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Abstract

There is neither a single clinical, microbiological, histopathological or genetic test, nor combinations of them, to
discriminate aggressive periodontitis (AgP) from chronic periodontitis (CP) patients. We aimed to estimate probability
density functions of clinical and immunologic datasets derived from periodontitis patients and construct artificial neural
networks (ANNs) to correctly classify patients into AgP or CP class. The fit of probability distributions on the datasets was
tested by the Akaike information criterion (AIC). ANNs were trained by cross entropy (CE) values estimated between
probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel
density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-
validation. Possible evidence for 2 clusters of patients on cross-sectional and longitudinal bone loss measurements were
revealed by KDE. Two to 7 clusters were shown on datasets of CD4/CD8 ratio, CD3, monocyte, eosinophil, neutrophil and
lymphocyte counts, IL-1, IL-2, IL-4, INF-c and TNF-a level from monocytes, antibody levels against A. actinomycetemcomitans
(A.a.) and P.gingivalis (P.g.). ANNs gave 90%–98% accuracy in classifying patients into either AgP or CP. The best overall
prediction was given by an ANN with CE of monocyte, eosinophil, neutrophil counts and CD4/CD8 ratio as inputs. ANNs can
be powerful in classifying periodontitis patients into AgP or CP, when fed by CE values based on KDE. Therefore ANNs can
be employed for accurate diagnosis of AgP or CP by using relatively simple and conveniently obtained parameters, like
leukocyte counts in peripheral blood. This will allow clinicians to better adapt specific treatment protocols for their AgP and
CP patients.
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Introduction

Periodontitis is a bacterial-driven chronic inflammatory de-

structive disease of the tissues surrounding and supporting the

dental root [1]. Severe periodontitis affects around 8.5% of the

general population, while a moderate form of the disease is present

in 30% and a mild form in 9% of adults aged 30 and older [2].

Periodontitis is a complex disease, where multiple causal factors

simultaneously and interactively play a role. There are four main

causal risk factors, i.e. the subgingival microbiota (the bacterial

biofilm), individual genetic variations, life style and systemic

factors [3]. It is a well-known fact that the behavior of a complex

system cannot be explained by isolating its components [4].

Currently two clinical types of periodontitis are recognized; the

aggressive (AgP) and the chronic (CP) form [5]. Due to the

complexity of the pathogenesis of the disease, there is no single

clinical, microbiological, histopathological, genetic test or combi-

nations of them to discriminate AgP from CP patients [6].

Clinical identification of AgP cases is based on rapid attachment

loss and bone destruction, the absence of systemic factors to

explain this progression rate and familial aggregation [7]. Any age

upper limit in discriminating AgP from CP is arbitrary.

Nevertheless, given the same amount of periodontal destruction

individuals with AgP are found considerably younger than CP

patients. The age of 35 has been used as a cut-off point to

discriminate between AgP and CP [8]. It is realized that is difficult

to distinguish between the two phenotypes at the initial stages of

periodontitis, thus preventing proper early clinical management of

AgP, which is generally found more demanding.

Complexity is understood through modeling and simulation [4].

In a recent study [9] using cellular automata experiments,

periodontitis was described as a system out of equilibrium with

the level of the host immune response determining its entropy rate.

In a subsequent study [10] a chaotic map was analyzed, expressed

by a particular equation, which accurately models periodontitis

progression in connection to the variation of the host immune
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response level. By renormalization arguments, two zones of disease

activity were identified, a fast and a slow progressing zone,

corresponding to AgP and CP respectively. Based on the above,

we may now pose the hypothesis that different entropy rates might

indeed reflect the presence of distinct patient clusters in

immunologic and clinical datasets.

Histograms are the oldest probability density estimators [11],

but suffer from certain important drawbacks; they are discontin-

uous and hardly appropriate for representing bivariate or

trivariate data. Nonparametric kernel density estimation (KDE)

methods on the other hand, reveal structure in datasets, such as

skewness and multimodality that might be missed by classical

parametric methods [12]. KDE is an unsupervised learning

procedure that can be used for nonparametric classification tasks

[13]. In general, when a desired outcome is known, a learning

process is called supervised, otherwise it is unsupervised learning.

Artificial neural networks (ANNs) are considered powerful

nonlinear statistical tools to model complex relationships between

inputs and outputs. Therefore, they appear appropriate in

searching for parameters that could achieve an accurate diagnosis

of AgP or CP. ANNs consist of a set of simple units called neurons

by analogy with the biological neurons [14]. Neurons are linked to

each other by a weighted connection which is called synapsis, and

are organized in layers: Information is fed to neurons of the input

layer, and then processed in the hidden layer and finally exits to

the neurons of the output layer. ANNs can be adaptive to external

or internal changes and ‘‘learn’’ from the data entered into them.

For instance, one type of ANN is the multilayer perceptron (MLP);

this is a feedforward ANN trained by the backwards propagation

of the error found in the outcome layer. It can be used for

supervised learning classification procedures.

The first aim of this study was to estimate the probability density

functions of a set of observed clinical and immunologic data in

periodontitis patients. Secondly we investigated the fit of the data

to various probability distribution models. Based on these findings

we developed ANNs able to classify periodontitis patients

belonging to either one of the two different clinical forms,

aggressive or chronic form.

Materials and Methods

Study population
Data were retrieved from previous studies that provided 4

distinct patient samples. From one study [15], we obtained 29

periodontitis patients with severely advanced disease as evidenced

by clinical and radiographic examination, which were clinically

followed and maintained for 5 to 8 years (we designate this as

sample-1). At baseline examination, they had $14 teeth present

and at least 50% of their teeth showed bone loss of $50% of their

root length. We used data on baseline radiographic mean bone

loss and on longitudinal mean radiographic bone loss level change.

From Loos et al. [16,17] studies from 76 periodontitis patients (the

same group for both studies to which we will refer as sample-2) we

derived datasets of total number of monocytes, lymphocytes,

basophils, neutrophils and eosinophils in peripheral blood, as well

as the total number of CD3, CD4, CD19 cells and the CD4/CD8

ratio. For sample-2 radiographic bone loss measurements were

also available (% of teeth with bone loss of $50% of the tooth root

length). From Graswinckel et al. [18] we used the datasets for IgA,

IgM and IgG from 80 periodontitis patients (sample-3). From

Takahashi et al. [19] (sample-4) we derived data of serum antibody

levels in 162 periodontitis patients against Aggregatibacter actinomy-

cetemcomitans (A.a.) (Y4 antigen), A.a. (ATCC 29523), A.a.

(SUNY67), Porphyromonas gingivalis (P.g.) (FDC381), P.g. (SU63),

Eikenella corrodens (E.c.) (ATCC 23834), Prevotella intermedia (P.i.)

(ATCC 25611), Prevotella nigrescens (P.i.) (ATCC 33563), Capnocy-

tophaga ochracea (C.o.) (S3), Wolinella succinogens (ATCC 29543),

Treponema Denticola (T.d.) (ATCC 35405) and Fusobacterium nucleatum

(F.n.) (ATCC 25586). In addition we derived data of IL-1, IL-2,

IL-4, IL-6, TNF-a and INF-c levels produced by mononuclear

cells from peripheral blood.

The undefined periodontitis patients, those with adult periodon-

titis (AP) or those with localized (L) or generalized (G) early onset

periodontitis (EOP) from the studies from which data were retrieved

[16–19] were reclassified as previously described [9]. Those with an

age at the time of diagnosis .35 years or originally having AP, were

reclassified as CP; patients #35 years were classified as AgP; those

with L- or G-EOP were all classified as AgP. EOP (a term used in

the 1989 world workshop in clinical periodontics, preserved in the

1996 modification and changed to AgP in 1999) is considered to

have its onset from puberty until 35 years [20].

Therefore from sample-2 we derived 23 AgP and 53 CP cases;

from sample-3 18 AgP and 62 CP cases. For these two samples we

had an exclusion of 20% of the initially recruited patients for

various reasons that could affect their immunologic profile (like

chronic medical disorder, pregnancy, trauma, recent tooth

extraction, etc). From sample-4 we obtained 68 AgP and 43 CP

cases. A group of 51 patients ‘‘suspected for EOP’’, was declared

suspected for AgP with no definitive criteria for a final diagnosis;

they had severe periodontitis and a disease history that suggested

EOP, but were .35 years at the first examination and with no

family members diagnosed with EOP. Patients in sample-4 were

recruited as they presented at the Okayama University Dental

Hospital over a period of 10 years.

Kernel density estimation
For the estimation of univariate or bivariate probability densities

of the data distribution of the various parameters, an appropriate

kernel function is needed [21]. The process of choosing a kernel

function is described in Text S1 in File S1.

Fit of the data distributions to probability models
The fit of the available data distributions was tested in five well

known probability models for continuous variables: the Normal,

the Exponential, the Weibull, the Pareto and the Gamma models.

They all have been extensively used and applied on biological

systems [22]. A first visual appreciation of the fit was judged by

quantile to quantile (Q-Q) plots. Subsequently, comparisons

between models were based on the Akaike information criterion

(AIC) [23,24], which safe-guards against overfitted models [25].

Construction of artificial neural networks
We built MLP ANNs to classify periodontitis patients. A

diagram of the MLP ANN applied in this study is presented in

Figure 1. It depicts the three types of layers, the input, the hidden

and the output layer along with the interweaving of their neurons.

We trained ANNs using cross entropy values (CE) [26] of

immunological parameters of periodontitis patients in reference

to a target probability value revealed by KDE.

The first step in the construction process was to calculate the

probability p(x) of demonstrating a certain level of an immuno-

logical parameter (x) in an individual patient. We used for that the

cumulative probability function (cpf) of the corresponding

probability model. At a second step, we computed cross entropy

(CE) values [26] for each patient between the previously described

probability p(x) for selected immunologic parameters and a

reference probability value, the target probability ti(CP). We used

the formula

Artificial Intelligence on Host-Immune Parameters
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CEi~{ ti(CP) ln p(xi)
� �

where i = 1, 2, …N and N is the number of the immunological

parameters (x) inserted into the ANN. CE is a nonsymmetric

measure of the difference between two probability distributions.

The target probability distribution ti(CP) was estimated by direct

application of the appropriate cpf; we used the mode value of x

with the highest density probability of the immunologic data

distribution (indicated by KDE) as the reference point. We

assumed that the highest density modes represent clusters

inhabited mostly by the CP patients.

Our pruning strategy in feature selection at the input layer was

based on automatic relevance determination (ARD) [27].

According to the method, features whose posterior weight

distributions show low variance are discarded. The weight decay

regularization parameter was determined by a 10-fold cross-

validation process [28] (see text S1). If 10-fold cross validation is

used for the determination of the weight decay regularization

parameter, usually there is no need to use cross validation to

determine the number of the hidden units [28]. We determined

the number of hidden units and the maximum number of epochs

by experimentation (we stopped increasing iterations when the

sum of squares error stopped improving) [27,28]. Finally, since the

results of the networks are sensitive to the initial weight values, we

tried 10 random initial weight configurations and we computed

the mean prediction rates [28]. We report the technical features of

the ANNs, such as maximum number of epochs (iterations) and

learning methods applied, as well as sensitivity, specificity and

overall accuracy of the ANNs against the original clinical

diagnosis.

Results

From 4 distinct samples we derived clinical and immunologic

data and performed KDE. From sample-1 on baseline and

longitudinal bone loss data KDE revealed possible evidence of two

clusters of patients (Figure 2A, B). On sample-2 for the dataset of

% of teeth with bone loss $50% of their root length, possible

evidence of two main clusters was also found (Figure 2C). KDE on

sample-2 revealed three to seven clusters for monocytes, basophils,

neutrophils, eosinophils and lymphocytes counts (Figure 2Q, R, S,

T & X) and two clusters for CD3 (Figure 2L). From sample-3, IgA

and IgM data showed one mode (Figure 2V & W) while IgG data

(Figure 2U) showed two clusters. From sample-4, KDE gave

possible evidence of two main clusters for IL-2, IL-4, IL-6, TNF-a,

INF-c, (Figure 2D, E, F, H, J & K), and of 2 to 3 modes for

antibody IgG titers against the 12 examined bacteria (graphs are

shown for three of them) (Figure 2M, N & O).

Some bivariate KDE were generated. Using longitudinal bone

loss data in relation to age (sample-1), we identified two clusters of

patients (Figure 3A). The majority of patients clustered around the

mode of 0.2 mm of longitudinal bone loss over the follow up

period, while a small cluster of patients showed a mode with an

almost 5 times higher value for this parameter. In the bivariate

KDE of the CD4/CD8 ratio in relation to age (sample-2)

(Figure 3B) or in relation to % of teeth with bone loss $50% of

their root length (Figure 3C), two clusters at modes x = 1.5 and

x = 1.9 are found.

We found the baseline and longitudinal bone loss measurements

to fit to the Normal model (Table S1 in File S1). Most of the

immunologic data fitted to the Gamma model (Figure S1, Table

S1 in File S1). We built three ANNs with three kinds of

immunologic parameters as inputs: leukocytes (ANN1) (from

sample-2), interleukins (ANN2) and IgG antibody titers (ANN3)

Figure 1. Multilayer perceptron feedforward neural network with error backpropagation. The information (cross entropy values of
immunological parameters for each patient) is inserted in the input neurons. At the hidden layer, here with 6 neurons, we sum the information and
transfer it (through the sigmoid function) to the outcome layer, where the sigmoid function exits an AgP or CP verdict. Bias neurons have a constant
value and help the network to learn patterns. They are independent from other neurons and can shift the curve of the sigmoid function to the left or
to the right. The classification error found at the outcome layer backpropagates in the network and synaptic weights are adapted accordingly as the
network learns from its error and tries to minimize it.
doi:10.1371/journal.pone.0089757.g001
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(from sample-4). We didn’t mix parameters from the two samples.

The results of ARD on feature selection are presented in Table S2

in File S1. ANN1 showed high accuracy (98.1%) followed close by

ANN2 (95.6%), while ANN3 was left behind in overall accuracy

(90%) (Table 1). For comparison to the ANNs performance, we

conducted canonical discriminant analysis and binary logistic

regression using the above selected inputs. They both displayed

inferior results compared to the ANNs (Table S3 in File S1).

Discussion

We found by KDE techniques possible evidence of two modes

in radiographic bone loss and selected immunologic data. We also

fitted probability models to our datasets. In training ANNs we used

CE values instead of original data. This might seem an

unnecessary complication, but the ANNs were trained far better

providing higher prediction accuracy. We can only speculate on

the reason for that. It might have been that the smoothing

parameter in KDE fine-tuned the complexity of ANNs via a

shrinking effect on weights; increasing complexity directly relates

to an increasing variance of ANNs test error and poorer prediction

outcome [28,29]. The nonsymmetric nature of CE might also have

facilitated the learning process.

ANNs have been used in monitoring medical conditions, where

a complex combination of changes in multiple variables is

associated with the onset of a disease [30]. ANNs simulate the

tabula rasa or clean-slate learning we find associated with biological

processes [14]. ANNs using the softmax transfer function and the

CE error function are equivalent to linear logistic regression in the

hidden units [28]. However, a growing number of studies in

various scientific fields indicate that ANNs provide higher

prediction accuracy than multiple regression models in solving

classification problems [31]. This was also shown by our results

(Table S3 in File S1). We must note however, that the

performance of an ANN is variable, depending on the learning

method used. In fact, ANNs in supervised machine learning

methodology are found to approximate any function with

arbitrary accuracy. However, they are susceptible to the overfitting

problem [29]. Our results indicate that ANNs can be helpful in the

diagnosis of AgP in a periodontal practice, while they appear

unsuitable for monitoring the general population where a test with

almost 100% specificity is required.

Clustering periodontal patients to gain insight into the

pathogenesis of periodontitis is not a new idea. Among the vast

literature, we can distinguish a study that analysed differences

among 5 groups of patients [32]; grouping was based on pocket

depth (PD) and bleeding on probing scores (BOP). Using logistic

regression C. rectus antibody titers was the best single predictor

among all IgG titers of one of the 5 phenotypes and P. gingivalis

titers found the best single predictor of other three phenotypes.

The study supported the microbial specificity of periodontitis

pathogenesis. However, the discontinuity of the grouping method

used in the study, like in the use of histograms, translates into

inefficient use of the data and causes huge difficulties when

derivatives of the estimates are required. The situation can be

perplexed by the combination of two parameters (PD and BOP).

In contrast, KDE when used as intermediate component of

another method, like in the current study, is particularly justified as

an alternative to histograms.

The main body of the periodontal literature relevant to cluster

analysis is based on similarities of subgingival microbiota, followed

by investigation of clinical and immunologic differences among

clusters. For example, hierarchical cluster analysis identified 5

groups of AgP patients of similar subgingival microbiota [33]; IL-

1b/IL-10 ratio in gingival crevicular fluid (GCF) was significantly

different among groups. A recent review underscored the fact that

although bacteria initiate periodontitis, disease progression is

multidimensional and poorly understood [34]. Our unsupervised

grouping method on immunologic parameters from peripheral

blood determined clusters by local maxima of the overall density

function. However, one can question the validity of the in vitro

interleukin evaluation tests. Using parameters from GCF or saliva

[35] is an alternative that may enhance the prediction or

generalization ability of ANNs. Our hypothesis that the host

immune response level is the determinant of periodontitis disease

rate [8], agrees with the recently proposed paradigm for

periodontitis pathogenesis [36]; it is suggested that even the

immune response level mounted at the early stage of gingivitis is

the determinant factor of periodontitis progression and not the

presence of specific bacteria known for their virulent properties.

On this basis it becomes meaningful to use immunologic

parameters by nonlinear methods to discriminate AgP from CP.

It is currently understood that for the behavior of a complex

disease many components intricately and dynamically interact; the

emergence of the behavior of a complex system cannot be

explained by considering its contributing parts separately (the

whole does not equal the sum of the parts) [4]. The biological

relevance of our results can be evaluated through the above

realization. A complex system is not static: it undergoes continuous

scale transformations. At one scale some factors compete to each

other and at another scale below or above they act in synergy.

That makes it difficult to find significant differences between AgP

and CP when simple comparisons are made, for example by mean

values of immunologic parameters. On the other hand, ANNs start

nearly linear (with weights near zero) and become nonlinear as the

weights increase [28]. As they grow they learn the nonlinear

patterns of the data through the backpropagation of their

misclassification error. However, the problem with ANNs remains

their generalization ability and overfitting is always a concern

[28,29].

The limitations of the methodology used in this study should be

addressed. First of all, there are no rules for determining how large

a sample should be for justifying the application of ANNs.

However, having larger samples would allow us to leave a portion

of the patients entirely out of the training process to finally

evaluate upon this portion the general performance of the models.

This seems to be an objective way to test the generalization ability

of the models. Secondly, regarding the ANNs design, it is better to

have too many hidden units than too few. The number of hidden

units varies in relation to the number of inputs and the size of the

training sample, usually being in the range of 5 to 100 [28]. With

too few hidden units, the model might not have enough flexibility

to capture the nonlinearities in the data; with too many hidden

Figure 2. Univariate kernel density estimation (KDE) graphs. Graphs A to C. Univariate KDE for radiographic bone loss measurements: modes
(single, bimodal or multimodal) are defined as the values that appear more frequent. Graphs A & B from sample-1. In graph C (sample-2) we log
transformed the confined data to find support in the interval (2‘, +‘) (see text S1). Graphs D to X. Univariate KDE for immunologic data: possible
evidence of multimodality for the CD4/CD8 ratio, CD3, lymphocytes, monocytes, eosinophils, basophils and neutrophils counts (sample-2), IgG levels
(sample-3), IL-2, IL-4, IL-6, INF-c, TNF-a, IgG A.a. titers and IgG C.o. titers (sample-4). Mini clusters close to each other are detected for IL-1 and IgG P.g
titers (sample-4).
doi:10.1371/journal.pone.0089757.g002
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Figure 3. Bivariate kernel density estimation (KDE) for some selected parameters. (A) Contour plot for bivariate KDE of longitudinal
radiographic bone loss level (sample-1) in relation to age: this topographical-like plot shows a main cluster with 0.2 mm longitudinal bone loss and a
small cluster with almost five times greater bone loss. (B) Contour plot for bivariate KDE: By estimating probability density for CD4/CD8 ratio by age
(sample-2), we see two clusters although not separated distinctly, at modes of 1.5 and 1.9. (C) Contour plot for bivariate KDE: By estimating
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units the model will suffer from overfitting. Overfitting is avoided

by early stopping or regularization. A common technique of

regularization is to add a penalty in the error function, as we

actually did (see text S1). By early stopping or by regularization we

want to stop training well before we approach the global

minimum, where neural networks with too many weights generally

overfit the data. Third, not removing irrelevant input features

would affect the classification accuracy of the network. Feature

pruning typically increases the generalization ability of classifiers

[29]. It is realized, however, that a variable, even though useless by

itself, can be useful in combination with others [37]. Therefore, a

limited set of candidate features may miss a potent combination of

features. On the other hand, the variance-bias trade-off problem

calls for our attention when we increase the complexity of the

model. Too many features will decrease the training error by

overfitting and at the same time will increase the test (generaliza-

tion) error [28].

The diagnostic criteria for AgP and CP were different among

the 4 patient groups used for this study. One sample [15] was

selected on the basis of the presence of severe periodontitis with no

discrimination of AgP or CP. The sole criterion of disease severity

was obviously inadequate to predict the future behaviour of all

patients. A small subgroup of patients showed a 5 times higher rate

of longitudinal bone loss than the main cluster of patients

(Figure 3A). This is definitely a group of patients with aggressive

disease behavior. Takahashi’s group [19] used the current

classification scheme [5]; however, discrimination of AgP and

CP was as much as possible precise, resulting in a group of

‘‘suspected’’ for AgP patients, which contributed to KDE but was

not used in ANNs. The other two samples used in this study

suffered of a crude method in designating patients into the AgP or

CP group. Obviously one can argue why we should concern

ourselves for a complicated method while by taking the age of 35

as a cutoff point, one has a classification [38]. However we

demonstrated that even in ‘‘noisy’’ samples (some AgP cases are

declared CP and vice versa) a host immune classifier can work

with arbitrary accuracy. We assume this kind of noise is present

even with the established criteria for AgP diagnosis [5]. Recently a

probability density for CD4/CD8 ratio (sample-2) by disease severity (% of teeth with bone loss $ of 50% of their root length), we reveal two distinct
clusters of patients, with modes at x values of 1.5 and 1.9.
doi:10.1371/journal.pone.0089757.g003

Table 1. Characteristics of three artificial neural networks (ANN) built on immunological parameters.

Input neurons Network’s description Resultsf

ANN1

CEa values of #o of hidden layers = 1, Sensitivity = 98,6%,

1. CD4/CD8b # of neurons in hidden layer = 9, Specificity = 97.9%

2. Neutrophils max. # of epochsc = 900, Accuracy = 98.1%

3. Monocytes weight decay regularization parameterd = 0.0001,

4. Eosinophils learning method = batche, gradient descent.

ANN2

CE values of # of hidden layers = 1, Sensitivity = 92.3%,

1. IL-1g # of neurons in hidden layer = 10, Specificity = 96.9%

2. IL-4 max. # of epochs = 800, Accuracy = 95.6%

3. IFN-ch weight decay regularization parameter = 0.0005,

4. TNF-ai learning method = batch, gradient descent.

ANN3

CE values of # of hidden layers = 1, Sensitivity = 91.1%,

1. A.a.k titers # of neurons in hidden layer = 10, Specificity = 89.4%

2. P.g.l titers max. # of epochs = 1000, Accuracy = 90.0%

3. C.o.m titers weight decay regularization parameter = 0.005,

4. F.n.n titers learning method = batch, gradient descent.

aCE = Cross entropy. Feature selection by automatic relevance determination.
bCD = cluster of differentiation.
cepoch = iteration.
dDetermined by 10-fold cross validation.
eBatch training passes all input data before updating the synaptic weights.
fThe mean values of 10 random configurations of initial weights are reported (mean values of sensitivity, specificity and overall accuracy of the ANNs against the original
clinical diagnosis).
gIL = interleukin.
hINF = interferon.
iTNF = tumor necrosis factor.
kA.a. = Aggregatibacter actinomycetemcomitans(Y4 antigen).
lP.g. = Porphyromonas gingivalis(FDC381 antigen).
mC.o. = Capnocytophaga ochracea.
nF.n. = Fusobacterium nucleatum.
o# = Number.
doi:10.1371/journal.pone.0089757.t001
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study using a transcriptome classifier with four supervised learning

methods reported good prediction results by one of the four; AgP

or CP diagnosis was strictly made by the established criteria [39].

The authors suggested possible heterogeneity within the AgP and

CP classes based on the variability of the results of the four

methods. The combined use of unsupervised with supervised

learning methods can be an attempt to reduce true misclassifica-

tion error [28]. We realize that the AgP diagnostic criteria for the

patients of sample-2 limit the generalization ability of the ANN

results based on it.

In conclusion, we demonstrated by KDE methods possible

evidence of two clusters on clinical and most immunological data

from periodontitis patients. By the use of ANNs we can effectively

classify periodontitis patients by their immune response profile into

the AgP or CP class. We anticipate that future work on bigger

samples extending the results of the present study and employing a

wider array of parameters can turn personalized treatment of

periodontitis from concept to reality.
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