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INTRODUCTION
Positron emission tomography (PET–CT), in which 
2-deoxy-2-[18F]flu-D-glucose (FDG) is the most frequently 
used PET pharmaceutical, is now an essential imaging 
modality in various clinical circumstances, especially in the 
management of oncology patients.1 Individualised appli-
cation of therapy that is customised via PET–CT imaging 
is actually becoming an indispensable process especially in 
the strategy of oncological management strategies, such as 
initial diagnosis and staging, treatment selection, planning 
of external beam radiation therapy when applied, response 
evaluation to therapy, and follow-up and detection of recur-
rence after therapy. PET–CT offers reliable guides also for 
patient management in cardiology, neurology, and some 
other specialties. Notably, such wide application of PET–CT 
will require standardisation and sufficient quality assurance 
of the imaging.

While increasing numbers of PET–CT examinations are 
being carried out across the world and deliver benefits to 

patients, concerns have been arising regarding cumulative 
radiation doses of patients from repeated PET–CT examina-
tions in patients. Countermeasures of radiation protection for 
both patients and staff members should evolve to sustain the 
application of this modality in medical practice. We are in an 
era where the medical radiation exposure of patients has been 
increasing, and there is a growing interest in how to deal with 
medical exposure as radiological procedures have become 
indispensable in various clinical circumstances.

Multiple radiological and nuclear medicine examinations 
lead to a substantial cumulative effective dose (CED) of radi-
ation in individual patients, e.g. a CED of ≥100 mSv. One of 
the largest man-made radiation sources to humans is CT, and 
despite all efforts and focus on reduction in radiation dose 
per CT, patients undergoing multiple CT examinations and 
receiving a CED of ≥100 mSv are not uncommon lately.2–4 
This cut-off CED of ≥100 mSv could be used because at this 
level many organs might receive doses of ≥100 mGy, a range 
at which a statistically significant excess of certain cancers has 
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ABSTRACT

Positron emission tomography (PET–CT) is an essential imaging modality for the management of various diseases. 
Increasing numbers of PET–CT examinations are carried out across the world and deliver benefits to patients; however, 
there are concerns about the cumulative radiation doses from these examinations in patients. Compared to the radi-
ation exposure delivered by CT, there have been few reports on the frequency of patients with a cumulative effective 
radiation dose of ≥100 mSv from repeated PET–CT examinations. The emerging dose tracking system facilitates surveys 
on patient cumulative doses by PET–CT because it can easily wrap up exposure doses of PET radiopharmaceuticals 
and CT. Regardless of the use of a dose tracking system, implementation of justification for PET–CT examinations and 
utilisation of dose reduction measures are key issues in coping with the cumulative dose in patients. Despite all the 
advantages of PET/MRI such as eliminating radiation exposure from CT and providing good tissue contrast in MRI, it is 
expensive and cannot be introduced at every facility; thus, it is still necessary to utilise PET–CT with radiation reduction 
measures in most clinical situations.
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been demonstrated in studies and there is a reasonable degree of 
agreement among official international and national organisations 
on potential stochastic radiation effects.2 Rehani et al reported that 
of the 2.5 million patients who underwent 4.8 million CT exam-
inations during the period between 1 and 5 years in 324 hospitals 
in the USA and Europe, 1.33% of patients received a CED of ≥100 
mSv with an overall median CED of 130.3 mSv and maximum of 
1,185 mSv.2 In another study, the first estimates of the number of 
patients likely receiving a CED of ≥100 mSv through recurrent 
CT examinations in 35 OECD countries indicate that 2.5 million 
patients reach this level in 5 years.3 Moreover, Rehani et al reported 
in another paper that there were 0.8% of 3.9 million patient-days 
with ≥50 mSv and one-third of them were of patients aged 50 or 
younger,5 which spreads the ripples among stakeholders in radia-
tion protection in medicine.

Compared to patient radiation exposure delivered by CT, there 
have been very few comprehensive reports on patient exposure 
from repeated PET–CT examinations. Therefore, this review will 
discuss the cumulative exposure of patients to radiation from PET–
CT examinations and present how it should be dealt with in clinical 
circumstances where PET–CT serves as a highly efficient tool in the 
management of patients with various diseases.

PATIENT RADIATION EXPOSURE DELIVERED BY 
PET–CT
Combined positron PET–CT imaging has become a routine proce-
dure in diagnostic radiology and nuclear medicine that benefits 
from the fusion of functional and anatomical information.6 Radi-
ation exposure from PET–CT consists of contributions from PET 
radiopharmaceuticals7 and from X-ray CT.8 In the earlier days 
of the introduction of PET–CT, a report showed that the average 
effective dose of patients from whole-body FDG-PET–CT exam-
inations was approximately 25 mSv.9 PET radiopharmaceuticals 
typically deliver several mSv of effective doses.10 The dose of PET 
radiopharmaceuticals can be reduced by using a PET–CT scanner 
equipped with a recent high-sensitivity PET detector that incorpo-
rates technologies such as semi-conductor detector, time of flight, 
point spread function, and novel reconstruction algorithms.11–13

The radiation dose to the patient from CT examinations generally 
depends on parameters such as scan length, tube current, tube 
current modulation, tube voltage, collimation, pitch, and slice 
thickness.14 The radiation dose from CT is principally measured by 
using a dedicated cylindrical phantom and expressed as a volume-
averaged CT dose index (CTDI). The parameter volume CTDI 
(CTDIvol) indicates the average absorbed dose at a point with 
the scan volume for a particular scan protocol for a standardised 
phantom.14 CT scans of PET–CT examinations are acquired based 
on three purposes.15 They are: (1) attenuation correction of the PET 
images, (2) anatomical localisation of PET radiopharmaceutical in 
the patient’s body, and (3) diagnostic interpretation of CT images 
themselves. Such purposes are often mixed with others in the real 
clinical settings. Prieto et al reported that a significant radiation 
dose reduction of 28.7% was reached by reducing administered 
FDG activity from 5.18 MBq/kg to 3.70–4.44 MBq/kg and CT 
current–time–product from 120 mAs to 80–100 mAs, with image 
readers reporting unchanged clinical confidence.16

Although surveys have reported on the cumulative radiation dose 
of CT examinations in patients, there have been no comprehensive 
reports on that of PET–CT examinations. Among the recent reports 
on cumulative doses of patients in various radiological exam-
inations, actual findings regarding PET–CT have been reported 
at an IAEA symposium.17 In a single hospital, 10,838 PET–CT 
examinations were performed for 8029 patients (1.3 examina-
tions per patient) in 44 months (January 2017–September 2020). 
For malignant lymphoma, 1117 examinations were performed 
for 718 patients (1.56 examinations per patient), and for cardiac 
sarcoidosis, 146 examinations in 92 patients (1.59 examinations per 
patient). Among the high dose patients, 18 of 8029 patients (0.22%) 
for all PET–CT examinations, 4 of 718 patients (0.56%) for malig-
nant lymphoma, and 1 of 92 patients (1.1%) for cardiac sarcoid-
osis were recorded as having received CED of ≥100 mSv. Further 
surveys are needed to clarify the frequency of patients with a high 
CED due to PET–CT.

JUSTIFICATION OF FDG-PET–CT
Many studies have demonstrated the impact of FDG-PET–CT 
on the management of patients including staging and suspected 
disease recurrence in various malignancies and the role of 
FDG-PET–CT has been clarified well.1,18,19 And through this 
process, referral criteria or appropriateness guidelines have been 
established well, and thus, justification can be implemented by 
following them. In addition, through accumulated evidence on 
the role of FDG-PET–CT, the health insurance coverage can 
clearly be defined as compared to those for other imaging modal-
ities in nations.20,21 For example, the Centers for Medicare and 
Medicaid Services in the USA determine when and how FDG-
PET–CT examinations are performed under the health insur-
ance coverage.20 Such strictly defined health insurance coverage 
may generally suppress overuse of FDG-PET–CT, and this situ-
ation of more limited indication of FDG-PET–CT than that of 
CT may be common worldwide.22–24 Such measures may reduce 
the overall cumulative radiation dose from FDG-PET–CT by 
limiting the cases of overly repeated examinations.

DOSE TRACKING SYSTEM
Recently, dose tracking systems have become widespread in clinical 
practices. Hospitals and health-care professionals can see all of a 
patient’s dose information in one place, which will allow them to 
justify their radiological procedures and optimise radiation dose 
to improve patient radiological protection.25–27 Seuri et al reported 
that the availability of previous imaging studies and radiation 
dose figures helped to avoid additional new CT examinations by 
providing required information from previously performed CT 
examinations.28 PET, PET–CT, single photon emission computed 
tomography (SPECT), SPECT/CT, and some of nuclear medicine 
examinations have become the focus of attention as high-dose 
examinations, even though they are less frequently performed. The 
spread of the dose tracking system will facilitate a survey on radia-
tion exposure doses from PET–CT in patients because it can easily 
wrap up exposure doses of PET radiopharmaceuticals and X-ray 
CT.

It should be noted that installing a dose tracking system, 
although if encouraged, is costly and may not always be possible 
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in hospitals even in high-income countries and particularly in 
low- and middle-income countries.25 Regardless of the use of 
such a dose tracking system, implementation of justification 
through evidence-based clinical guides and utilisation of dose 
reduction measures are key issues in coping with the cumulative 
dose of radiation exposure in patients.27,29

PET RADIOPHARMACEUTICALS
The majority of PET–CT examinations in daily practices are 
performed using FDG,15 which visualises glucose metabolism and 
has a wide range of applications. However, various PET radiophar-
maceuticals have been developed and introduced into the clinical 
stages (Table 1). Moreover, as a theranostics approach is currently 
used, it is important to be aware of radiation exposure of patients 
delivered by PET radiopharmaceuticals in the course of a theranos-
tics approach. Examples of using PET radiopharmaceuticals other 
than FDG in PET–CT include 68Ga-labeled somatostatin analogs 
for therapy with 177Lu-labeled somatostatin analogs against neuro-
endocrine tumours.30 In addition, 68Ga-labeled or 18F-labeled 
PSMA ligands for therapy with 177Lu-labeled or 225Ac-labeled 
PSMA ligands against castration-resistant prostate cancer have 
received a lot of attention.31–34 With the increasing use of PET 
radiopharmaceuticals in theranostic approaches, cumulative radi-
ation doses in patients should be recorded in consideration with 
PET radiopharmaceuticals.

POTENTIALS OF PET/MRI
The development of integrated PET/MRI scanners has been a tech-
nological challenge because the PET detectors should function 
in the high magnetic fields of MRI and attenuation correction of 
PET should be applied based on MR images.35,36 The advantages of 
PET/MRI over PET–CT include high soft tissue resolution on MRI 
and no CT radiation exposure. PET/MRI scanners have recently 
been introduced in clinical sites despite their high price, and find-
ings on diagnostic accuracy and roles in patient management have 
been accumulated.37–41

When we consider the reduction of radiation exposure associ-
ated with the CT part of PET–CT, MRI may be a good alterna-
tive that provides anatomical information without using ionising 
radiation. One of the major benefits of PET/MRI for patient care 

is the significant reduction in radiation exposure while presenting 
a similar diagnostic performance. Martin et al reported that the 
results confirmed the potential for a mean dose reduction of 83.2% 
when compared with full-dose PET–CT imaging. The estimated 
mean effective dose for whole-body PET–CT amounted to 17.6 ± 
8.7 mSv, in comparison to 3.6 ± 1.4 mSv for PET/MRI, resulting in 
a potential dose reduction of 79.6%; 83.2% for full-dose PET–CT 
to PET/MRI, and 36.1% for low-dose PET–CT to PET/MRI.42 The 
potential risks to patients from exposure to magnetic fields may be 
negligible.43 Moreover, simultaneous exposure to ionising radia-
tion and electromagnetic fields did not result in a significant syner-
gistic outcome of double-strand breaks in lymphocyte DNA.44 The 
advantage of PET/MRI regarding radiation exposure in paediatric 
patients is being recognised in comparison to PET–CT.42,45 Despite 
all the advantages of PET/MRI, PET/MRI is expensive and cannot 
be introduced at every facility; therefore, it is still necessary to 
utilise PET–CT with radiation reduction measures in most clinical 
situations.

CONCLUSIONS
The cumulative radiation dose from PET–CT in patients has not 
been as discussed as the cumulative radiation dose from CT. This is 
probably partly due to the lower total number of examinations, the 
narrower coverage of insurance, and the lower frequency of exam-
inations for individual patients. The spread of the dose tracking 
system will facilitate surveys on patient exposure doses by PET–CT 
because it can easily wrap up exposure doses of PET radiophar-
maceuticals and X-ray CT. Regardless of the use of such a dose 
tracking system, implementation of justification through evidence-
based clinical guides and utilisation of dose reduction measures are 
key issues in coping with the cumulative radiation dose in patients.
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Table 1. Examples of effective doses for PET radiopharmaceuticals10

Effective dose per unit activity administered (mSv/MBq)
Pharmaceutical Adult 15 years 10 years 5 years 1 year

[18F]FDG 1.9E-02 2.4E-02 3.7E-02 5.6E-02 9.5E-02

[18F]choline 2.0E-02 2.4E-02 3.7E-02 5.7E-02 1.0E-01

[18F]fluoride 1.7E-02 2.0E-02 3.3E-02 5.6E-02 1.1E-01

[18F]fluorothymidine 1.5E-02 1.9E-02 2.9E-02 4.6E-02 8.8E-01

[11C]methionine 8.2E-03 1.1E-02 1.6E-02 2.5E-02 4.7E-02

[15O]water 1.1E-03 1.4E-03 2.3E-03 3.8E-03 7.7E-03
82Rb-chloride 1.1E-03 1.4E-03 3.0E-03 4.9E-03 8.5E-03

[124I]iodide 3.0E-01 4.2E-01 6.3E-01 1.2E + 00 2.2E + 00

PET, positron emission tomography
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