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Background and Objective: Vascular dementia (VaD) and Alzheimer’s disease

(AD) could be characterized by the same syndrome of dementia. This study aims

to assess whether multi-parameter features derived from structural MRI can serve

as the informative biomarker for differential diagnosis between VaD and AD using

machine learning.

Methods: A total of 93 patients imaged with brain MRI including 58 AD and 35 VaD

confirmed by two chief physicians were recruited in this study from June 2013 to July

2019. Automated brain tissue segmentation was performed by the AccuBrain tool to

extract multi-parameter volumetric measurements from different brain regions. Firstly,

a total of 62 structural MRI biomarkers were addressed to select significantly different

features between VaD and AD for dimensionality reduction. Then, the least absolute

shrinkage and selection operator (LASSO) was further used to construct a feature set that

is fed into a support vector machine (SVM) classifier. To ensure the unbiased evaluation of

model performance, a comparative study of classification models was implemented by

using different machine learning algorithms in order to determine which performs best in

the application of differential diagnosis between VaD and AD. The diagnostic performance

of the classification models was evaluated by the quantitative metrics derived from the

receiver operating characteristic curve (ROC).

Results: The experimental results demonstrate that the SVM with RBF achieved

an encouraging performance with sensitivity (SEN), specificity (SPE), and accuracy

(ACC) values of 82.65%, 87.17%, and 84.35%, respectively (AUC = 0.861, 95% CI =

0.820–0.902), for the differential diagnosis between VaD and AD.

Conclusions: The proposed computer-aided diagnosis method highlights the potential

of combining structural MRI and machine learning to support clinical decision making in

distinction of VaD vs. AD.
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INTRODUCTION

Dementia is a typical clinical syndrome of cognitive decline that
interferes with the ability to perform daily activities (1) and
occurs due to physical changes of brain structure and function.
It is a progressive disease, indicating that it gets worse over time
in terms of memory loss, cognitive dysfunction, and behavior.
It is reported that the number of patients affected by dementia
is believed to be close to 60 million people in 2018, and this
number will almost reach 75 million in 2030 and triple with 130
million in 2050. Alzheimer’s disease (AD) and vascular dementia
(VaD) are the first and second most common forms of dementia,
respectively (2). They have several symptoms, pathophysiology,
and comorbid clinical manifestation that overlap that make them
difficult to distinguish.

At present, the differential diagnosis between AD and VaD is
still largely based on clinical guidelines with the exception of the
exclusion of other diseases that are able to result in dementia. VaD
is usually diagnosed through the combination of neurological
examination, cognitive functioning tests, and brain scanning
techniques (3). AD is often diagnosed by excluding other
causes rather than being able to pinpoint the diagnosis through
imageological or biochemical examination (4, 5). Conventional
magnetic resonance imaging (MRI) could only discover certain
clinical entities such as vascular changes and stroke or ischemic
attack occurring in a specific area of brain (6), suggesting their
association with VaD. Molecular neuroimaging technique plays
an important role in the diagnosis of dementia (7), but it is
difficult to determine the types of dementia. However, as is the
case with AD, a definite diagnosis of VaD can only be made
by brain autopsy. Although some similar cognitive examinations
are employed to evaluate brain function (8), there is no test to
diagnose AD at this time, so neurological physicians generally
rule out other reversible causes of confusion such as normal
pressure hydrocephalus, as well as other types of dementia
or delirium.

Under attack by AD, the structure changes of temporal lobe,
hippocampus, and entorhinal cortexmay be changed firstly (4, 9).
Hill et al. (10) suggested that structural MRI biomarkers could
facilitate the clinical trials of AD. Moreover, several machine
learning-based studies have successfully classified and predicted
AD and mild cognitive impairment (MCI) using structural MRI
features (11–13). It indicates that the changes of structural
MRI are sensitive indicators for dementia, but there were
no previous studies referring to the distinction between VaD
and AD.

A series of studies mentioned above suggest that volumetric
measurements of brain MR images are generally a significative
type of biomarker. However, to our knowledge, whether multi-
parameter structural MRI features can serve as the informative
biomarker to detect the differences between VaD and AD
is unknown, and little work has been done on machine
learning to distinguish VaD from AD. Therefore, despite recent
developments in the detection of AD, differential diagnosis
between AD and VaD is still challenging and requires further
investigation. It is critically important to find a way to be
potentially capable of differentiating VaD from AD. In this

study, we present a support vector machine (SVM)-based
machine learning framework in combination with a range of
volumetric measurements of different brain tissues to provide
clinical information for differential diagnosis between VaD and
AD (Figure 1).

MATERIALS AND METHODS

Subjects and Inclusion Criteria
This retrospective study was approved by the Ethics Committee
of the First Affiliated Hospital of Chongqing Medical University.
The written full informed consents were obtained from all
subjects. From June 2013 to July 2019, 122 patients imaged
with brain MRI who were hospitalized in the First Affiliated
Hospital of Chongqing Medical University were recruited for
this study. The diagnosis was confirmed by two chief physicians.
VaD patients fulfilled the criteria of NINDS-AIREN (3) and
AD patients fulfilled the criteria of NINCDS-ADRDA (14).
Exclusion criteria are as follows: (1) patients have both AD
and VaD (n = 8); (2) patients with suboptimal image quality
because of head motion or susceptibility artifacts (n = 14);
and (3) the areas of hyperintensities are so large that they
have little influence on the segmentation accuracy of AD and
VaD (n = 7). Finally, 58 AD patients and 35 VaD patients
were enrolled and the demographic data are summarized in
Table 1. Sex ratio and age distribution did not differ significantly
between both groups (χ2 test, P = 0.73 and Wilcoxon rank-sum
test, P = 0.24).

MRI Acquisition
All subjects underwent multisequence imaging protocol on a 1.5-
TMRI scanner (MAGNETOMESSENZA, SiemensHealthineers,
Germany and Signa HDxt, GE Healthcare, USA). For each
patient, two sequences were collected in our study: (1) T1-
weighted spin-echo (T1W) image: repetition time/echo time
(TR/TE) = 1800/22ms; matrix size = 512 × 512; field of
view (FOV) = 240 × 240 mm2; slice thickness = 3mm;
gap = 1.5mm; (2) T2 fluid attenuated inversion recovery (T2
FLAIR) image: TR/TE = 8000/120ms; matrix size = 512 ×

512; field of view (FOV) = 240 × 240 mm2; slice thickness =
3mm; gap= 1.5 mm.

Image Pre-processing
Firstly, T1W and T2 FLAIR images are skull-stripped, performed
using the FMRIB software library (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSL). Then, the skull-stripped T2 FLAIR images were
aligned and registered to T1WI images using SPM12 based on
rigid transformation and normalized mutual information (15).
After the above operations, N4 bias correction was performed on
T1W and T2 FLAIR images to remove low-frequency intensity
non-uniformity (http://stnava.github.io/ANTs/).

MRI Structure-Based Feature Extraction
and Selection
In our study, multi-parameter structural MRI indexes were
used as the feature set to train and test machine learning
model. A reliable and robust automated software AccuBrain
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FIGURE 1 | The pipeline of proposed framework for the distinction of VaD vs. AD.

(BrainNow Medical Technology Limited, Hong Kong,
China) performs brain structure and tissue segmentation
to obtain multiple volumetric measurements of different brain
substructures and subcortical tissues (16). It could provide
the quantitative volumetry of memory-related cerebral areas
in a fully automatic mode. After feature extraction, the next
step is construction of the optimal feature subset. As feature
selection is an important problem for pattern classification
that has become an apparent need in machine learning,
the effectiveness of features is directly associated with the
performance of classifier. Firstly, normality and homogeneity
of variance have been examined by Kolmogorov–Smirnov
test and Levene test, respectively, and features with skewed
distribution or normal distribution have been compared
using the Mann–Whitney U test or independent Student

t test to select certain volumetric indexes with significant
difference (P < 0.05) as the representative features (17).
Then, the least absolute shrinkage and selection operator
(LASSO) method was used for the selected features to form
the fusion feature signature (feature subset). The feature
selection methods were performed with the R software
(version 3.5.1; http://www.R-project.org).

Machine Learning Modeling and
Performance Evaluation
The typical kernel algorithms in machine learning such as SVM
were employed to identify VaD from AD. Based on structural
risk minimization, SVM classifier finds an optimal separating
hyperplane with maximum margin to distinguish VaD from
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AD in the corresponding high-dimension feature space mapped
by the input feature subset (18). In this study, we used the
LibSVM toolbox (version 3.22) for the implementation of SVM
classifier with linear and radial basis kernel functions (19). In
addition, genetic algorithm (GA) was conducted to select the
optimal parameters of the LibSVM classifier. For performance

TABLE 1 | Demographic information.

Patients with VaD Patients with AD P-value

Number 35 58

Female/male 16/19 30/28 0.73

Age 72.74 ± 10.19 70.33 ± 9.18 0.24

MMSE 21.79 ± 5.31 22.61 ± 4.87 0.29

TABLE 2 | The implementation details of the different classifiers.

Classifiers Parameter setting

KNN 20 different values of number of neighbors range from 2 to 21

LR Penalty: L1, Tol = 0.0001, C = 1.0, Max_ iteration = 500

RF Ntree = {100, 200, 300, 400, 500}, Mtr = [2:2:50]

SVM Population_size = 50, Iteration = 1,000, Pc = [0.4, 0.99], Pm =

[0.0001, 0.1], Kernel parameter = {10−2, 10−1, 10, 102}

KNN, K-nearest neighbor; LR, logistic regression; RF, random forest; SVM, support

vector machine.

comparison of classification, we have adopted different machine
learning algorithms such as K-nearest neighbor (KNN), logistic
regression (LR), and random forest (RF) to test which model
performs best in differentiating between VaD and AD, compared
with SVM. A brief overview about the corresponding parameters
of the classifiers is given in Table 2.

In this study, the dataset was divided into two portions called
training set and testing set, 70% of which were used as training
set, and the remaining 30% were used as test set. In the training
set, we used the 10-fold cross-validation (CV) to train and tune
the model. The training set was divided into 10 subsets, each as
a verification set for monitoring and tuning the parameters of
training process, and the other 9 subsets was used for training
the model. The test set was used only to assess the performance
of the model. In addition, a bootstrap resample method (1,000
times) was used to decrease the bias of overfitting and evaluate
the robustness of each diagnostic model. Hence, the accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area under the
curve (AUC) of model are calculated by taking the average of the
results of 1,000 times tests. The detailed procedure of parameter
tuning and performance testing is shown in Figure 2.

RESULTS

This section presents the experimental results obtained through
the quantitative volumetry of structural MRI using AccuBrain
software on T1W and T2 FLAIR imaging, as efficient biomarkers

FIGURE 2 | Structure of the nested 10-fold cross-validation for evaluating the performance of machine learning models.
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TABLE 3 | The structural MRI features with statistical differences between patients with VaD and AD.

Brain substructures/regions Volume (ml)

VaD AD P-value

Brain substructures Hippocampus 5.62 ± 0.79 5.13 ± 0.74 0.001

Amygdala 3.37 ± 0.49 2.63 ± 0.27 0.001

Pallidum 2.23 ± 0.31 2.49 ± 0.51 0.031

Accumbens nucleus 0.77 ± 0.14 0.68 ± 0.11 0.003

Symmetry of brain substructures Hippocampus (L) 2.90 ± 0.53 2.47 ± 0.42 0.004

Hippocampus (R) 2.87 ± 0.42 2.66 ± 0.31 0.001

Amygdala (L) 1.46 ± 0.27 1.19 ± 0.21 0.001

Amygdala (R) 1.69 ± 0.34 1.39 ± 0.25 0.001

Caudate (L) 3.07 ± 0.51 2.88 ± 0.49 0.028

Pallidum (L) 1.21 ± 0.58 1.29 ± 0.31 0.031

Accumbens nucleus (L) 0.36 ± 0.06 0.32 ± 0.06 0.012

Accumbens nucleus (R) 0.39 ± 0.06 0.35 ± 0.06 0.013

Symmetry of brain regions Frontal lobe (R) 65.14 ± 9.94 62.17 ± 7.86 0.011

Occipital lobe (L) 34.51 ± 6.46 31.28 ± 6.39 0.001

Occipital lobe (R) 31.08 ± 4.97 28.86 ± 5.42 0.003

Temporal lobe (L) 45.46 ± 5.34 43.29 ± 6.47 0.001

Temporal lobe (R) 46.26 ± 6.51 42.93 ± 5.86 0.002

Parietal lobe (L) 36.88 ± 5.75 30.73 ± 4.76 0.001

Parietal lobe (R) 38.12 ± 6.96 31.45 ± 6.85 0.002

Insular (R) 5.67 ± 1.13 5.06 ± 1.07 0.045

Bold values indicate the statistically different.

disclosing the significant change of volumes in the memory-
related cerebral areas between VaD and AD. On the other hand,
the classification performance obtained with or without the
feature selection method was compared and analyzed.

Differences in the Volumetric Features of
Different Brain Tissues Between VaD
and AD
The result presentation of quantitative volumetry in structural
MRI was reported for the following cases: (1) volume differences
of memory-related cerebral areas between patients who suffer
from VaD and AD, (2) symmetry of brain substructures between
the patients with VaD and AD, and (3) volume atrophy
differences between VaD and AD (Table 3). The structural
changes of memory-related cerebral areas were obvious and
significant between the patients with VaD and AD, while
volume differences could have potential to differentiate VaD
from AD. When compared to the AD patients, the VaD patients
show significantly higher volume values (P < 0.05) in brain
parenchyma, hippocampus, amygdala, and accumbens nucleus,
and significantly lower volume values (P < 0.05) in pallidum.
The significant difference for the symmetry of certain brain
substructures has also been observed between VaD and AD such
as hippocampus, amygdala, caudate, pallidum, and accumbens
nucleus (P < 0.05). The group comparison reveals a significant
decline in the volume values of bilateral frontal lobe, occipital
lobe, temporal lobe, and parietal lobe as well as significant volume
atrophy differences in occipital lobe and parietal lobe in the
patients with AD (P < 0.05).

Performance Comparison of Machine
Learning Models for Differential Diagnosis
This section presents the results of comparing differential
diagnosis between VaD and AD obtained by the different
machine learning models. The 20 significantly different features
(Table 3) selected from 62 quantified structural MRI measures
obtained by AccuBrain software were ranked by LASSO feature
selection. Then, five top-ranked features were selected as the
input of machine learning model (Figure 3). GA was employed
to find the global optimum solution of SVM, the parameters
of which were set as follows: population size = 50, iteration
times = 1,000, probability of crossover = 0.6 and probability
of mutation = 0.1. Table 4 presents the accuracy rates and
the corresponding AUC values of different machine learning
models in training, verification, and test set. The overall result of
performance comparison is shown in Figure 4A. It demonstrated
that SVM could achieve more encouraging performance than
other frequently used classifiers that are suitable for small
datasets in the application of differentiating VaD from AD.
The result obtained by SVM classifiers with different kernel
functions (linear and RBF kernels) on the raw feature set and the
optimal feature subset addressed through the feature selection
method is shown in Figure 4B. This indicates that the SVM
with RBF kernel generally yields higher performance metrics
and is more flexible than that with linear kernel, and the
combining of machine learning and feature selection can increase
the classification performance of the model. The confusion
matrix of the proposed SVM model in a single experiment is
shown in Table 5. When compared to classification using raw
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TABLE 4 | The result of different machine learning models in training, verification,

and test set.

Training set Verification set Test set

Accuracy

(%)

AUC Accuracy

(%)

AUC Accuracy

(%)

AUC

KNN 72.63 0.737 70.59 0.722 68.14 0.691

LR 77.14 0.789 74.96 0.754 73.62 0.747

RF 82.89 0.833 83.65 0.845 81.17 0.829

SVM 86.47 0.887 84.71 0.868 84.35 0.861

features and the other machine learning models, classification
by the selective features and the proposed SVM model improves
the accuracy rate to a significant level, which indicates a
powerful performance in differential diagnosis between VaD
and AD.

DISCUSSION

Many recent neuroimaging studies have focused on the use
of advanced machine learning algorithms to solve problems
in differential diagnosis, especially cases in the combination of
medical science and engineering, such as the identification of
the early stage of AD (20) and distinguishing between MCI and
AD (21).

VaD characterized by the syndrome of intellectual disability
such as hypomnesia and impairment of daily activities or
living is very similar to AD. Therefore, accurate differential
diagnosis is essential to receive timely clinical treatment that
delays the progression of disease (22), which is helpful and
required. Research on the biomarkers for differential diagnosis
between VaD and AD mainly includes biochemical, genomics,
proteomics, and neurophysiology markers such as neurofilament
light unit and neurofilament protein levels (23), the ratio
of plasma Aβ-38/-40 peptides (24), and phosphorylated tau
proteins (25). Moreover, another critical requirement for clinical
application is in the pursuit of neuroimaging biomarkers. In our
study, a machine learning model derived from an RBF SVM
classifier combined with LASSO and GA has been proposed
for the differential diagnosis between VaD and AD. To our
knowledge, this study is a unique combination of structural MRI
biomarkers and machine learning for the differentiation of VaD
vs. AD not used before.

Abrigo et al. (16) have affirmed that AccuBrain software could
accurately and reliably segment hippocampus in accordance
with the EADC-ADNI protocol so as to ensure the robustness,
reproducibility, and reliability of structural MRI measurements
such as volume, structural symmetry, and atrophy. The present
result indicates that the symmetry differences and volume
differences of hippocampus, amygdala, accumbens nucleus, and
pallidum could have potential to differentiate VaD from AD
(10, 26). We found that the involvement of brain regions is a
relevant association between the volumetric change or atrophy
identified in AD vs. VaD and that identified in AD vs. MCI (27).
Because VaD is one of the main categories of senile dementia,

TABLE 5 | The confusion matrix of SVM model in a single experiment.

Truth Recall

AD VaD

Prediction AD 48 4 0.828

VaD 10 31 0.886

Precision 0.923 0.756 0.849

the brain structure changes in the patients with VaD are similar
to those with AD, which is in accordance with our current
findings. Cuingnet et al. (28) found that the main brain area for
the differentiation between AD and healthy individuals was the
medial temporal lobe, similar to our study.

Our study indicates that the structural MRI measurements
could be considered as core biomarkers for the differentiation
of not only MCI vs. AD but also VaD vs. AD, combined
with other researches (29, 30). It is manifested that the
volumetric MRI studies of cerebral areas related with learning
and memory such as hippocampus, amygdala, and accumbens
nucleus are associated with neurodegeneration and shown to
be sensitive to dementia severity (31). The hippocampus is the
top-ranked effective indicator for differential diagnosis, which
is in agreement with a previous study on the correlation
between hippocampal volume and severity degree of dementia
(32). Tondelli et al. (33) have suggested that the structural
MRI changes occur before cognitive decline in the patients
with AD and could potentially detect the regions affected by
AD neuropathology. However, it seems possible to detect a
similar distribution of brain atrophy accompanied by cognitive
disorder caused by alternative VaD or AD. This could potentially
explain why many VaD patients were misdiagnosed as AD
subjectively by young physicians in the clinic. VaD could be easily
confused with AD, especially in the early stages (34, 35). It is
believed that the combination of such diverse structural MRI
biomarkers containing more of the information in MR scanning
contributes to an accurate differentiation between VaD and
AD, in comparison with a single biomarker. Machine learning
algorithms have been validated to overcome this obstacle. SVM
outperforms all other classification methods such as KNN, LR,
decision-making trees, and RF in small-sample research. Our
results point in the same direction, since the input measures used
are very small datasets.

In our experiment, the diagnostic performance of SVM
classifier is superior to that of the other machine learning
models. This is probably because SVM is trained based on a
convex optimization problem so as to obtain a global optimum
solution (18). Compared with RF, it is more likely to model more
functions with the kernel-based method and reach an optimal
separating structure in a small sample training set as well as
avoiding suffering from local minimummistakes and overfitting.
In addition, KNN tends to perform very well with a lot of data
points and RF is inherently suited for multiclass problems, while
SVM is intrinsically constructed for binary classification, and
the latter is more suitable to the task of this study. Compared
with LR, SVM minimizes hinge loss while LR minimizes logistic
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FIGURE 3 | Plot of coefficients-lambda obtained by LASSO.

FIGURE 4 | Model performance presentation. (A) ROC curves for different machine learning models and (B) performance comparison for SVM with linear and radial

base function (RBF) kernels on the raw and optimized datasets.

loss. This makes LR more sensitive to outliers because logistic
loss diverges quicker than hinge loss. Besides, even though the
data are distinguished sufficiently confidently, logistic loss does
not reach zero. This might give rise to minor degradation in
accuracy. The factors mentioned above support the fact that SVM
outperforms the other classifiers in our study.

Some limitations in this study should be considered. First,
our study only involved single-center data, and the small sample
set was used, especially for VaD data. Transfer learning is an
alternative method for the problem of lack of data (36). It
is regarded as the use of a pre-trained model as a feature
extractor, and then training and testing the classifier using the
features that can be derived from fine-tuning the pre-trained
model using source data. This will take the place of AccuBrain
software as feature extractor. However, one of the purposes of

the present study is to confirm that the AccuBrain software
could effectively and reliably provide volumetric measurements
of structural MRI as independent indicators, which helps to
quantify the architectural differences and facilitates computer-
aided diagnosis betweenAD andVaD. So, for this purpose, we did
not consider using transfer learning in this study. Nevertheless,
further expanding samples and launching multi-center studies in
future work, transfer learning could be the best choice. Second,
only the indicators from structural MRI are used. Next, a larger
number of datasets including multi-center data could be applied
to extend our study by combining other MRI-based biomarkers,
such as functional parameters (DTI metrics), radiomics features,
and brain connectome, which target subtler information. We
have reasons to believe that the combination of structural
MRI-based volumetric measurements and other markers would
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improve the degree to which structural features are sensitive to
differentiation between VaD and AD.
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