pathways (Figure 3). Some 
CLS regulatory genes encoded enzymes that are directly involved in 
energy metabolism (Figure 4). Below, we focus on the major signal-
ing pathways and gene groups involved in CLS extension in S. pombe 
and discuss the regulation of CLS extension.
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4  | TOR COMPLE X 1 PATHWAY

In many model organisms, suppression of the TOR complex 1 
(TORC1) pathway extends lifespan (Fontana et al., 2010; Lees et al., 
2016), and similar phenomena have occurred in S. pombe (Rodríguez-
López et al., 2020). In S. pombe, tor2+, which codes for a serine/
threonine kinase of TORC1, is an essential gene. There is no analysis 

of the CLS of a tor2+ deletion strain, but its temperature-sensitive 
(ts) mutant, tor2-ts6, has an extended CLS (Ohtsuka et al., 2019). 
Furthermore, the deletion of tco89+, which encodes the TORC1 sub-
unit, extends CLS (Rallis et al., 2013). The serine/threonine kinases 
in the AGC (protein kinase A/protein kinase G/protein kinase C) ki-
nase family, Sck1 and Sck2, which are orthologs of S. cerevisiae Sch9, 
are phosphorylated by Tor2 as targets of TORC1 (Nakashima et al., 

F I G U R E  1   (a) The results of chronological lifespan (CLS) measurements. The strain of Schizosaccharomyces pombe used was JY333 and 
the plasmid vector was pLB-Dblet. To determine cell viability, the cells were grown in SD liquid medium, sampled at each growth phase, and 
then, plated on YE agar plates using suitable dilutions. After incubation for several days as 30°C, the number of colonies derived from 1 ml 
of culture was counted. This number was divided by the cell turbidity at the sampling time. (b) The DNA fragments that were inserted into 
the plasmids are carried by the cells whose CLS were measured. (c) The results of CLS measurement of wild-type JY333 and Δgit5 are shown 
[Colour figure can be viewed at wileyonlinelibrary.com]
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2012). The deletion of S. cerevisiae SCH9 is known to extend the CLS 
(Madia et al., 2008) and, in S. pombe, the deletion of sck2+ can lead to 
larger CLS extension than that of sck1+ (Chen and Runge, 2009; Roux 
et al., 2006). CLS extension caused by Δsck2 occurs irrespective of 
the presence of Pka1, the loss of which also causes CLS extension, 
suggesting that the CLS extension mechanism by the TORC1 path-
way and PKA pathway act in parallel (Roux et al., 2006). The regula-
tion of CLS extension by the PKA pathway is described later.

Mass spectrometry analyses have identified Cka1 as a factor that 
interacts with the TOR complexes (Hayashi et al., 2007). The over-
expression of cka1+ extends CLS (Roux et al., 2010a). cka1+ encodes 
a catalytic subunit of casein kinase 2 (CK2) (Nakazawa et al., 2019). 
Although it is unclear exactly how overexpression of cka1+ affects 
the TORC1 pathway, it is considered that CLS extension is involved 
(Roux et al., 2010a). Because CK2 represses the transcription of ri-
bosomal proteins (Moreira-Ramos et al., 2015), and the repression of 
ribosomes can extend CLS (Ohtsuka and Aiba, 2017), cka1+ overex-
pression may repress ribosomes, leading to CLS extension.

Tor2 phosphorylates the transcription factor Ste11, which is es-
sential for sexual differentiation, and phosphorylation suppresses its 
functions including nuclear localization (Otsubo et al., 2017). Although 
ste11+ deletion does not affect CLS, its overexpression leads to CLS 
extension, albeit to a low extent (Ohtsuka et al., 2012). Therefore, 
Ste11 mainly regulates genes involved in sexual differentiation, but 
some Ste11-regulated genes may contribute to CLS extension.

The deletion of zrg17+ extends CLS (Rallis et al., 2014). The cation 
diffusion facilitator (CDF) family protein Zrg17 forms a heteromer 
with Cis4, another CDF family protein, and is involved in Golgi mem-
brane trafficking through the regulation of zinc homeostasis (Fang 
et al., 2008). Interestingly, synthetic genetic array analysis shows 
that zrg17+ performs positive genetic interactions, wherein the dou-
ble-mutant phenotype is weaker than anticipated, with sck2+ (Rallis 
et al., 2014). This suggests that CLS extension by zrg17+ deletion may 
be involved in the TORC1 pathway. Intriguingly, as mentioned above, 
it has also been reported that extracellular zinc concentration itself 
affects CLS (Shimasaki et al., 2017).

F I G U R E  2   Factors that reportedly 
cause chronological lifespan extension 
in Schizosaccharomyces pombe. All 
the genetic and physical interactions 
reported so far are shown. Information 
on each factor's localization was based 
on the reports by Ding et al. (2000) and 
Matsuyama et al. (2006), in addition to 
those mentioned in the text. Dotted 
lines indicate factors with unknown 
localization. Studies in which two or more 
intracellular localization (e.g., nucleus and 
cytosol) were reported are indicated by 
double-headed arrows [Colour figure can 
be viewed at wileyonlinelibrary.com]
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Overexpression of the stationary phase-specific transcription 
factor Phx1 extends CLS and its deletion shortens CLS (Kim et al., 
2012). Δsck2 longevity reportedly depends on phx1+ (Kim et al., 2014), 
suggesting that Phx1 contributes to CLS extension downstream of 
the TORC1 pathway. Furthermore, Phx1 is required for the station-
ary phase-specific induction of pdc201+ and pdc202+, which encode 
pyruvate decarboxylases. The overexpression of both pdc201+ and 
pdc202+ extends CLS, whereas their deletion decreases CLS (Kim 
et al., 2014).

The CLS extension of Δsck2 reportedly depends on Sty1 (Zuin 
et al., 2010a, 2010b). However, it is unclear how much of the CLS 
extension induced by the deletion of sck2+ depends on Sty1: under 
conditions wherein Δsck2 causes CLS extension, the comparison 
between survivals of sty1+ single-deletion mutants and sck2+ and 
sty1+ double-deletion mutants during the early stationary phase has 
not been reported. A comprehensive analysis indicated that tco89+, 
which encodes the TORC1 subunit, and sty1+ have negative genetic 
interaction, wherein the double-mutant phenotype is stronger than 
expected from the phenotypes associated with the single mutants 

(Ryan et al., 2012). Therefore, the TORC1 pathway may be involved 
in CLS extension in parallel with Sty1.

Current findings indicate that in addition to the signal path-
way cascading from TORC1 (including Tor2 and Tco89) to Sck2, 
the transcription factor Phx1 (as the downstream factor) and 
its regulated genes, (pdc201+ and pdc202+) contribute mainly 
to CLS extension by the TORC1 pathway in S. pombe (Figure 3). 
Furthermore, zrg17+, which shows genetic interaction with sck2+, 
may be involved in this pathway and affect CLS. Moreover, al-
though its effect on CLS is not substantial, the transcription factor 
Ste11 can contribute to CLS extension in response to suppression 
of the TORC1 pathway. CK2 may also be involved in CLS regula-
tion via this signaling pathway.

5  | PK A AND St y1 PATHWAYS

Similar to the TORC1 pathway, inhibition of the PKA pathway is 
reportedly associated with CLS extension in S. pombe as well as in 

F I G U R E  3   A hypothetical model 
summarizing the representative signal 
pathways and factors involved in 
chronological lifespan regulation in 
Schizosaccharomyces pombe [Colour figure 
can be viewed at wileyonlinelibrary.com]
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other organisms, such as budding yeast and mice (Fabrizio et al., 
2003; Fontana and Partridge, 2015; Fontana et al., 2010; Yan et al., 
2007). In S. pombe, the deletion of the G protein-coupled glucose 
receptor Git3 located in the plasma membrane extends CLS (Roux 
et al., 2009; Stephan et al., 2013). Similarly, the deletion of Git5, 
which encodes a heterotrimeric G protein β-subunit that acts on 
this glucose receptor, also extends CLS (Figure 1). Signals from this 
glucose receptor are transmitted to PKA (Lin and Austriaco, 2014; 
Roux et al., 2010b). Besides, the deletion of pka1+, which encodes 
the catalytic subunit of PKA (Gupta et al., 2011), also causes CLS ex-
tension (Roux et al., 2006). As described above, because Δpka1 and 
Δsck2 additively cause CLS extension (Roux et al., 2006), the TORC1 
and PKA pathways are considered to contribute to CLS extension 
in parallel. This finding is consistent with the comprehensive analy-
sis results that git3+ and git5+ indicate negative genetic interactions 
with sck2+ (Rallis et al., 2014; Ryan et al., 2012). However, similar to 
the TORC1 pathway, the longevity of Δpka1 mutant cells reportedly 
requires phx1+ (Kim et al., 2014). Therefore, although the upstream 
regions of the two signaling pathways differ, the downstream region 
may contain a common cell survival mechanism. However, git5+ re-
portedly indicates negative genetic interaction with pdc202+ (Ryan 
et al., 2012), which seems to act downstream of Phx1. Further analy-
sis will clarify the relationship between these pathways in the regu-
lation of CLS.

The PKA and Sty1 pathways have opposite effects on at least 
the regulation of CLS: inhibition of the PKA pathway extends CLS, 
whereas activation of the Sty1 pathway extends CLS (Roux et al., 
2010b; Zuin et al., 2010a). Sty1 is a MAPK that responds to vari-
ous stresses including heat, osmotic stress, oxidative stress, and 

nutritional stress in S. pombe (Vivancos et al., 2006). Deletion of 
sty1+ shortens CLS, whereas its overexpression extends CLS (Hibi 
et al., 2018; Ohtsuka et al., 2008). Consistent with this, although 
wis1+ encodes a MAPK kinase that phosphorylates Sty1, its activated 
mutation, wis1-DD, which promotes Sty1 phosphorylation, also has 
a long CLS (Zuin et al., 2010a). Furthermore, the deletion of pyp1+, 
which encodes tyrosine phosphatase and the product dephosphor-
ylates Sty1 (Sansó et al., 2011), leads to the activation of Sty1 and 
extension of CLS (Zuin et al., 2010a). Thus, the Sty1 pathway plays a 
crucial role in regulating CLS in S. pombe. Because CLS extension by 
Δpyp1 mutant cells does not occur when phx1+ is absent (Kim et al., 
2014), CLS extension by the activation of the Sty1 pathway may also 
depend on Phx1 (Figure 3).

As mentioned above, the PKA and Sty1 pathways (PKA–Sty1 
pathway) are two pathways involved in CLS control, and there are 
many connections between them. Deletion of pka1+ promotes Sty1 
phosphorylation, and its longevity also requires sty1+ (Zuin et al., 
2010a; 2010b). This finding suggests that the longevity of Δpka1 mu-
tant cells depends on sty1+ and that the activation of the Sty1 path-
way is important for CLS extension by suppressing the PKA pathway. 
This finding is consistent with the report that pyp1+ overexpression 
suppresses the phenotypes that abnormally induce fbp1+, encoding 
fructose-1,6-bisphosphatase, in git3+, git5+, and pka1+ mutants each 
(Santo et al., 1996). It is also consistent with the comprehensive anal-
ysis demonstrating that both git3+ and git5+ indicate positive genetic 
interactions with sty1+ (Ryan et al., 2012). However, git5+ reportedly 
indicates negative genetic interaction with pyp1+ and that deletion 
of both pka1+ and wis1+ causes synthetic growth defects (Jang et al., 
2013; Ryan et al., 2012), suggesting that these pathways function in 

F I G U R E  4   Model summarizing the chronological lifespan regulatory factors involved in energy metabolism [Colour figure can be viewed 
at wileyonlinelibrary.com]
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parallel. This finding may not rule out the possibility of a CLS exten-
sion mechanism via the repression of the PKA pathway that does not 
depend on the Sty1 pathway.

Sds23, which encodes a PP2A-type phosphatase inhibitor, is 
thought to be involved in the PKA–Sty1 pathway and to regulate 
CLS in S. pombe. Sty1 reportedly interacts physically with Sds23 and 
directly phosphorylates it (Jang et al., 2013). Moreover, sds23+ over-
expression inhibits stress sensitivity in Δsty1 mutant cells (Yakura 
et al., 2006), suggesting that Sds23 acts downstream of Sty1. 
Overexpression of sds23+ extends CLS, whereas its deletion reduces 
CLS (Roux et al., 2010a; Yakura et al., 2006). However, sds23+ report-
edly indicates negative genetic interaction with pyp1+ (Ryan et al., 
2012), suggesting that these factors may act in parallel. Meanwhile, 
another study, which used the yeast two-hybrid assay and pull-down 
assay, reports that Pka1 physically interacts with Sds23 (Jang et al., 
2013). Although Jang et al. have shown that pka1+ is required for 
Sds23 phosphorylation during the stationary phase and that the cat-
alytic subunit of PKA can phosphorylate Sds23, further studies are 
needed to elucidate these detailed molecular mechanisms. This is 
because Pka1 is inactivated by Cgs1, a regulatory subunit of PKA, 
during the nutrient-poor stationary phase (Nishida et al., 2019). 
Additionally, since the deletion of sds23+ reportedly increases CLS 
under nitrogen depletion (Sideri et al., 2014), further analysis is re-
quired to understand the CLS regulation of sds23+ precisely.

Ecl1, which regulates CLS, is considered to contribute to CLS ex-
tension via the Sty1 pathway. Initially, ecl1+ was identified as a factor 
that complements short CLS of Δsty1 mutant cells (Ohtsuka et al., 
2008); subsequently, ecl1+ is directly induced by Atf1, a transcription 
factor functioning downstream of Sty1 (Shimasaki et al., 2014).

Because the deletion of pka1+ induces ste11+ (Ohtsuka et al., 
2008), ste11+ also contributes to CLS extension by inhibiting the 
PKA pathway. While the suppression of the PKA pathway induces 
CLS extension and ste11+, the activation of Sty1 pathway also in-
duces CLS extension and ste11+ (Shiozaki and Russell, 1996; Zuin 
et al., 2010a). Similarly, the overexpression of Sds23, the target of 
Sty1, induces ste11+ (Paul et al., 2009). Furthermore, two-hybrid 
assay revealed that Sty1 physically interacts with Ste11 (Kjaerulff 
et al., 2005).

The deletion of tim18+, which encodes the succinate dehydroge-
nase anchor subunit localized in the inner mitochondrial membrane, 
and may be involved in the tricarboxylic acid (TCA) cycle (Mercier 
et al., 2006), has been found to extend CLS (Rallis et al., 2014). tim18+ 
reportedly has a negative genetic interaction with sck2+ (involved 
in the TORC1 pathway) and positive genetic interaction with git3+ 
(involved in the PKA pathway) (Rallis et al., 2014; Ryan et al., 2012). 
These findings suggest that CLS extension by the deletion of tim18+ 
may occur in parallel with CLS extension via inhibition of the TORC1 
pathway and may be involved in CLS extension via inhibition of the 
PKA pathway.

Thus, based on the findings obtained so far, it is likely that PKA 
and Sty1 pathways influence each other and contribute to CLS ex-
tension in S. pombe (Figure 3). Of note, CLS extension by glucose 
restriction is mediated through these pathways; low glucose levels 

inhibit the activity of Pka1 by suppressing signals from the receptor 
Git3 via G proteins, including Git5, and leads to the activation of 
MAPK Sty1 (Roux et al., 2006; Zuin et al., 2010a). When CLS ex-
tension occurs via the PKA–Sty1 pathway, the regulation of ecl1+, 
sds23+, ste11+, and tim18+ may also contribute to CLS extension.

Although the activation of the Sty1 pathway contributes to CLS 
extension in S. pombe, the deletion of HOG1, the homolog of sty1+, 
reportedly extends CLS of budding yeast (Garay et al., 2014; Zuin 
et al., 2010b). Moreover, in the presence of Sch9, Hog1 is report-
edly phosphorylated under amino acid starvation and can contrib-
ute to longevity (Santos et al., 2013, 2016). Thus, the involvement 
of sty1+ and HOG1 in CLS regulation may be partially conserved 
depending on growth conditions such as the nutritional state of 
the environment. However, there are various differences between 
the two MAPKs: Hog1 is strongly activated by osmotic stress, but 
other stresses do not lead the same level of activation like of Sty1 
and, unlike sty1+, HOG1 does not appear to affect mating efficiency 
(Mutavchiev et al., 2016). Although the role of the PKA pathway in 
the conserved evolutionary regulation of lifespan is known, future 
studies should clarify whether the Sty1 pathway is conserved in lon-
gevity regulation.

6  | Pmk1 PATHWAY

Inhibition of the Pmk1 pathway, which plays an important role in 
maintaining cell wall integrity, extends CLS in S. pombe (Figure 3). 
The Pmk1 pathway is composed of MAPK Pmk1, MAPK kinase Pek1, 
and MAPK kinase kinase Mkh1, and their deletion extends CLS (Imai 
et al., 2020). Because both pmk1+ and mkh1+ have negative genetic 
interactions with sck2+ (Rallis et al., 2014), the mechanisms of CLS 
extension by the Pmk1 and TORC1 pathways seem to function in 
parallel. Additionally, pmk1+ has a negative genetic interaction with 
git5+ (Ryan et al., 2012) and mkh1+ has negative genetic interactions 
with the genes involved in the Sty1 pathway, including wis1+, pyp1+, 
and sds23+ (Ryan et al., 2012; Sengar et al., 1997). Therefore, the 
mechanisms of CLS extension by the regulation of the Pmk1 and 
PKA–Sty1 pathways also seems to function in parallel. The tran-
scription activity of the transcription factor Atf1, a target of Sty1, is 
reportedly regulated not only by Sty1 but also by Pmk1 (Zhou et al., 
2012), suggesting that these pathways share common downstream 
factors, including Atf1 and factors regulated by Atf1. Moreover, al-
though the overexpression of wis1+ and sty1+ does not complement 
all phenotypes of Δmkh1, they restore this mutant's β-glucanase 
sensitivity (Sengar et al., 1997), indicating a connection between 
these pathways. Therefore, the mechanism of CLS extension regu-
lated by the Pmk1 pathway may partially overlap with that of the 
PKA–Sty1 pathway. However, as described in detail later, in the ab-
sence of sty1+ or pmk1+, the point mutation of gas1+ (gas1–287) does 
not extend CLS sufficiently, indicating that CLS extension by the 
gas1+ mutation is partially dependent on both sty1+ and pmk1+ (Imai 
et al., 2020). However, when both sty1+ and pmk1+ are deleted, CLS 
extension of the gas1 mutant disappears almost entirely (Imai et al., 
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2020). This finding suggests that the mechanisms of CLS regulation 
via the Pmk1 or Sty1 pathway are not the same but that these path-
ways regulate the CLS in parallel, at least in part.

Meanwhile, the deletion of SLT2, a budding yeast ortholog of 
pmk1+, reportedly shortens CLS (Marek and Korona, 2013); thus, the 
effect of this MAPK on longevity does not seem to be the same, at 
least among these yeasts.

7  | Ecl1 FAMILY GENES

The Ecl1 gene family is one of the most analyzed gene families in S. 
pombe CLS research (Ohtsuka and Aiba, 2017). S. pombe has three 
Ecl1 family genes, that is, ecl1+, ecl2+, and ecl3+, whose overexpres-
sion extends CLS but triple deletion reduces CLS (Ohtsuka et al., 
2008, 2009, 2011). Different signals induce these genes, but their 
gene products appear to have similar functions (Ohtsuka and Aiba, 
2017). Ecl1 family gene-dependent CLS extension occurs under con-
ditions that induce Ecl1 family genes such as sulfur or leucine deple-
tion (Ohtsuka et al., 2017, 2019). Furthermore, nitrogen depletion 
slightly induces ecl1+ (Miwa et al., 2011); oxidative stress induces 
ecl1+ via Atf1 (Shimasaki et al., 2014); and heat stress induces ecl2+ 
via Hsf1 (Ohtsuka et al., 2011), a heat shock transcription factor 
(Sakurai and Takemori, 2007). Overexpression of hsf1+ induces CLS 
extension and the expression of ste11+, both of which are dependent 
on Ecl1 family genes (Ohtsuka et al., 2011). Heat shock transcrip-
tion factor is also known to affect the lifespan of the nematode 
Caenorhabditis elegans; decreased hsf-1 promotes tissue senescence 
and overexpression of extend lifespan (Hsu et al., 2003). Meanwhile, 
although the induction of Ecl1 family genes has not been observed, 
these genes are also required for CLS extension due to zinc limita-
tion (Ohtsuka et al., 2015; Shimasaki et al., 2017). These findings 
indicate that Ecl1 family genes respond to environments that are dis-
advantageous for growth, such as nutrient depletion and stress, and 
contribute to cell survival.

Ecl1 family genes induce various genes that affect CLS including 
hsp9+, hsr1+, lsd90+, spk1+, ste11+, and rsv2+, whose overexpression 
leads to CLS extension, and some inductions depend on the tran-
scription factor Prr1 (Ohtsuka et al., 2012). hsp9+ encodes a heat 
shock protein, and the involvement of heat shock proteins in lifespan 
and aging has been reported in other organisms, such as nematode 
and mammals (Fontana and Partridge, 2015; Fontana et al., 2010; 
Hsu et al., 2003; Walker and Lithgow, 2003). hsr1+ encodes a tran-
scription factor that has low homology to Msn2 and Msn4, which 
are known to be involved in CLS in budding yeast (Wei et al., 2009). 
Lsd90 has been suggested to be involved in phospholipid metabolism 
including very long-chain fatty acid metabolism (Yokoyama et al., 
2008). Spk1, a MAPK involved in pheromone response, physically 
interacts with Ste11 and phosphorylates it in vitro (Kjaerulff et al., 
2005). rsv2+ encodes a zinc finger transcription factor that induces 
stress-related genes during spore formation (Mata et al., 2007). The 
mechanism of CLS extension regulated by rsv2+ may be involved in 
that of Pef1, a cyclin-dependent kinase, because rsv2+ has positive 

genetic interactions with pef1+ (Roguev et al., 2008). rsv2+ has a pos-
itive genetic interaction with git5+ but causes synthetic growth de-
fects with pyp1+ (Dixon et al., 2008; Roguev et al., 2008; Ryan et al., 
2012), suggesting that the mechanism of CLS extension by rsv2+ may 
be related to that of the PKA pathway and not depend on the Sty1 
pathway. Besides, rsv2+ reportedly has negative genetic interactions 
with mkh1+ and pdc202+ (Roguev et al., 2008; Ryan et al., 2012). 
Thus, the CLS extension by rsv2+ possibly occurs in parallel with the 
Pmk1 pathway and Pdc202. In S. cerevisiae, several studies of RPN4, 
a rsv2+ homolog, indicates different CLS results: one reports that 
the deletion of RPN4 increases RLS and another reports that its de-
letion decreases RLS (Kruegel et al., 2011; Longo et al., 2012; Schleit 
et al., 2013). Simultaneously, the loss of UBR2, which increases the 
Rpn4 level, extends RLS (Kruegel et al., 2011). Further research will 
be needed to clarify the precise CLS regulation of rsv2+.

Ecl1 family genes also repress the expressions of many ribosomal 
proteins (Ohtsuka et al., 2012, 2017), some of which also depend 
on the transcription factor Prr1 (Ohtsuka et al., unpublished data). 
Furthermore, although many expressions of ribosomal proteins de-
crease during sulfur depletion, the repressions are dependent on Ecl1 
family genes (Ohtsuka et al., 2017). CLS extension is also observed 
by the suppression of ribosomes by deletion of ribosomal proteins 
including rpl1201+, rpl15+, rpl42+, and rps002+ (which encode ribo-
somal proteins), by the deletion of SPRRNA.47 (which encodes ribo-
somal RNA), and by drugs such as diazaborine or ribozionoindole-1 
(Chen et al., 2013; Ohtsuka et al., 2017). Therefore, CLS extension 
by Ecl1 family genes may be due to the suppression of ribosomes 
(Ohtsuka and Aiba, 2017). Meanwhile, because yeast two-hybrid 
assay revealed that Rpl1201 physically interacts with Sds23 (Paul 
et al., 2009), CLS regulation by sds23+ may also be involved in ri-
bosome regulation. Regulation of lifespan via ribosomes has been 
documented in various organisms including S. pombe (Hansen et al., 
2007; MacInnes, 2016; Ohtsuka and Aiba, 2017; Rodríguez-López 
et al., 2020; Steffen et al., 2008). In addition to Ecl1 family genes, the 
TORC1 pathway, including Sck2 ribosomal S6 kinase, and the PKA–
Sty1 pathway, involved in Sds23, also affect ribosome regulation and 
control CLS. Ecl1 family genes, the TORC1 pathway, and the PKA–
Sty1 pathway are closely related to response to dietary restriction 
of sulfur, nitrogen, and glucose, respectively, and all of these dietary 
restrictions lead to a significant reduction in ribosomes and extend 
CLS in S. pombe (Ohtsuka et al., 2017).

Consistent with the fact that Ecl1 family genes play an important 
role in CLS regulation in S. pombe, the S. cerevisiae ortholog ECL1 
also functions in CLS regulation in budding yeast. However, unlike 
S. pombe, which has three Ecl1 family genes, S. cerevisiae has only 
one, that is, ECL1, the overexpression of which extends CLS and de-
letion shortens CLS (Azuma et al., 2009). Recently, Ecl1 family genes 
were found to be involved in CLS regulation as downstream factors 
of the general amino acid control (amino acid response in mammals) 
(Ohtsuka et al., 2019). Nevertheless, the orthologs of this gene have 
not been found in higher organisms.

Although the molecular mechanisms of Ecl1 family proteins 
are currently unknown, these genes respond to various stresses, 
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particularly starvation, thereby contributing to the maintenance of 
cell survival and, consequently, CLS extension and sexual develop-
ment, through the regulation of different other CLS-related genes.

8  | CYCLIN Clg1 AND CYCLIN-DEPENDENT 
KINA SE Pef1

The deletion of clg1+, which encodes a cyclin-like protein, extends 
CLS in S. pombe (Chen et al., 2013). Furthermore, the deletion of the 
cyclin-dependent kinase Pef1 that interacts with Clg1 extends CLS 
(Chen et al., 2013). CLS extension by Δclg1 depends on cek1+, which 
encodes the homologous protein of budding yeast protein kinase 
Rim15, although the deletion of cek1+ itself does not appear to have 
a significant effect on CLS in S. pombe (Chen et al., 2013).

CLS extension via Clg1 and Pef1 (Clg1–Pef1) suppression seems 
to function in parallel with the TORC1 pathway. clg1+ has a nega-
tive genetic interaction with sck2+, which is involved in the TORC1 
pathway (Rallis et al., 2014). pef1+ also has negative genetic inter-
actions with tco89+ and sck2+ (Rallis et al., 2014; Ryan et al., 2012). 
Furthermore, CLS extension by Clg1–Pef1 suppression seems to 
function in parallel with the PKA–Sty1 pathway. clg1+ has a neg-
ative genetic interaction with pyp1+ (Ryan et al., 2012), and pef1+ 
has negative genetic interactions with git3+ and pyp1+ (Dixon et al., 
2008; Ryan et al., 2012). Furthermore, it seems that CLS extension 
by Clg1–Pef1 suppression occurs in parallel with the Pmk1 pathway 
because clg1+ has negative genetic interactions with mkh1+, pek1+, 
and pmk1+ (Ryan et al., 2012), and pef1+ has negative genetic inter-
actions with pek1+ and pmk1+ (Roguev et al., 2008; Ryan et al., 2012). 
Conversely, pef1+ has positive genetic interactions with pdc201+ and 
zrg17+ (Ryan et al., 2012); therefore, the mechanism of CLS exten-
sion by Clg1–Pef1 suppression may partially overlap with that of 
other pathways including TORC1 and PKA–Sty1 pathways.

Three genes, aca1+, SPAC323.03c, and SPAC3H1.08c, whose de-
letions extend CLS (Rallis et al., 2014), reportedly have a positive ge-
netic interaction with pef1+ (Roguev et al., 2008; Ryan et al., 2012). 
aca1+ is a homolog of the budding yeast gene MPR1 [which encodes 
an acetyltransferase of L-azetidine-2-carboxylic acid, which is a toxic 
L-proline analog (Nomura et al., 2003; Shichiri et al., 2001)] and acts 
to remove the intracellular oxidative stress (Du and Takagi, 2007). 
Based on sequence prediction, SPAC323.03c should encode a fac-
tor involved in peroxisome regulation, and SPAC3H1.08c encodes 
a mitochondrial calcium uniporter regulator. This indicates that the 
regulation of CLS extension by Clg1–Pef1 may be via the same path-
way as that of aca1+, SPAC323.03c, and SPAC3H1.08c. The negative 
interaction between aca1+ and tim18+ (Ryan et al., 2012) supports 
the hypothesis that aca1+ and Clg1–Pef1 function in parallel with the 
PKA–Sty1 pathway.

Additionally, pef1+ shows a synthetic growth defect with efc25+, 
which encodes the Ras1 activator guanine nucleotide exchange 
factor (Dixon et al., 2008), and the deletion of efc25+ extends CLS 
(Chen et al., 2019). The amount of Efc25 protein is upregulated by 
the conserved NDR/LATS kinase Orb6 through the phosphorylation 

of efc25 mRNA-binding protein Sts5 (Chen et al., 2019). Similar to 
efc25+, the non-phosphorylatable mutation at the Sts5 Ser-86 site, 
sts5S86A, as well as downregulation of Orb6 also extends CLS (Chen 
et al., 2019). Consistent with these relationships between Clg1–Pef1 
and Orb6–Sts5–Efc25, sts5+ shows a positive genetic interaction 
with aca1+ (Ryan et al., 2012). Based on these findings, CLS regula-
tion by Orb6–Sts5–Efc25, which regulates the Ras1 GTPase activ-
ity, may be involved in the regulation of Clg1–Pef1. Moreover, sts5+ 
has positive genetic interactions with mkh1+ and pmk1+ (Ryan et al., 
2012), and the cell morphology of sts5 mutant is complemented by 
wis1 deletion or pyp1+ overexpression (Toda et al., 1996), suggest-
ing that CLS extension mechanism by sts5+ is also involved in the 
regulation of Pmk1 and Sty1 pathways. However, it has simultane-
ously been shown that efc25+ has a negative genetic interaction with 
mkh1+ (Ryan et al., 2012), but further studies will be needed to clarify 
the detailed mechanism. In addition, it has been reported that over-
expression of spk1+, a CLS regulator, complements the staurosporine 
sensitivity of sts5 mutant (Toda et al., 1991). Furthermore, because 
sts5+ has negative genetic interactions with sck2+ and zrg17+ (Rallis 
et al., 2014; Ryan et al., 2012), the CLS extension regulated by sts5+ 
may act in parallel with the TORC1 pathway.

Although the mechanism of CLS extension by Clg1–Pef1 is un-
clear, except the involvement of cek1+, it is possible that the mech-
anism is related to the functions of other CLS-regulated genes such 
as aca1+, zrg17+, SPAC323.03c, SPAC3H1.08c, orb6+, sts5+, and efc25+.

9  | Php COMPLE X

CCAAT-binding factor (CBF) is a DNA-binding transcription com-
plex that binds to promoter regions containing the CCAAT sequence 
(Janoo et al., 2001). S. pombe CBF acts as a Php complex and com-
prises Php2, Php3, Php5, and its repressor Php4, and it plays an im-
portant role in various cellular regulations including iron response, 
TCA cycle, and respiration (Mercier et al., 2008). Deletion of php2+, 
php3+, and php5+, but not of php4+, causes CLS extension (Takuma 
et al., 2013).

Since both php3+ and php5+ have negative interactions with git3+ 
and git5+ (Ryan et al., 2012), the Php complex appears to function 
in parallel with the PKA–Sty1 pathway. Reports of the negative ge-
netic interactions between php5+ and pyp1+/sds23+ support this idea 
(Ryan et al., 2012). Moreover, since zrg17+, which has positive genetic 
interactions with factors involved in the TORC1 pathway and Clg1–
Pef1, has negative genetic interactions with php3+ and php5+ (Ryan 
et al., 2012), the Php complex may function in parallel with these 
pathways. However, the deletion of php2+ promotes Sty1 phosphor-
ylation, and Sty1 is required for CLS extension by Δphp2 (Takuma 
et al., 2013). Thus, the suppression of the Php complex activates the 
Sty1 pathway and leads to CLS extension, probably indirectly, de-
pending on certain conditions, such as an increase in ROS level due 
to abnormal expressions of mitochondrial components. Consistent 
with this, tim18+ expression, which has a positive genetic interaction 
with git3+, is regulated by the Php complex (Mercier et al., 2006). 
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Meanwhile, since php3+ has a positive genetic interaction with mkh1+ 
(Ryan et al., 2012), CLS regulation via the Php complex may also be 
related to the Pmk1 pathway.

In S. cerevisiae, the CBF Hap complex affects CLS. In contrast 
with the Php complex of S. pombe, deletion of HAP3, which en-
codes a component of the Hap complex, shortens CLS (Laschober 
et al., 2010). Besides, HAP4 overexpression extends CLS (Piper et al., 
2006). The S. pombe Php complex, which carries Php4 as a repressor, 
may have a different regulatory system (Labbé et al., 2007), and the 
consistent effect to CLS by each CBF has not been observed, at least 
among budding yeast and S. pombe. Furthermore, although deletion 
of tim18+ extends CLS in S. pombe, the deletion of SDH4, one of its 
homologs, shortens CLS in budding yeast (Chang et al., 2015). Based 
on the findings to date, the effects of these CBFs on longevity are 
not consistent, but many respiratory mutants including CBF affect 
the lifespan. Strong inhibition of respiration shortens lifespan of   
C. elegans, whereas mild inhibition extends lifespan (Rea et al., 2007). 
Considering this, the difference in the effect of each factor on lifes-
pan may be due to the difference in their effect on respiration in 
these yeasts. Further studies of these factors will contribute to the 
understanding of conserved regulation of lifespan and respiration.

10  | OTHER GENES INVOLVED IN CL S

In addition to the TORC1 pathway, the PKA–Sty1 pathway, the Pmk1 
pathway, Ecl1 family genes, Clg1–Pef1, and the Php complex, many 
genes are reportedly involved in CLS extension in S. pombe.

10.1 | adh1+

Overexpression of adh1+ extends CLS (Roux et al., 2010a). adh1+   
encodes alcohol dehydrogenase, which reduces the acetaldehyde 
level, the last step in alcohol fermentation, and promotes the ethanol 
production (Sakurai et al., 2004). Efficient conversion of toxic acet-
aldehyde to ethanol, which can be used as a carbon source (Sakurai 
et al., 2004), may make a significant contribution to cell survival,   
particularly in the nutrient-depleted stationary phase (Figure 4).

10.2 | atg20+

Deletion of atg20+, which functions in organelle autophagy in S. pombe 
(Zhao et al., 2016), extends CLS (Rallis et al., 2014). However, accord-
ing to a report by Rallis et al., the survival of Δatg20 cells was lower 
during the early stationary phase than that of wild-type cells. Then, it 
increased after several days (Rallis et al., 2014), indicating the possibil-
ity of adaptive regrowth. Adaptive regrowth, which is often observed 
in short-lived mutants, has been discussed as a phenomenon in which 
individual cells adapt to the environment and undergo regrowth dur-
ing the stationary phase, thereby interfering with accurate CLS meas-
urement (Fabrizio et al., 2004; Ohtsuka et al., 2011; Zambrano and 

Kolter, 1996). Since autophagy is required for lifespan control in vari-
ous organisms (Ellis et al., 2018; Fontana and Partridge, 2015; Kapahi 
et al., 2017), results indicating a lack of autophagy factor extends CLS 
may mean either the existence of an unknown mechanism between 
CLS regulation and autophagy or regrowth of the short-lived mutant 
due to autophagy deficiency. Further analysis will be needed for its 
determination. In the former case, because atg20+ has a positive ge-
netic interaction with tim18+ (Ryan et al., 2012), CLS extension by 
Δatg20 may be involved in the PKA pathway or Php complex.

10.3 | car2+

Deletion of car2+, which encodes ornithine transaminase and acts 
on amino acid metabolism (Bicho et al., 2010), extends CLS (Rallis 
et al., 2014). Since Car2 is required for the conversion of arginine to 
proline, glutamic acid, glutamine, and lysine, CLS extension by Δcar2 
cells may be associated with the starvation of amino acids including 
lysine, which extends CLS (Ohtsuka et al., 2019).

10.4 | erg28+

Overexpression of erg28+ extends CLS (Ohtsuka et al., 2013). erg28+ 
encodes a protein conserved from yeast to humans, and the product 
is involved in sterol synthesis (Gachotte et al., 2001). Since erg28+ 
has negative genetic interactions with mkh1+ and pek1+ (Ryan et al., 
2012), the mechanism of CLS extension may function in parallel with 
that of the Pmk1 pathway.

10.5 | gas1+

gas1+ encodes cell wall 1,3-β-glucanosyltransferase, and the point 
mutation gas1-287 confer a long CLS (Imai et al., 2020). The CLS ex-
tension by gas1-287 mutation depends on the Sty1 and Pmk1 path-
ways, both of which regulate CLS.

10.6 | hsp104+

The deletion of the heat shock protein Hsp104 extends CLS (Rallis 
et al., 2014). hsp104+ is induced by Hsf1 (Vjestica et al., 2013), whose 
overexpression causes CLS extension (Ohtsuka et al., 2011). Negative 
regulation of CLS by hsp104+ seems inconsistent with previous re-
ports of the positive contributions of heat shock proteins to longevity 
(Fontana et al., 2010; Walker and Lithgow, 2003). Meanwhile, some 
heat shock proteins, including Hsp90 and Hsp70–Hsp40 chaperons, 
are also known to be inhibitors of Hsf1 activity (Vjestica et al., 2013). 
Thus, the deletion of hsp104+ might induce Hsf1 activation.

Because hsp104+ reportedly has negative genetic interactions with 
pyp1+ and mkh1+ (Ryan et al., 2012), hsp104+ in CLS may work in par-
allel with the Sty1 and Pmk1 pathways. In S. cerevisiae, the homolog 
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HSP104 is reportedly required for survival under nutrient deprivation 
(Werner-Washburne et al., 1993). Additionally, HSP104 overexpression 
contributes to the suppression of short RLS in SIR2 mutants and the 
deletion of HSP104 itself both decreases and increases RLS (Erjavec 
et al., 2007; Kaeberlein et al., 2005). Further research will be needed to 
gain an accurate understanding of the longevity conferred by Hsp104.

10.7 | nop14+

nop14+ is an ortholog of the budding yeast NOP14, which is involved in 
the maturation of the 40S ribosomal subunit (Granneman and Baserga, 
2004; Pérez-Fernández et al., 2007). As mentioned above, ribosome 
regulation has a significant influence on CLS, suggesting that the regu-
lation of CLS via nop14+ may be involved in ribosome regulation.

10.8 | kgd1+

kgd1+ is a homolog of the budding yeast KGD1, which encodes the 
mitochondrial α-ketoglutarate dehydrogenase complex subunit 
(Repetto and Tzagoloff, 1989). Its deletion reportedly causes CLS 
extension (Rallis et al., 2014). However, according to Rallis et al. 
(2014), the survival of kgd1+ (SPBC3h7.03c)-deleted cells dropped 
sharply in the early stationary phase, stabilized, and was higher than 
that of wild-type cells after several days as well as that of Δatg20 
cells, suggesting adaptive regrowth. In S. cerevisiae, deletion of KGD1 
decreases survival during stationary phase (Martinez et al., 2004). 
Further analysis will be needed to understand the role of Kgd1 in 
CLS regulation.

10.9 | ksp1+

Deletion of ksp1+, an ortholog of budding yeast KSP1, extends CLS 
(Rallis et al., 2014). Since KSP1 is reported to be regulated by PKA 
and activates TORC1 (Umekawa and Klionsky, 2012), it may also be 
involved in these pathways and affect CLS.

10.10 | lcf1+ and lcf2+

Overexpression of lcf1+, which encodes long-chain fatty acyl-CoA   
ligase, extends CLS (Oshiro et al., 2003), whereas its deletion short-
ens CLS (Fujita et al., 2007). S. cerevisiae has three homologs of lcf1+: 
FAA1, FAA3, and FAA4. The deletion of FAA1 also reduces survival 
during the stationary phase when cultured at 37°C, as does Δlcf1 
(Martinez et al., 2004). Meanwhile, the deletion of lcf2+, a paralog of 
lcf1+, extends CLS (Fujita et al., 2007). Although both lcf1+ and lcf2+ are 
involved in CLS regulation, their effects on CLS are different, partly 
because the catalytic levels of these two enzymes for each fatty acid 
are slightly different, depending on their substrates. Analysis using 
deletion strains demonstrated that Lcf1 mainly contributes to the 

catalytic reactions of three substrates: myristic acid, palmitic acid, 
and oleic acid. However, the only contribution of Lcf2 is to the ca-
talysis of myristic acid (Fujita et al., 2007). Although the short CLS of 
Δlcf1 and the long CLS of Δlcf2 were both observed under the same 
conditions, a slight reduction in the activity of fatty acyl-CoA ligase 
may be more advantageous than the intact condition for maintaining 
cell survival during the stationary phase under this condition.

10.11 | lys7+

Deletion of lys7+, involved in lysine biosynthesis, extends CLS (Rallis 
et al., 2014). It is known that the availability of amino acids including 
leucine, arginine, histidine, and lysine has a remarkable influence on 
CLS of S. pombe (Ohtsuka et al., 2019). In S. pombe, the CLS of auxo-
trophic cells requiring leucine, lysine, or arginine is extended when 
cultured in media without a corresponding amino acid. In contrast, the 
CLS of cells requiring histidine decreases dramatically under histidine-
depleted conditions (Ohtsuka et al., 2019). Therefore, CLS extension 
by Δlys7 appears to be due to intracellular lysine restriction. The ef-
fects of amino acids on lifespan are reported in S. pombe and other or-
ganisms, such as budding yeast and animals. The restriction of specific 
amino acids, including asparagine, glutamate, and methionine, extends 
CLS in budding yeast, and a reduction of dietary amino acids, particu-
larly tryptophan and methionine, extends lifespan in rodents (Dilova 
et al., 2007; Fontana and Partridge, 2015; Gallinetti et al., 2013; López-
Otín et al., 2016). Genes involved in amino acid metabolism and the 
related signal transductions are thought to be commonly involved in 
lifespan regulation in both S. pombe and other organisms.

10.12 | moc3+

The deletion of moc3+ extends CLS (Rallis et al., 2014). moc3+, which 
encodes a Zn finger-type protein localized in the nucleus, was iden-
tified as a factor that induces sexual differentiation even in the 
presence of cAMP, and is involved in stress response and sexual dif-
ferentiation (Paul et al., 2009).

Since moc3+ has a negative genetic interaction with pef1+ (Ryan 
et al., 2012), its involvement in CLS may also be in parallel with that of 
Clg1–Pef1. Moreover, by yeast two-hybrid assay, it has been reported 
that Moc3 physically interacts with Kgd1 (Vo et al., 2016), although 
each reported intracellular localization of Moc3 and Kgd1 is not the 
same, namely, nucleus and mitochondria, respectively. Similarly, since 
Moc3 physically interacts with the ribosomal protein Rpl1201 and 
MAPK Spk1 (Paul et al., 2009; Vo et al., 2016), the mechanism of CLS 
extension related to Moc3 may be involved in these factors.

10.13 | nbr1+

Deletion of nbr1+ (SPBP35G2.11c) extends CLS (Rallis et al., 2014). 
Nbr1 is a homolog of the mammalian autophagy receptor NBR1 and 



634  |     OHTSUKA eT Al.

is distantly related to S. cerevisiae Atg19 (Zhao et al., 2016). Nbr1 
mediates the transport of soluble hydrolases from the cytosol to the 
vacuole lumen (Liu et al., 2015).

10.14 | ndk1+

The deletion of ndk1+ extends CLS (Rallis et al., 2014). ndk1+ en-
codes a subunit of nucleoside–diphosphate kinases (Izumiya and 
Yamamoto, 1995). However, its mechanism of CLS extension has not 
been analyzed yet.

10.15 | nnk1+

Nonsense mutation of nnk1+, a homolog of budding yeast NNK1, 
leads to CLS extension (Kurauchi et al., 2017). Since the budding 
yeast Nnk1 physically interacts with both Tor1 and Tor2 proteins 
(Breitkreutz et al., 2010), the mechanism of CLS regulation by nnk1+ 
may be associated with TOR. Moreover, the deletion of budding 
yeast NNK1 shortens CLS of S. cerevisiae (Garay et al., 2014). Since 
the deletion of nnk1+ is lethal in S. pombe, accurate comparison 
among these yeasts is difficult. Thus, the possibility of Nnk1 as a 
factor regulating lifespan beyond the species has not been verified.

10.16 | oga1+

Overexpression of oga1+ extends CLS (Ohtsuka et al., 2013). 
Oga1 is a homolog of budding yeast Stm1, which binds guanine–  
quadruplex nucleic acids and is involved in the TOR pathway and 
ribosome control (Ohtsuka et al., 2013; Van Dyke et al., 2006). Stm1 
is reportedly important for maintaining survival during nutrient de-
pletion, insdicating that Stm1 may act as a ribosome preservation 
factor under these conditions (Van Dyke et al., 2006, 2013). The 
TOR pathway and ribosome regulation are known to be involved in a 
conserved lifespan extension pathway in response to nutrient limita-
tion (MacInnes, 2016; Ohtsuka and Aiba, 2017; Ohtsuka et al., 2017; 
Steffen et al., 2008). Thus, the mechanism of CLS extension by oga1+ 
may also be related to these processes. Since oga1+ has a negative 
genetic interaction with pef1+ (Ryan et al., 2012), CLS extension by 
oga1+ may function in parallel with Clg1–Pef1.

10.17 | par1+

The deletion of par1+ slightly extends CLS (Rallis et al., 2014). par1+ 
encodes a protein phosphatase 2A B′-regulatory subunit, and its de-
letion causes abnormal septum formation and increases the septa-
tion index (Le Goff et al., 2001). Because elongated multinucleate 
multiseptated cells also appear in Δpar1 cells, this may also con-
tribute to the high survival rate during the stationary phase. During 
colony formation, a connected cell population forms one colony 

regardless of the number of surviving cells among the population 
unless all cells in the population are dead. Cells with such a pheno-
type may not indicate accurate survival by CLS measurement using 
colony-forming units.

Since par1+ has negative genetic interactions with mkh1+, pek1+, 
pmk1+, pyp1+, sds23+, erg28+, and zrg17+ (Ryan et al., 2012), the CLS 
regulation mechanism may occur in parallel with that of the Pmk1 
and PKA–Sty1 pathways, Erg28, and Zrg17. Conversely, since par1+ 
has positive genetic interactions with sck2+ and nbr1+ (Rallis et al., 
2014; Ryan et al., 2012), CLS extension by par1+ may be involved in 
the TORC1 pathway and Nbr1, which is involved in autophagy. In   
S. cerevisiae, deletion of RTS1, a homolog of par1+, shortens CLS 
(Marek and Korona, 2013).

10.18 | pdb1+

Overexpression of pdb1+, which encodes a subunit of pyruvate 
dehydrogenase, extends CLS (Ohtsuka et al., 2013). Although 
the CLS of pdb1+-deleted cells has not been reported in S. pombe, 
deletion of PDB1, which is a homolog of pdb1+ in S. cerevisiae, 
shortens CLS (Marek and Korona, 2013). Furthermore, in nema-
todes, dichloroacetate's activation of pyruvate dehydrogenase 
may lead to lifespan extension (Schaffer et al., 2011). Longevity 
regulation via pyruvate dehydrogenase may be conserved across 
species.

10.19 | pdc201+ and pdc202+

The transcription factor Phx1 may induce pdc201+ and pdc202+, both 
of which encode pyruvate decarboxylase, and their individual induc-
tion contributes to CLS extension (Kim et al., 2014). As homologs of 
pdc201+ and pdc202+, S. cerevisiae has three pyruvate decarboxy-
lases: PCD1, PDC5, and PDC6. Unlike S. pombe pdc201+ and pdc202+, 
deletion of PDC5 extends CLS (Garay et al., 2014). Therefore, at pre-
sent, it is not easy to understand the regulation of CLS by pyruvate 
decarboxylase precisely across species.

10.20 | pht1+

The deletion of pht1+, which encodes the histone H2A variant 
H2A.Z, extends CLS (Carr et al., 1994). Since pht1+ has negative ge-
netic interactions with pmk1+, sty1+, pef1+, sts5+, par1+, and moc3+ 
(Roguev et al., 2008; Ryan et al., 2012), the mechanism of CLS ex-
tension by pht1+ may be in parallel with the Pmk1 and Sty1 path-
ways, Clg–Pef1, Par1, and Moc3. In S. cerevisiae, deletion of HTZ1, 
a budding yeast homolog of pht1+, also extends CLS (Garay et al., 
2014). Furthermore, histone variants have been studied for their ef-
fects on aging in higher organisms (Contrepois et al., 2017; Re and 
Vinciguerra, 2017). CLS studies regulated by Pht1 may be useful in 
elucidating aging mechanisms across species.



     |  635OHTSUKA eT Al.

10.21 | pma1+

Two loss-of-function mutations (D138N and A270D) of Pma1 extend 
CLS (Ito et al., 2010; Naito et al., 2014). pma1+ encodes P-type pro-
ton ATPase (Kashiwazaki et al., 2011; Naito et al., 2014; Ulaszewski 
et al., 1987), and Pma1 mutations reduce glucose intake in addition 
to CLS extension, so its relationship with calorie restriction has been 
discussed (Ito et al., 2010). In S. cerevisiae, the functional decline of 
Pma1 reportedly extends RLS; furthermore, differences in Pma1 
distribution between mother and daughter cells and the effects 
on vacuolar acidity and RLS have also been discussed previously 
(Henderson et al., 2014).

10.22 | ppi1+

Overexpression of ppi1+ extends CLS (Ohtsuka et al., 2013). ppi1+ 
encodes cyclophilin and has peptidyl-prolyl cis/trans isomerase ac-
tivity similar to the rapamycin-acting protein FKBP (Siekierka et al., 
1989; Skruzný et al., 2001; Van Dyke et al., 2013). The relation-
ship between cyclophilin and aging is unclear (Nigro et al., 2013). 
Clarification of the regulatory mechanism of CLS extension by ppi1+ 
will contribute to the understanding of the relationship between cy-
clophilin and aging.

10.23 | reb1+

Deletion of reb1+, which encodes RNA polymerase I transcription 
termination factor (Jaiswal et al., 2016), extends CLS (Rallis et al., 
2014). However, Δreb1 cells have reportedly had lower survival 
during the early stationary phase than wild-type cells (Rallis et al., 
2014), so the possibility of adaptive regrowth cannot be ruled out. 
Since reb1+ has negative genetic interactions with git3+, tim18+, 
sty1+, sds23+, pef1+, sts5+, and zrg17+ (Roguev et al., 2008; Ryan 
et al., 2012), the CLS extension mechanism by Reb1 may work in 
parallel with the PKA–Sty1 pathway and Clg1–Pef1. Additionally, 
reb1+ has negative genetic interactions with par1+ and rsv2+ 
(Roguev et al., 2008; Ryan et al., 2012). Conversely, since reb1+ 
has a positive genetic interaction with ndk1+ (Ryan et al., 2012), 
these mechanisms of CLS regulation may work via the same path-
ways. Meanwhile, the deletions of the budding yeast reb1+ ho-
mologs REB1 and NSI1 reportedly shorten RLS (Ha et al., 2012; 
Kamei et al., 2015).

10.24 | rpb10+

Overexpression of rpb10+, which encodes small subunits of RNA 
polymerase I, II, and III, extends CLS (Roux et al., 2010a). However, 
its interaction with other genes that cause CLS extension has 
not been reported; therefore, its mechanism of CLS extension is 
unknown.

10.25 | sck1+

Overexpression of sck1+ restores the phenotypes of git3, git5, and 
pka1 mutants (Jin et al., 1995), and sck1+ has positive genetic interac-
tions with sty1+ and tim18+ (Ryan et al., 2012). Therefore, although 
the CLS extension by Δsck1 is weak, CLS regulation via sck1+ may be 
involved in the TORC1 pathway and PKA–Sty1 pathway. However, in 
contrast to this hypothesis, a negative genetic interaction between 
sck1+ and pyp1+ has also been reported (Ryan et al., 2012).

10.26 | sdh1+

Overexpression of sdh1+, which encodes succinate dehydrogenase, 
extends CLS, and its deletion shortens CLS (Ohtsuka et al., 2013; 
Rallis et al., 2014). However, deletion of SDH1 (a budding yeast ho-
molog of sdh1+) has been reported to extend RLS (McCormick et al., 
2015). In C. elegans, addition of TCA cycle metabolites related to 
succinate dehydrogenase (e.g., malate, fumarate, and succinate) acti-
vates nuclear translocation of the DAF-16/FOXO transcription factor 
and suppresses oxidative stress (Edwards et al., 2013). Furthermore, 
the addition of malate or fumarate extends lifespan (Edwards et al., 
2013). Similarly, in C. elegans, adding pyruvate and oxaloacetate also 
extends lifespan (Mouchiroud et al., 2011; Williams et al., 2009), 
similar to RNAi knockdown of aconitase or mitochondrial NAD+-
dependent isocitrate dehydrogenase (Hamilton et al., 2005; Rea 
et al., 2007). Thus, the knowledge regarding the TCA cycle and lifes-
pan regulation is accumulating. It is unclear exactly how sdh1+ af-
fects CLS of S. pombe, but there may be a conserved mechanism of 
lifespan regulation related to the TCA cycle.

10.27 | shd1+

The deletion of shd1+, which encodes a cytoskeletal protein-  
binding protein, extends CLS (Rallis et al., 2014); however, the   
detailed mechanism for CLS regulation by shd1+ remains unknown.

10.28 | tor1+

The relationship between Tor2, a component of TORC1, and Tor1, 
the catalytic subunit of S. pombe TORC2, is complicated. While 
they have the opposite effect on response to sexual differentiation 
(Laboucarié et al., 2017; Otsubo et al., 2017), there are reports that 
they share the same function in cell survival in adverse environ-
ments (Uritani et al., 2006; Weisman and Choder, 2001). Similarly, 
regarding CLS, deletion of tor1+ extends CLS in minimal (SD) me-
dium, but shortens CLS in a complete (YE) medium (Ohtsuka et al., 
2013; Rallis et al., 2013; Weisman and Choder, 2001). This indicates 
that the CLS of Δtor1 cells may be significantly affected by environ-
mental and nutritional conditions. Since the deletion of tor1+ causes   
hypersensitivities to various stresses induced by the environment 
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(Uritani et al., 2006; Weisman and Choder, 2001), the stresses caused 
by tor1 deletion may lead to the activation of stress response pathways 
such as the Sty1 pathway and then, cause CLS extension. Consistent 
with this idea, Tor1 functions upstream of Sty1 (Schonbrun et al., 
2009) and CLS extension by Δtor1 may be involved in the Sty1 path-
way. However, tor1+ reportedly has negative genetic interactions with 
git3+ and sds23+ (Ryan et al., 2012), making it difficult to understand 
exactly how Tor1 contributes to CLS regulation. Furthermore, since 
tor1+ has a negative genetic interaction with nbr1+ (Ryan et al., 2012), 
their involvement in CLS regulation may work in parallel.

10.29 | tps0+

Overexpression of tps0+, which encodes mitochondrial lipid trans-
locator protein, extends CLS (Ohtsuka et al., 2013). Since tps0+ has 
a negative genetic interaction with tor1+ (Ryan et al., 2012), these 
mechanisms of CLS extension may work in parallel.

10.30 | uck2+

The deletion of uck2+, which encodes uracil phosphoribosyltrans-
ferase, extends CLS (Rallis et al., 2014). Since uck2+ has a negative 
genetic interaction with reb1+ (Ryan et al., 2012), CLS control of 
uck2+ may work in parallel with reb1+.

10.31 | ufd2+

One study has reported that the deletion of ufd2+ (SPAC20H4.10), 
which encodes ubiquitin–protein ligase E4, extends CLS (Jang et al., 
2013), whereas another study stated that the CLS of Δufd2 cells was al-
most the same as those of wild-type cells (Rallis et al., 2014). The effect 
of ufd2+ on CLS may change depending on the culture conditions. Since 
ufd2+ has positive genetic interactions with git3+ and git5+ (Ryan et al., 
2012), CLS extension by ufd2+ may be involved in the PKA pathway. 
This is consistent with the reports that Ufd2 physically interacts with 
Sds23 (Jang et al., 2013; Paul et al., 2009). Additionally, since ufd2+ has 
a positive genetic interaction with pmk1+ (Ryan et al., 2012), the CLS 
regulation mechanism by ufd2+ may be involved in both the PKA–Sty1 
and Pmk1 pathways. Although the CLS extension regulated by ufd2+ 
may be environmentally dependent, ufd2+ interacts with many other 
CLS regulators. ufd2+ also has positive genetic interactions with sck2+ 
and par1+ (Rallis et al., 2014; Roguev et al., 2008), negative genetic in-
teractions with pef1+ and zrg17+ (Roguev et al., 2008; Ryan et al., 2012), 
and the product Ufd2 physically interacts with Moc3 (Paul et al., 2009).

10.32 | ure4+

The deletion of ure4+, which encodes an urease accessory protein, 
extends CLS (Rallis et al., 2014); however, the mechanism of CLS ex-
tension has not yet been elucidated.

10.33 | vma1+

Overexpression of vma1+, which encodes the subunit A of vacuolar 
ATPase, extends CLS, and its deletion shortens CLS (Stephan et al., 
2013). CLS regulation by vma1+ may be due to vacuolar acidifica-
tion (Stephan et al., 2013). In S. cerevisiae, the deletion of VMA1, the 
homolog of vma1+, also shortens CLS (Marek and Korona, 2013). 
Because vacuolar acidification is important for RLS in budding yeast 
(Henderson et al., 2014), this may be one of the evolutionarily con-
served mechanisms of lifespan regulation.

10.34 | SPAC323.03c

Deletion of SPAC323.03c extends CLS (Rallis et al., 2014). Since 
SPAC323.03c has a negative genetic interaction with par1+ (Ryan et al., 
2012), the CLS extension mechanism may be parallel with that of par1+.

10.35 | SPBP4H10.16c

The deletion of SPBP4H10.16c, which may encode G-patch RNA-
binding protein, extends CLS (Rallis et al., 2014). However, the dele-
tion of WHI2, a budding yeast homolog of SPBP4H10.16c, decreases 
CLS (Burtner et al., 2011). An accurate understanding of this gene's 
role in CLS will require further study.

10.36 | SPCC18.02

Overexpression of SPCC18.02, which should encode a transmem-
brane transporter protein, extends CLS (Ohtsuka et al., 2013). Since 
SPCC18.02 has a negative genetic interaction with mkh1+ (Ryan et al., 
2012), CLS extension by SPCC18.02 is considered to be in parallel 
with the Pmk1 pathway.

11  | CONCLUSIONS

While many model organisms, such as budding yeasts, nematodes, 
flies, and rodents, contribute to aging research, many CLS studies 
using S. pombe have also been conducted. In this review, we have sum-
marized about more than 80 genes involved in CLS extension revealed 
in studies using S. pombe and have organized them based on informa-
tion not only from CLS studies but also from non-CLS studies includ-
ing comprehensive interactome analysis. Many CLS regulatory genes 
have various interactions with many other CLS regulatory genes. 
Furthermore, among these CLS regulatory genes, we summarized the 
genes that have many interactions with each other and found that 
three pathways, namely, the TORC1, PKA–Sty1, and Pmk1 pathways, 
and three groups, namely, Ecl1 family genes, Clg1-Pef1, and the Php 
complex, play central roles in CLS regulation in S. pombe.

Among the large volume of current results, some interactions 
were difficult to interpret. This may be because some of the CLS 
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regulatory pathways function in parallel upstream, but have a com-
mon target downstream that regulates CLS extension. For example, 
in this review, the TORC1 and PKA–Sty1 pathways were described 
separately, but CLS extensions by both pathways are reportedly me-
diated by the common transcription factor Phx1 (Kim et al., 2014). 
Moreover, ribosome regulation may be important for CLS extension 
via the TORC1 pathway, Ecl1 family genes, and glucose restriction 
involved in the PKA–Sty1 pathway (Ohtsuka et al., 2017; Rodríguez-
López et al., 2020).

Although S. pombe is a unicellular organism, its signaling path-
ways that respond to nutrition and starvation function to mediate 
lifespans similarly to those in multicellular organisms (Fontana and 
Partridge, 2015; Fontana et al., 2010; Kapahi et al., 2017), sug-
gesting evolutionarily conserved mechanisms to regulate lifespan. 
Furthermore, evolutionarily conserved mechanisms of lifespan ex-
tension other than those that respond to nutrition or starvation may 
exist. CLS research in S. pombe will also make a significant contribu-
tion to the elucidation of the aging mechanism in the same way as 
that of other model organisms.
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