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Abstract

Single-cell expression analysis is an effective tool for studying the dynamics of cell popula-

tion profiles. However, the majority of statistical methods are applied to individual profiles

and the methods for comparing multiple profiles simultaneously are limited. In this study, we

propose a nonparametric statistical method, called Decomposition into Extended Exponen-

tial Family (DEEF), that embeds a set of single-cell expression profiles of several markers

into a low-dimensional space and identifies the principal distributions that describe their het-

erogeneity. We demonstrate that DEEF can appropriately decompose and embed sets of

theoretical probability distributions. We then apply DEEF to a cytometry dataset to examine

the effects of epidermal growth factor stimulation on an adult human mammary gland. It is

shown that DEEF can describe the complex dynamics of cell population profiles using two

parameters and visualize them as a trajectory. The two parameters identified the principal

patterns of the cell population profile without prior biological assumptions. As a further appli-

cation, we perform a dimensionality reduction and a time series reconstruction. DEEF can

reconstruct the distributions based on the top coordinates, which enables the creation of an

artificial dataset based on an actual single-cell expression dataset. Using the coordinate

system assigned by DEEF, it is possible to analyze the relationship between the attributes

of the distribution sample and the features or shape of the distribution using conventional

data mining methods.

Introduction

Single-cell expression analysis is an effective tool for studying the dynamics of cell population

profiles [1–3]. Cytometry data, a type of single-cell expression data, quantify the amount of

protein marker expression in each of a large number of randomly selected cells. Single-cell

RNA sequencing (scRNA-seq) data, another type of single-cell expression data, has recently
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become popular. This type of data allows comprehensive quantification of the amount of

mRNA expression for genome-wide genes in single cells. Such single-cell expression data can

be used to quantify or identify specific cell subsets based on the biomarkers. For example, spe-

cific lymphocyte subset (e.g. T cell and B cell subset) have been defined by the expression pat-

terns of several cell surface protein markers [4, 5]. When many cells are sampled from a donor

and their expression profiles are obtained, the expression data can be regarded as an observa-

tion of an unknown probability distribution of the cells. The expression profile of each cell can

be viewed as a sample from a multidimensional distribution, where the number of dimensions

is the number of markers.

Several computational methods developed for single-cell data analysis, such as spanning-

tree progression analysis for density-normalized events (SPADE), monocle, and Wanderlust,

have been used to investigate various phenomena [6–9]. Most of these methods focus on the

diversity of multiple cells or the mutual phylogenic relationship among them within a set of

cells sampled to identify subtypes of cells or to visualize their heterogeneity. Expression profile

analyses such as cytometry and scRNA-seq are applied to many samples, each of which con-

sists of many cells from individual donors. In recent years, demand for a computational

method for heterogeneous multiple samples in the form of distribution has been increasing,

and actually a method that integrates multiple expression profiles together and to identify sub-

population in data-driven manner was proposed [10]. These expression profiles take the form

of multidimensional distributions, which have to be statistically investigated using methods

such as clustering, case-control comparison, and chronological pattern analysis. Multiomics

studies analyze phenotypes, transcriptomes, and cytometry data from hundreds or thousands

of individuals [11–13]. In these studies, the distributions of cytometry profiles should be statis-

tically analyzed with other datasets from different platforms. However, conventional statistical

methods do not take distributions as inputs and thus cell population profiles in the form of dis-

tributions have to be modified into a suitable form, such as cell subtype fractions, via gating

procedures. This modification of flow cytometry distribution data into multi-categorical frac-

tions loses information. Therefore, the method used to convert the density information of a

cell population into a form that can be handled by regular statistical procedures is very

important.

Computational methods for extracting feature statistics from data in multidimensional dis-

tribution form can be classified into two types, namely parametric and nonparametric. A rep-

resentative parametric method is the Gaussian mixture model [14]. This method is mainly

used for the automation of the manual gating of cytometric data, which is of interest in compu-

tational cytometry. However, it is know that in many cases, the Gaussian mixture model, along

with other parametric approaches such as t-mixture models [14], is too simple to represent the

complexity of the distributions of a cell population profile.

Some nonparametric methods for embedding single-cell expression data or other kinds of

distribution-type data into a low-dimensional space have been proposed [15–17]. Most of

these methods are based on multidimensional scaling (MDS) [18]. MDS-based methods first

estimate a population distribution based on samples using a nonparametric probability density

estimation method such as the kernel density estimation method or the k-nearest neighbor

(kNN) method [19, 20]. Then, the symmetric distance is defined between two distributions

based on information theory. Finally, MDS-based methods generate a distance matrix for a set

of distributions and embed the individual distributions in a low-dimensional Euclidean coor-

dinate space that maintains these distance relationships as much as possible. Although this

approach is simple and powerful for the visualization of samples from different donors, the

embedding into Euclidean coordinate space is essentially non-precise and imperfect because

the definition of distance based on information theory is non-Euclidean [21].
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Information geometry is a field of statistics that deals with the geometry of probability dis-

tributions [21]. In this research, based on the idea of information geometry, we propose a

method, called Decomposition into Extended Exponential Family (DEEF), for embedding

sample distributions into a low-dimensional coordinate space. The DEEF method finds an

exponential-family-like formula for an arbitrary set of distributions and component distribu-

tions to describe the set of distributions and gives the coordinates and potential function value

for each distribution. The only difference between an extended exponential family (EEF) and

the exponential family itself is that the potential function of a regular exponential family is con-

vex whereas that of an EEF is not. DEEF estimates the inner products of distribution pairs and

assigns coordinates θ to each distribution based on the eigenvalue decomposition of a matrix

related to the inner products. The coordinate system contains imaginary coordinates, as in

Minkowski space [22]. The coordinates θ can always recover the distributions without loss of

information and in many cases, θ from only a limited number of principal axes can recover the

original distributions with negligible residuals. This overcomes the drawbacks of the conven-

tional MDS-based method.

In this paper, we define an EEF and discuss the theoretical aspects of the log-linear decom-

position of the probability matrix P into exponential-like representations. We apply the DEEF

method to a set of theoretical probability distributions and show that it can be used for data-

driven extraction and the visualization of potential parameter structures of the dataset. We

then apply DEEF to a cytometry dataset to examine the effects of epidermal growth factor

(EGF) stimulation on an adult human mammary gland. It is shown that DEEF can extract

parameters that identify the principal patterns of the cell population profile and describe the

complex dynamics of cell population profiles as a trajectory. In addition, DEEF can be used to

perform a dimensionality reduction for this dataset and a time-series reconstruction, which

enables the creation of an artificial cytometry dataset based on the properties of the actual

data.

Results

Method outline

We propose a statistical method called DEEF (Fig 1). An exponential family is a set of probabil-

ity distributions whose probability density/mass functions are expressed in the form

logPðx; yÞ ¼ CðxÞ þ
X

k¼1

FkðxÞyk � cðyÞ ð1Þ

where C(x), Fk(x), and ψ(θ) are known functions (ψ(θ) should be convex), and θ is the

Fig 1. Graphical outline of proposed method. The outline of DEEF for embedding data from multiple distributions

in the θ coordinate space with its compositional distribution F.

https://doi.org/10.1371/journal.pone.0231250.g001

PLOS ONE Decomposition of a set of distributions in extended exponential family form

PLOS ONE | https://doi.org/10.1371/journal.pone.0231250 April 10, 2020 3 / 18

https://doi.org/10.1371/journal.pone.0231250.g001
https://doi.org/10.1371/journal.pone.0231250


parameters that specify distribution instances. Many parametric probability distributions,

such as the normal distribution and the binomial distribution, are included in the exponential

family. Some probability distributions are not included in the exponential family, such as the

mixture normal distribution. The details are given in S1 Text.

The distributions, one dimensional or multidimensional, in life sciences and other field,

including expression profiles, are sometimes too complex to fit to simple parametric distribu-

tion. Some of them can be adequately described as a mixture of multiple parametric distribu-

tions. Actually, mixture of multiple distributions such as a mixture normal distribution or a

mixture t distribution is commonly used in the parametric model for cytometry data [11]. And

further complicated distributions can be fitted to only non-parametric distribution. Choosing

the appropriate parametric model is difficult because it depends on the situation. While the

exponential family can represent many simple probability distributions, it cannot represent

most mixture distributions or more complex distributions often used in single-cell expression

analysis.

We define an EEF as:

logPðx; yÞ ¼ CðxÞ þ
X

k¼1

FkðxÞyk � c
0
ðyÞ ð2Þ

c
0
ðyÞ ¼

X

k¼1

hky
2

k where hk ¼ � 1 or 1 ð3Þ

An EEF is almost identical to Eq 1, but with the potential function ψ(θ) modified as shown

in Eq 3. We loosened the restriction that ψ(θ) should be convex so that a set of arbitrary distri-

butions can fit the formula. We also modified ψ(θ) as shown in Eq 3. θ represents the coordi-

nates of each distribution, where the inner product of the θ coordinates between two

distributions is defined as half the logarithm of the inner product of density/mass functions.

Using this definition of θ, C(x) and Fk(x) are solvable when a set of distributions P(x, θ) is

given.

We obtain a set of multidimensional probability distributions from the experimental

results. We divide the space into grid cells and estimate the probability mass functions P for

the grid cells, which makes the dimensions of Eqs 2 and 3 finite and makes the estimation of

EEF forms a linear algebraic calculation.

A matrix-operation-based simple algorithm can be constructed for log-linear decomposing

probability matrix P into C + ΘF −C, where C, ΘF, and C are the discretized representations

of EEF forms for multiple distributions (details given in Method section). Then, we can obtain

the EEF representation of any distribution set. The input is only the probability matrix P,

whose rows represent the probability mass function. DEEF can be applied to distribution sets

to embed each distribution in the defined EEF space by considering Θ as the feature statistics

of the distributions. Because the θ coordinate is calculated from eigenvalue decomposition, a

few coordinates with the top eigenvalues contain a lot of the information of the probability dis-

tribution set. In addition, the F matrix provides principal compositional distributions in the

original space. DEEF extracts the compositional distribution Fi to a data driven manner. The

θi coordinate indicates how much each sample has Fi. This is an interpretation of θ coordinate

space, where hold difference between samples. A detailed description of the theory are given in

the Appendix in S1 Text.

Simulation data analysis. First, we applied DEEF to a normal distribution set that con-

sisted of 900 instances of a normal distribution, with the mean ranging from −1 to 1 and the

standard deviation (sd) ranging from 2 to 4 at a fixed interval of 0.069 for each (Fig 2(a)). We

called these parameters defined in the specific parametric models as original parameters. And,
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a space using these original parameters as coordinate axes is called an original parameter

space. We compared the DEEF method and a conventional MDS-based method [15] using

this normal distribution set.

We compared the θ coordinate spaces with the top three absolute eigenvalues (θlast, θ1, θ2)

(Fig 2(b)) and the top three MDS coordinate spaces (MDS1, MDS2, MDS3) (Fig 2(c)). The θ
coordinate is denoted θi in decreasing order of eigenvalues. θlast is the coordinate correspond-

ing to the lowest eigenvalue, whose absolute value is largest in this case. Although both meth-

ods displayed a two-dimensional manifold in three-dimensional space, the two-dimensional

manifold for DEEF was much simpler than that for MDS. The colors in Fig 2 indicate the Kull-

back-Leibler (KL) divergence from the distribution in the center of the mean-sd parametric

grid (indicated by a black dot). Because the two-dimensional manifolds of DEEF and MDS

were curved surfaces, it was not appropriate to use the Euclidean distance between points as a

measure of divergence between two distributions. However, the simpler manifold for DEEF

seems to be intuitively better for visualizing divergence. The number of total extracted coordi-

nates for the MDS-based method was 445 because the decomposed matrix was not positive

definite and some information was missing; the number of total extracted coordinates for

DEEF was 900.

The normal distribution can usually be characterized by two parameters, mean and sd, on

the original parameter space. However, they are also allowed to be expressed in different two

parameters. While parameterization by mean and sd is only possible under the assumption

that it is a normal distribution, the θ coordinates calculated by DEEF can be assigned to the

Fig 2. Comparison of (a) original parameter space, (b) θ coordinate space, and (c) MDS coordinate space in

normal set with the two parameters. The theoretical KL-divergence-based distance from one member distribution

(black point) is visualized by the color scale. The Euclidean distance in the original parameter space does not match the

KL-divergence-based distance. The Euclidean distance in the MDS space approximates the KL-divergence-based

distance, but the parameter structure is broken, unlike the case when embedding in the coordinate space.

https://doi.org/10.1371/journal.pone.0231250.g002
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distribution without any assumptions. In both original parameters and θ coordinates, informa-

tion about the difference between distributions is represented by the same number of parame-

ters. In fact, when the distributions are generated sufficiently densely, it is visualized in Fig 2

that the topological relation among the distributions is maintained.

We apply DEEF to multiple normal distribution sets with different parameter structures,

namely a mixture normal distribution set and an exponential distribution set, in S1 Text.

Here, we apply the DEEF method to a set of theoretical probability distributions and show that

it can be used for data-driven extraction and the visualization of the potential parameter struc-

tures of the dataset. DEEF successfully embedded these distributions in the θ coordinate space.

The distributions could be recovered without loss of information and in many cases θ from

only a limited number of principal axes could recover the original distributions with negligible

residuals.

EGF stimulation cytometry data analysis

Cytometry data can be considered as an unknown multidimensional probability distribution

of cells, where the number of dimensions is the number of markers. We applied DEEF to a

cytometry dataset.

We used mass cytometry data from a study on the effect of EGF stimulation on an adult

human mammary gland [23]. In the experiment, measurements were made at 10 time points

(0, 0.5, 1, 3, 6, 10, 30, 15, 60, and 120 minutes) in two replicates, one each after EGF stimulation

and under control conditions. We picked four marker proteins, namely pAKT, pERK,

pPLCγ2, and pS6, which were shown to respond to EGF stimulation in the original study. The

pre-processed marker expression data for each time point after EGF stimulation for Replicate1

and Replicate2 are shown in Fig 3. We applied the DEEF method to the four marker single-cell

expression datasets. Unlike for the simulation data, the population distribution was unknown

and thus a sample set was obtained. Then, we estimated the probability matrix P of the single-

cell expression dataset before we applied DEEF, as described below. Each single-cell expression

dataset was a sample set from an unknown population distribution in the number-of-markers-

dimensional space (four-dimensional space in this case). First, we decided the range of each

marker. For each sample, we calculated the α percentile and the 1—α percentile for each

marker expression. We used the range of each marker between the minimum α percentile

value and the maximum 1—α percentile value among all samples so that all samples contained

the expression range between the α and 1—α percentiles for cells. In this case, we used α =

0.05. Next, we separated this range into equally spaced m points (m = 20), where m is a defined

parameter. The number of grids was m4. For the determined grids, we estimated the probabil-

ity density using the kNN method (k = 800). The row vector P, representing the kNN-based

densities of m4 grids, was standardized so that its total value was 1. We applied the DEEF

method to P built using the above procedure and calculated the corresponding θ coordinates.

θlast corresponded to a negative eigenvalue, and θ1, θ2, and θ3 corresponded to positive eigen-

values (S1 Fig). The boxplot of error shows that the performance of the distribution reproduc-

tion increases with increasing number of θ coordinates but at a slower rate than that for the

simulation distribution set (S1 Fig).

We embedded all cell population profiles into a low-dimensional coordinate space and

visualized them using the DEEF method. θ1, θ2, and θ3 accounted for 69.6%, 13.9%, and 8.9%

of the sum of positive eigenvalues, respectively. Fig 4(a) shows scatter plots of the top positive

θ coordinates derived from the DEEF method. θ1 and θ2 give common trajectories during EGF

stimulation between Replicate1 and Replicate2 but θ3 gives a different trajectory. After EGF

stimulation, the cell population profile moved on the θ1 and θ2 coordinate space and then
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returned to the region near the baseline. We then used θ1 and θ2 to parameterize the cell popu-

lation dynamics after EGF stimulation which is common between Replicates1 and Replicate2.

F1 and F2, which correspond to θ1 and θ2, respectively, show the type of cell population pro-

file change represented by the trajectory. Fig 4(b) shows F1 and F2 for pAkt and pS6. F1

explains the number of cells with high pAKT expression and high pS6 expression and F2

explains the number of cells with low pAkt and high pS6 expression. An increase in θ1 and a

decrease in θ2 correspond to the initial response. This change can be well expressed as a syn-

thesis of the patterns of the three underlying cell population profiles. The increase in θ2 that

occurs in the second half corresponds to the increase in pS6, which arose later than that of

pAkt. The density plots of F1 and F2 for all four markers are shown in S2 Fig.

S3 Fig shows a scatter plot of all samples for MDS1 and MDS2 derived by applying the

MDS-based method to this dataset. The dynamics after EGF stimulation have a trajectory pat-

tern similar to that obtained with DEEF. However, we cannot get further information from

this analysis.

To visualize F(x) as a four-dimensional function all at once, we performed SPADE analysis

and described F1 and F2 on the SPADE tree. SPADE is a computational cytometry method

that automatically clusters cells for multiple cytometry datasets and creates one consensus tree

of the cell clusters. We applied SPADE to all 40 samples to create a SPADE tree that consisted

of ten cell clusters (Fig 5(a)). Each SPADE cluster can be characterized by the four-marker

expression pattern (Fig 5(b)). Fig 5(c) shows SPADE trees with F1 and F2 values. Each cluster

was assigned F1 and F2 values of the grid to which the representative location of the cluster

Fig 3. Scatter plot of pAKT and pS6 at 10 time points after EGF stimulation. For each replicate and condition,

2,000 randomly selected cells are plotted. The black dotted line represents the grids. The cell population profile changes

dynamically after EGF stimulation but it is difficult to capture and evaluate this quantitatively using the raw data.

https://doi.org/10.1371/journal.pone.0231250.g003
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belongs. In F1 on the SPADE tree, Cluster 9 has the highest positive F1 values. This result is rea-

sonable because Cluster 9 showed high expression for all four markers. This result corresponds

to the fact that all marker expressions increase after EGF stimulation. Cluster 8 has the highest

negative F1 value, which is reasonable because this cluster showed low expression for all four

markers. F2, which corresponds to a different trajectory pattern from that for F1, shows a dif-

ferent pattern on the SPADE tree. Cluster 3, which has the highest positive F2 values, showed

high expression for pS6 and pPLCγ2. These two markers are expressed later than pAkt and

pERK. Interestingly, Cluster 2, which showed low expression for pERK and pS6, has the high-

est negative F2 value. Using the table of the representative values for each cluster (S1 Table),

this subset can be confirmed on the density plot of samples obtained 6 minutes after stimula-

tion (Fig 5(d)). The DEEF method can provide insight into patterns that are difficult to detect

using conventional methods.

Fig 4. Application of DEEF to EGF stimulation data. The dynamics of the whole cell population profile are visualized and the dominant patterns that

explain differences are extracted. (a) θ coordinate plot for coordinates θ1, θ2 and θ3 (i.e., those with the top positive eigenvalues). (b) F1 and F2 in DEEF

for pAkt and pS6. The density plot was generated from 10,000 randomly sampled data points from the standardized exp(Fi).

https://doi.org/10.1371/journal.pone.0231250.g004
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Dimension reduction and time-course reconstruction using EGF

stimulation dataset

In the previous section, we showed that DEEF works well with a real cytometry dataset. In this

section, as further applications of DEEF for biological research, we describe dimensionality

reduction and time-course reconstruction.

DEEF can reconstruct a distribution using only the coordinates with the top absolute eigen-

values. To reduce the dimensionality of a cell population profile, we expressed the cell popula-

tion profile using only the synthetic sum of the main patterns; other differences were

considered to be noise. A dimension reduction of the EGF stimulation dataset using the top θ
coordinates was conducted. The panels in the first row of Fig 6(a) shows the change in the

median marker intensity in the raw data along the time course for the four markers. The

expression levels of pAKT and pERK increased first, followed by those of pS6 and pPLCγ2.

This is consistent with the results in the original study. The panels in the second row of Fig 6

show the change in the median of marker intensity calculated from the reconstructed distribu-

tion using θ1, θ2, and θlast, corresponding to top three highest absolute eigenvalues (K = 3).

Fig 5. F2 and F3 of EGF stimulation data on SPADE tree. (a) Created SPADE tree with cluster number labels. (b)

SPADE trees with four-marker expression. The color represents each marker expression value. (c) SPADE trees with

F1 and F2 values. Each cluster was assigned F1 and F2 values of the grid to which the representative location of the

cluster belongs. (d) Region of Cluster 2 of SPADE tree of EGF stimulation data. The corresponding regions of SPADE

Cluster 2 are shown by a red circles in the density plots of the four markers obtained 6 minutes after EGF stimulation

for Replicate1.

https://doi.org/10.1371/journal.pone.0231250.g005
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These results suggest that the cell population profile reconstructed using only the main pat-

terns well captures the characteristics of the dynamics of the original data. Here, the patterns

that have a small contribution to the difference among the sample set were eliminated. If

DEEF can decompose the information into meaningful data and noise, reproduction using

only principal functions would denoise the data.

Next, using this scheme, we conducted a time-course reconstruction of Replicate1’s EGF

stimulation dataset whose original time course contained 10 time points. The value of the θ
coordinate at each time point was estimated by linearly interpolating and dividing the value of

the θ coordinate between each time point into 10 equal parts, and reconstructing the θ coordi-

nate at a total of 91 images. Fig 6(b) shows the 25th and 65th images of the 91 images as exam-

ples of the estimated cell population profiles between the measurements. Based on the

estimated value, the distribution was reproduced at K = 3. An animation of the cell population

dynamics including the unmeasured time points is available (S1 Movie).

Discussion

In this study, we proposed a class of probability distributions called EEFs and a nonparametric

decomposition method for probability distribution sets called DEEF (Fig 1). The DEEF

method provides geometric coordinates for each distribution and obtains feature statistics for

Fig 6. Results of dimension reduction of cell population profiles using the DEEF method. The reduction preserves

the change in the marker expression along the time course for each marker (pAkt, pERK, pPLCγ2, and pS6). Left

panels are the median values for each marker expression, which match those in the original study. Right panels are the

median values for the distribution reproduced using the top three θ coordinates, namely θlast with the highest negative

eigenvalue and θ1 and θ2 with the highest positive eigenvalues (K = 3). (b) 25th and 65th images of 91 images as

examples of the estimated cell population profiles between the measurements of Replicate1 after EGF stimulation. The

corresponding points in the θ coordinate space are indicated by red dots.

https://doi.org/10.1371/journal.pone.0231250.g006
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a sample set by estimating an exponential family-like representation for a multidimensional

probability distribution set. DEEF can identify the parameters that well discriminate the differ-

ence among a distribution set as θ. In addition, the coordinates identified by DEEF have a bio-

logical meaning, as shown by Fi(x). The log-linear decomposition did not lose the information

in the original datasets and the original distributions could be reproduced. The DEEF method

extracted the feature statistics of distributions as θ coordinates without loss of information,

unlike similar methods such as the MDS-based method (Fig 2, S1 Text).

When the DEEF method was applied to a cytometry dataset obtained after EGF stimulation,

as shown in Fig 3, it extracted the main underlying patterns from the probability distribution

set, embedded them into the coordinate system, and indicated the quantitative differences

among samples (Fig 4). We parameterized the dynamics after the EGF stimulation with two

parameters and expressed them as trajectories. We could then visualize the F(x) function on

the SPADE tree (Fig 5). By using SPADE, information on the combination of multidimen-

sional markers can be simultaneously visualized; this is not possible with a two-marker density

plot. The characteristics of the response to EGF are useful for characterizing a subset of human

mammary cells and are essential information for understanding the properties of epithelial

cancers [23]. DEEF may provide new insights into such characteristics with consideration of

not only the change of a single marker but also a combination of multiple markers.

As a further application of DEEF, we performed a dimension reduction and a reconstruc-

tion of cell population profiles using highly contributing coordinates (Fig 6, S1 Movie). This

method is considered to be effective for complementing cytometry data acquired along the

time course. When cytometry data have an ordered structure such as a time series, comple-

mentary estimation of the state between measurements can be performed. In addition, DEEF

can easily create an artificial dataset with a large sample size that conforms to the properties of

the real data. This is useful in computational biology research.

In this study, cell population profiles were embedded into a low-dimensional space by

applying the DEEF method to flow cytometry data. By treating the values of θ coordinates as a

trait and performing an association analysis with genotype and transcriptome data, DEEF can

identify genes and pathways related to the entire cell population profile and their dynamics.

Multiomics analysis, which combines various types of large-scale omics data such as genomes,

transcriptomes, and metabolomes, is widely used in various fields to study complex life sys-

tems [24–26]. Our research will make it easier to add single-cell data to multiomics analysis. In

many biological fields, such as immunology and stem cell biology, the behavior of a whole cell

population profile is very important for elucidating life phenomena. This behavior can be very

complicated. A combination of the proposed method and omics analysis is expected to

advance the understanding of these complex biological phenomena.

In recent years, high-dimensional single cell expression data such as scRNA-seq or CyTOF

has become popular. Computational methods for such high-dimensional single cell expression

data are also being actively developed [27]. On the other hand, DEEF is not suitable for han-

dling genome-wide gene expression because the number of grids grows exponentially with the

dimensionality and kNN estimation and the linear algebraic algorithm can’t work well. How-

ever, by the novel theory and algorithm, DEEF provides high-resolution analysis for sample

heterogeneity where the calculated coordinates and the original marker expression pattern are

completely associated by F(x) function. In many case, cellular subsets, such as lymphocyte sub-

set, have been defined by the expression patterns of several markers. From this perspective,

DEEF are expected to provide a novel insight on the analysis of cell population profiles. Then,

it is necessary to select only a few important markers for high-dimensional CyTOF and

scRNA-seq data. Although choosing irrelevant markers would theoretically not have much

effect on the results because DEEF treats each grid as independent, it would waste

PLOS ONE Decomposition of a set of distributions in extended exponential family form

PLOS ONE | https://doi.org/10.1371/journal.pone.0231250 April 10, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0231250


computational resources. One potential solution might be the combination of DEEF with

dimension reduction method, such as t-SNE and Uniform Manifold Approximation and Pro-

jection (UMAP) [28], although it seems necessary to study the effect of the non-linear embed-

ding on the DEEF’s decomposition logic. Further investigations would be beneficial to

overcome this drawback.

Several other improvements can be considered for the DEEF method. In its present form,

DEEF handles grids independently; it does not consider the positional relationships among

neighboring grid cells. Taking these relationships into account would make the functions C

and F smoother, which may remove random errors and improve machine learning accuracy

and the interpretability of results. Another possible improvement is the use of the kernel

method to estimate P from raw data. In the present procedure, DEEF calculates the inner

products between distributions discretely using kNN density estimation. This step could be

improved by embedding the dataset into a reproducing kernel Hilbert space with infinite

dimensions directly using the kernel method [29]. The introduction of the kernel method into

DEEF might improve performance.

Conclusion

In this study, we developed a method called DEEF to analyze differences between cell popula-

tion profiles using single-cell expression data. DEEF performs a log-linear decomposition of

the probability matrix P to embed the distributions into a low-dimensional space. The DEEF

method can extract the potential parameters of the probability distribution set and describe

the meaning of the estimated parameters. Because single-cell expression data can be regarded

as samples from an unknown population distribution, we can investigate the difference among

cell population profile sets. DEEF can be used to examine and visualize the difference among

single-cell expression datasets. DEEF can reconstruct the distributions from the top coordi-

nates, which enables the creation of artificial datasets based on an actual single-cell expression

dataset. Using the coordinate system assigned by DEEF, it is possible to analyze the relation-

ship between the attributes of the distribution samples and the features or shape of the distri-

bution using conventional data mining methods.

Method

1. DEEF method

First, we describe the theoretical basis of DEEF. An exponential family is a set of probability

distributions whose probability density/mass functions are expressed in the form:

logPðx; yÞ ¼ CðxÞ þ
X

k¼1

FkðxÞyk � cðyÞ ð4Þ

where C(x), Fk(x), and ψ(θ) are known functions (ψ(θ) should be convex) and θ is the parame-

ters that specify distribution instances. Many parametric probability distributions, such as the

normal distribution and the binomial distribution, are included in the exponential family.

Some probability distributions are not included in the exponential family, such as the mixture

normal distribution. We define an EEF as:

logPðx; yÞ ¼ CðxÞ þ
X

k¼1

FkðxÞyk � c
0
ðyÞ ð5Þ

c
0
ðyÞ ¼

X

k¼1

hky
2

k where hk ¼ � 1 or 1 ð6Þ
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where an EEF is almost identical to Eq 4, but with the potential function ψ(θ) modified as

shown in Eq 5. We loosened the restriction that ψ(θ) should be convex so that a set of arbitrary

distributions can fit the formula. We also modified ψ(θ) as shown in Eq 6. ψ0(θ) does not

become a convex function unless hk is all 1. Therefore, an EEF can be defined as a probability

distribution family that conditionally excludes rules on the convexity of the potential function

from the definition of an exponential family.

Regardless of whether the potential function is convex or not, the functional inner prod-

uct between exponentially expressed functions P(x) and Q(x) can be expressed as follows

using only θ coordinates and the potential function (proof is shown in S1 Text, Appendix

Theorem 1).

< Pðx; θP
Þ;Qðx; θQ

Þ >¼
ecð;θPþ;θQÞ

ecð;θPÞecð;θQÞ
ð7Þ

If P(x) and Q(x) are both EEFs, the following simple relationship between P(x) and Q(x) is

satisfied for their functional inner product and θ coordinates (proof is shown in S1 Text,

Appendix Theorem 2).

1

2
log < Pðx; θP

Þ;Qðx; θQ
Þ >¼

X

k¼1

hky
P
ky

Q
k ð8Þ

Consider an n × n matrix M, whose (i, j)-th element mi,j is identified as 1

2
log qi;j where qi,j is

the functional inner product between i-th and j-th distributions. Let the i-th eigenvalue of M

be λi. Then, M can be represented by eigenvalue decomposition as follows:

M ¼ VTΛV ð9Þ

where the i-th column of V represents the i-th eigenvectors of M and Λ is a diagonal matrix

whose i-th diagonal elements are λi. Note that the eigenvalues of M contain negative values.

Then, M ¼ VTΛ0SV ¼ ðV
ffiffiffiffiffi
Λ0
p
Þ
TSðV

ffiffiffiffiffi
Λ0
p
Þ, where S, Λ0 and

ffiffiffiffiffi
Λ0
p

are n × n diagonal matrices

whose i-th diagonal elements are sign(λi), |λi|, and
ffiffiffiffiffiffiffi
jlij

p
, respectively. Therefore, when we

take the θ coordinate matrix Θ and hi as follows, Eq 4 is completely satisfied.

Θ ¼ V
ffiffiffiffiffi
Λ0
p

ð10Þ

hi ¼ signðliÞ ð11Þ

where Θ is the θ coordinate matrix whose (i,j)-th element represents the j-th coordinate value

of the i-th distribution in the EEF expression. Because M = ΘT SΘ, Eq 4 is completely satisfied.

The next step is the calculation of C(x) and Fi(x). To treat this calculation discretely using a

computer, the above expression must be expressed in matrix form as:

Plog ¼ CþΘF � Ψ ð12Þ

where Plog is an n ×m matrix that represents a log-discretized probability mass function of m

grids of n samples, C is an n ×m matrix that corresponds to C(x) and all of whose rows have

the vector c, Θ is the n × n matrix obtained previously, F is an n × m matrix whose row vector

corresponds to discretized Fi(x), and C is an n ×m matrix whose column vector is the previ-

ously obtained
P

k¼1
hky

2

k1. Then, this equation is rewritten as:

P0 ¼ Θ0F0 ð13Þ

where P0 = Plog +C, F0 is [FT, c]T, and Θ0 is [Θ, 1]. Therefore, F0 can be obtained using the
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Moore-Penrose pseudo-inverse matrix Ginv(Θ0) as follows:

F0 ¼ GinvðΘ0ÞP0 ð14Þ

Because F0 is defined as [FT, c]T, all items necessary for the EEF expression of the distribu-

tion set can be obtained.

Based on the above theory, it is possible to construct a simple matrix-operation-based algo-

rithm for decomposing probability matrix P to obtain the EEF representation of any distribu-

tion set. The input is probability matrix P, whose rows represent the probability mass

function. The first step is calculating matrix M from P. The second step is the eigenvalue

decomposition of M. hi are obtained to determine ψ0(θ) and an n sample × n coordinate matrix

Θ is obtained to embed all samples. The third step is calculating c and F to determine all com-

ponents of the EEF expression. The simulation data analysis method is described in S1 Text.

This method can be applied to distribution sets to embed each distribution in the defined

EEF space by considering Θ as the feature statistics of the distributions. Because the θ coordi-

nate is calculated from eigenvalue decomposition, a few coordinates with the top eigenvalues

have a lot of the information of the probability distribution set. In addition, the F matrix pro-

vides principal compositional distributions in the original space. The R package “deef” is avail-

able on GitHub (https://github.com/DaigoOkada/deef).

2. Distribution reproduction and performance evaluation

In DEEF, the distribution can be reproduced using any number of coordinates when C, Fi, θi,
and hi are obtained. We reproduced the distribution by reconstructing the probability mass

function calculated by normalizing expðCðxÞ þ
PK

i¼1
FiðxÞθi � cðθÞ, where the coordinates

with the top K absolute eigenvalues were selected. In this study, performance was evaluated by

Performance Index (PI) defined by the sum of the squared error between the true probability

mass function and the reconstructed probability mass function. This value was calculated for

each distribution included in the distribution set. A smaller squared error indicates better

reproduction. In particular, if this value is zero, the original distribution and the reconstructed

distribution are exactly the same.

3. Conventional MDS-based method

We embedded the distribution set using an MDS-based method using the following proce-

dure. First, we calculated the distance matrix among samples. The distance between two distri-

butions pi and pj is defined as 1

2
ðKLðpijjpjÞ þ KLðpjjjpiÞÞ, and the coordinate values of each

sample are calculated by applying MDS to the generated distance matrix. MDS was applied to

this distance matrix to calculate the MDS coordinates of each sample. The coordinates are

denoted MDS1, MDS2 and MDS3 in descending order of their eigenvalues.

4. Application of DEEF method to normal distribution set

We applied DEEF to a normal distribution set that consisted of 900 instances of a normal dis-

tribution, with the mean ranging from −1 to 1 and sd ranging from 2 to 4 at a fixed interval of

0.069 for each. The θ coordinate values and MDS were calculated using the theoretical value of

the functional inner product or KL divergence defined by the mean and sd.

As the notation to distinguish the original parameter and θ coordinates, we named the orig-

inal parameters using the alphabetic name used in the original parametric model. For example,

in the case of normal distribution set, the original parameter is named as “mean” and “sd”. On
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the other hand, θ coordinates are always named as θi using the Greek letter θ and the suffix

number i.

5. Construction of probability matrix P from single-cell expression dataset

Unlike for the simulation data, the population distribution was unknown and thus a sample

set was obtained. We estimated the probability matrix P of the single-cell expression dataset

before we applied DEEF, as described below. Each single-cell expression dataset was a sample

set from an unknown population distribution in d-dimensional space, where d is the number

of markers of the samples. First, we decided the range of each marker. For each sample, we cal-

culated the α percentile and 1—α percentile of each marker expression. We used the range of

each marker between the minimum α percentile value and maximum 1—α percentile value

among all samples so that all samples contained the expression range between the α and 1—α
percentiles for cells. Next, we separated this range into equally spaced m points, where m is a

defined parameter. The number of grids is md. For the determined grids, we estimated the

probability density using the kNN method. The row vector P, representing the kNN-based

densities of md grids, was standardized so that the sum of the vector was 1.

6. Application of DEEF method to EGF stimulation data

We used mass cytometry data from research on the effect of EGF stimulation on an adult

human mammary gland [23]. The data were obtained from the Flow Repository (ID:

FR-FCM-ZYBC). In the experiments, measurements were made at 10 time points (0, 0.5, 1, 3,

6, 10, 30, 15, 60, and 120 minutes) in two replicates after EGF stimulation and control condi-

tions, respectively. We picked four marker proteins, namely pAKT, pERK, pS6, and pPLCγ2,

which were shown to respond to EGF stimulation in the original study. As preprocessing, the

marker expression levels were converted using asinh (intensity/5), as done in the original

study. The number of cells in this dataset was between 8,089 and 22,221. We constructed prob-

ability matrix P from the cytometry data. Each cell could be taken as a sample from the popula-

tion distribution. The hyperparameters for constructing P were m = 20, α = 0.05, and k = 800.

Next, the DEEF method was applied to estimate P. The coordinates are denoted θ1, θ2 � � � θlast
in descending order of their eigenvalues.

7. Visualization of F function with density plot and SPADE

We expressed Fi as a compositional distribution by standardizing exp(Fi) so that its total value

was 1. Then, from this distribution, we sampled 10,000 data points and drew the density plot

using the matplotlib Python library.

To visualize the multimarker information simultaneously, we applied the SPADE algorithm

to the EGF stimulation data [6]. The number of clusters was 10 and other hyperparameters

were the same as those in the original article. In Creating minimum spanning tree step, we

used the mst function of R package “ape”. We used the complete linkage method in the cluster-

ing step. The representative marker expression was the median values of the cells belonging to

each cluster on the consensus tree.

8. Dimension reduction and time-course reconstruction of EGF

stimulation data

DEEF can reconstruct a distribution using only the top coordinates. To reduce the dimension-

ality of a cell population profile, we expressed the cell population profile using only the syn-

thetic sum of the main patterns; other differences were considered to be noise. The
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reconstructed distributions (K = 3) were obtained using the procedure described in Method

section 2. For each of the four markers (pAKT, pERK, pS6, and pPLCγ2), we visualized the

median expression value change for the original marker expression and the reconstructed

marker expression. For the original marker expression, for each sample, we calculated the

median value of each marker from the expression value of cells. For the reconstructed marker

expression, we integrated the reconstructed distribution and eliminated all markers (three)

except the one that we focused on. Then, the 50th percentile value of the one marker expres-

sion was estimated as the median by linearly interpolating the values between the grids.

Next, we conducted the time-course reconstruction of Replicate1’s EGF stimulation dataset

whose original time course contained 10 time points. The value of the θ coordinate at each

time point was estimated by linearly interpolating and dividing the value of the θ coordinate

between each time point into 10 equal parts, and reconstructing the θ coordinate at a total of

91 time points. Based on the estimated value, the distribution was reproduced at K = 3.

Supporting information

S1 Text. Theory of DEEF and simulation data analysis.

(PDF)

S1 Fig. Comparison of DEEF and MDS-based method with EGF stimulation data. (a) θ
coordinate plot for coordinates θ1 and θ2 and (b) MDS coordinate plot for two coordinates

MDS1 and MDS2 with the top eigenvalues.

(TIF)

S2 Fig. 4-by-4 density plot of F1 and F2 for EGF stimulation data.

(TIF)

S3 Fig. Performance of DEEF for EGF stimulation data. (a) Eigenvalue plots for an EGF

stimulation dataset. Left panel shows the absolute eigenvalues standardized so that its total

value was 1, where black bars are positive eigenvalues and white bars are negative eigenvalues.

Right panel shows the cumulative sum of absolute eigenvalues. (b) Performance boxplot of dis-

tributions reconstructed using only the top K coordinates with high absolute eigenvalues for

the EGF stimulation dataset. The performance was evaluated by the Performance Index (PI)

defined by the sum of the squared error between the true probability mass function and the

reconstructed probability mass function. The overall performance increases with increasing

value of K.

(TIF)

S1 Table. Representative marker expression values of ten clusters on the SPADE tree.

(CSV)

S1 Movie. Animation of cell population dynamics for 91 time points after EGF stimulation

for Replicate1. The reconstruction was done with θ1, θ2, and θlast (K = 3).

(GIF)
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