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Abstract: This paper presents an end-to-end learning framework for performing 6-DOF odometry
by using only inertial data obtained from a low-cost IMU. The proposed inertial odometry method
allows leveraging inertial sensors that are widely available on mobile platforms for estimating
their 3D trajectories. For this purpose, neural networks based on convolutional layers combined
with a two-layer stacked bidirectional LSTM are explored from the following three aspects. First,
two 6-DOF relative pose representations are investigated: one based on a vector in the spherical
coordinate system, and the other based on both a translation vector and an unit quaternion. Second,
the loss function in the network is designed with the combination of several 6-DOF pose distance
metrics: mean squared error, translation mean absolute error, quaternion multiplicative error and
quaternion inner product. Third, a multi-task learning framework is integrated to automatically
balance the weights of multiple metrics. In the evaluation, qualitative and quantitative analyses were
conducted with publicly-available inertial odometry datasets. The best combination of the relative
pose representation and the loss function was the translation and quaternion together with the
translation mean absolute error and quaternion multiplicative error, which obtained more accurate
results with respect to state-of-the-art inertial odometry techniques.
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1. Introduction

Odometry is a process to compute relative sensor pose changes between two sequential moments.
This is generally essential for various applications that need to track target device poses in a 3D
unknown environment. Especially, estimating a 6 degrees of freedom (DOF) pose containing both a 3D
position and a 3D orientation is crucial for the pose tracking of a drone in Robotics and Automation [1]
and the registration of 3D annotations in Augmented Reality [2].

Recent approaches on the 6-DOF odometry are mainly based on the use of cameras, referred to
as visual odometry [3]. Inertial measurement unit (IMU) is further integrated so that the odometry
estimation can be stabilized even under fast motion [1]. The advantage of camera based approaches is
the higher accuracy of estimated 6-DOF poses owing to less drift error, compared with other positioning
sensors. However, the accuracy is largely degraded by appearance changes caused by moving objects
and illumination. Also, the computational cost is rather higher due to the feature extraction and
matching on hundred thousands of pixels.

It is useful if the odometry can be achieved by using low dimensional inertial data from an IMU
in terms of the computational efficiency and the robustness to the surrounding changes. However,
the naive approach based on the double integration of acceleration causes a critical drift error. The main
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difficulty of such inertial dead reckoning is to simultaneously estimate noise, bias, and gravity direction
in the acceleration reading for accurately computing the linear acceleration caused by sensor motion
only. To solve this problem, machine learning based approaches have recently been introduced.
For instance, the velocity of the IMU attached on a human body is regressed by using the velocity from
visual odometry as a ground truth for the training process [4]. Also, the location and direction on a 2D
floor map can be regressed with a deep learning framework [5]. Estimating magnitude of translation
and rotation changes using deep neural networks can also be performed [6]. However, end-to-end
learning based 6-DOF odometry regression has not been achieved yet.

In this paper, we propose a 6-DOF odometry method only with an IMU based on a neural network
trained with end-to-end learning. The network architecture follows a convolutional neural network
(CNN) combined with a two-layer stacked bidirectional long short-term memory (LSTM). Especially,
the network is designed from the following three aspects: 6-DOF relative pose representations, 6-DOF
pose distance metrics, and the use of multi-task learning for balancing the metrics. First, a 6-DOF
relative pose expressed in the spherical coordinate system, or a 3D translation vector and an unit
quaternion are used. Second, mean squared error (MSE), translation mean absolute error (MAE),
quaternion multiplicative error and quaternion inner product as pose distances are applied to the loss
function in the network. Third, a multi-task learning that automatically balances the different metrics is
integrated to handle the metrics for translation and rotation. Qualitative and quantitative evaluations
with publicly available inertial odometry datasets showed that the combination of translation and
quaternion based relative pose representation with translation MAE and quaternion multiplicative
error based loss functions obtained the most accurate 6-DOF inertial odometry results, being superior
to recent inertial odometry methods.

2. Related Work

The strapdown inertial navigation system (SINS) can be considered as the most straightforward
approach to perform the 6-DOF odometry only with an IMU [7]. It works by naively double-integrating
linear accelerations in the inertial reference frame of the system. However, the Micro Electro Mechanical
System (MEMS) based inertial sensors installed on current robots, vehicles and mobile devices present
a large amount of noise in the sensor data readings. This factor makes SINS quickly accumulate
positional error over time, making them unsuitable for the odometry tasks.

By constraining the odometry problem to human motion estimation, pedestrian dead reckoning
(PDR) systems can estimate the pedestrian trajectory on a 2D map by performing orientation update,
step detection and step length estimation based solely on an IMU [8]. Generally, the method is
optimized according to the location of a body part for mounting an IMU, such as foot, wrist, head and
chest. These systems provide good trajectory estimation dedicated to pedestrians. However, they are
generally limited to 2D pedestrian odometry, not being applicable to 6-DOF general cases.

One way to avoid the error accumulation in the IMU based 6-DOF odometry is to use it in
conjunction with a monocular camera. There are several 6-DOF visual-inertial odometry (VIO)
methods available, such as VINS-MONO [9] and OKVIS [10], and their performance was summarized
in [1]. Owing to the recent advance of deep learning, end-to-end approaches were proposed
in [11,12], which employ a neural network to fuse visual and inertial data. PIVO [13] is considered
an inertial-visual odometry technique because a higher emphasis is given to the use of an IMU in
order to be more robust to lack of discriminative features in the images. This is accomplished by using
an Extended Kalman Filter (EKF) estimation. Nevertheless, making use of visual odometry causes
an increase of energy consumption and processing demands, and a decrease of the accuracy under
ill-conditioned surroundings.

Recently, machine learning techniques have been applied to the purely inertial odometry problem,
being able to obtain superior results, compared with SINS and PDR. RIDI [4] estimated phone motion
attached on a human body by first using support-vector machine to classify phone attachment location
such as leg, bag, hand or body, and then employing support-vector regression trained for the given



Sensors 2019, 19, 3777 3 of 16

location to predict the device velocity. Such regressed velocity is finally used to correct accelerations
on a 2D map, which are then double integrated to compute the odometry. This method is basically
classified into PDR. IONet [5] employed LSTM to obtain displacements in polar coordinates from the
IMU data. However, this method also focused only on estimating 2D planar trajectory as well as PDR,
which is 3-DOF odometry.

The handheld INS described in [14] is able to perform purely inertial 6-DOF odometry on phones
using EKF. It was later extended to constrain the velocity by using a CNN in [15]. Nevertheless, this
approach is not solved by an end-to-end manner, needing to take additional processing for the device
velocity, which can inherently be handled by our proposed method. AbolDeepIO [6] used LSTM to
estimate the magnitude of 3D translation and rotation changes, but it is not able to predict trajectories
from such outputs. To the best of our knowledge, there are no end-to-end methods for the 6-DOF
inertial odometry with a low-cost IMU in the literature.

3. Materials and Methods

The proposed solution for the 6-DOF odometry with an IMU takes a sequence of gyroscope
and accelerometer readings as input, and outputs a relative pose between two sequential moments.
By successively performing this operation over time, a 3D trajectory can be estimated. Given an initial
position and orientation, the computed pose changes are incrementally composed to finally obtain the
pose in the reference coordinate system. Owing to an end-to-end learning framework, our solution
implicitly handles inertial sensor bias and noise.

3.1. Network Architecture

As illustrated in Figure 1, our network is based on CNN combined with LSTM, which is
a type of recurrent neural network (RNN) that is highly suitable to problems that involve sequence
processing [16]. As similar to [4,5,15], the input is the inertial data in a window of 200 frames,
containing 3-axis angular velocity ω and 3-axis acceleration a. Gyroscope and accelerometer data
are first processed separately by 1D convolutional layers of 128 features with a kernel size of 11.
After two convolutional layers, a max pooling layer of size 3 is used. The output of these layers is
concatenated and fed to LSTM layers with 128 units. Especially, a bidirectional LSTM is used, as in [5],
so that both past 100 and future 100 IMU readings have an influence on the regressed relative pose.
This is combined with a two-layer stacked LSTM model, in which a bidirectional LSTM outputs a full
sequence that is the input of a second bidirectional LSTM. A dropout layer with a rate of 25% is also
added after each LSTM layer in order to avoid overfitting. Finally, a fully connected layer generates
the output of a relative pose.

Figure 1. Network architecture for 6-DOF inertial odometry. The number of features is shown
below the convolutional layers, the pool size is shown below the max pooling layers, the number
of units is shown below LSTM and fully connected layers, and the dropout rate is shown below the
dropout layers. The example output uses the 3D translation vector and unit quaternion based relative
pose representation.
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As in [4,5], consecutive IMU reading windows have a stride of 10 frames. In this case, a new
relative pose is computed every 10 frames, as illustrated in Figure 2. Given an IMU reading window of
200 frames, the relative pose to be regressed from this window is the one occurred between frames #95
and #105. This allows the correct composition of relative poses for estimating a trajectory with a slight
delay according to the sampling rate, while also enabling the bidirectional LSTM approach to greatly
benefit from both previous and future frames. It should be noted that it would be possible not to have
such delay without exploiting future frames in exchange for a loss in accuracy.

Figure 2. Input and output on time-axis. IMU data windows are overlapped over time (blue), and both
past and future frames are used when computing the relative pose at each ∆ pose moment (green).

3.2. 6-DOF Relative Pose Representation

There are several approaches to represent a 6-DOF relative pose. One approach is to simply
extend the polar coordinate system proposed in [5] to the 3D space by using the spherical coordinate
system. In the spherical coordinate system, the relative pose is represented by the traveled distance
∆l, the inclination change ∆θ and the heading change ∆ψ. Given a previous position (xt−1, yt−1, zt−1),
a previous inclination θt−1 and a previous heading ψt−1, the current location (xt, yt, zt) after a pose
change (∆l, ∆θ, ∆ψ) is obtained by

xt = xt−1 + ∆l · sin(θt−1 + ∆θ) · cos(ψt−1 + ∆ψ)

yt = yt−1 + ∆l · sin(θt−1 + ∆θ) · sin(ψt−1 + ∆ψ)

zt = zt−1 + ∆l · cos(θt−1 + ∆θ)

. (1)

This allows obtaining a correct trajectory. However, one drawback is that the orientation will
only be consistent when forward motion occurs. For example, if the system moves backwards or
sideways with no change in the orientation, this will be interpreted as a forward movement together
with a change of orientation in the backward or sideway direction.

Another approach is to use a 3D translation vector ∆p and a unit quaternion ∆q.
This representation correctly handles the orientation when dealing with motions in any direction.
From a previous position pt−1 and orientation qt−1, the current position pt and orientation qt after
applying a pose change (∆p, ∆q) is given by{

pt = pt−1 + R(qt−1)∆p

qt = qt−1 ⊗ ∆q
, (2)

where R(q) is the rotation matrix for q, and ⊗ is the Hamilton product. The quaternions predicted
by the neural network need to be normalized in order to ensure that they have unit length. In our
experiments, we noted that the predicted quaternions before normalization have an average norm of
4.91, justifying their explicit correction.



Sensors 2019, 19, 3777 5 of 16

3.3. 6-DOF Pose Distance Metric

A straightforward approach to estimate the difference between ground truth and predicted poses
is to compute their MSE. This is done when using the spherical coordinates representation, namely
LMSE loss function. However, MSE is an algebraic rather than a geometric distance function.

For the 6-DOF pose representation that employs quaternions, loss functions more related to the
actual geometric difference between the ground truth pose (p, q) and the predicted pose (p̂, q̂) can
be defined. Therefore, one alternative is to use the absolute value of the 3D pose graph SLAM error
metric described in [17]. In this case, the corresponding loss function is LTMAE + LQME, so that:{

LTMAE = ‖p̂− p‖1

LQME = 2 · ‖imag(q̂⊗ q∗)‖1

, (3)

where imag(q) returns the imaginary part of q, and q∗ is the complex conjugate of q. It is worth noting
that q̂ is a normalized quaternion.

Another possibility is to replace the quaternion multiplicative error LQME by a metric based
on the inner product of unit quaternions, as discussed in [18]. Then, the loss function becomes
LTMAE + LQIP, with {

LTMAE = ‖p̂− p‖1

LQIP = 1− |q̂ · q|
. (4)

3.4. Multi-Task Learning for Metric Balancing

The most straightforward way to compute the loss for the 6-DOF odometry problem is to assume
a uniform weighting of the losses for each output type such as rotation and translation. However,
the weight largely affects the results because these outputs have different nature and scale [19].
Therefore, estimating each of them is required to be treated as a separate task. For this problem, we
propose to apply a multi-task learning framework to find a better weighting for the losses of these n
tasks that share a common knowledge.

Inspired by [20], we aim to maximize the log Gaussian likelihood of the model, which is equivalent
to minimizing the following final loss function:

LMTL =
n

∑
i=1

exp(− log σ2
i )Li + log σ2

i , (5)

where σ2
i and Li are the variance and the loss function for the i-th task, respectively. The log variance

values act as weights to the individual losses of each task. The goal of the training procedure is then to
learn the log σ2

i that minimizes LMTL from the ground truth data. As stated in [20], predicting the log
variance is more numerically stable than regressing the variance, since for example divisions by zero
are avoided.

In our network, a new multi-loss layer responsible for computing LMTL is added after inertial
odometry layers in Figure 1. This means that the multi-loss layer takes each component of the 6-DOF
pose predicted by the odometry layers, as input. The trainable weights of the multi-loss layer are the
log variance values log σ2

i , each one associated to a layer input. All these weights are initially set to 0.
Based on the predicted 6-DOF pose and the current values of log σ2

i , the layer computes LMTL, and sets
it as the final loss to be optimized. After the training, at prediction time, only the 6-DOF inertial
odometry layers with their corresponding learned weights are used to regress the relative poses.

Figure 3 depicts the multi-task learning approach when the translation vector with quaternion
representation is used. For example, if the quaternion multiplicative error is chosen as the orientation
loss, one could use the following individual loss functions: L1 = LTMAE and L2 = LQME.
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Figure 3. Network architecture with multi-task learning for the translation vector with quaternion.
The multi-loss layer allows learning the weights (log variances) associated to each of two tasks
(translation and orientation change estimation).

3.5. Datasets

Experiments were performed using sequences obtained with a handheld smartphone and a micro
aerial vehicle (MAV). For the handheld case, sequences from the Oxford Inertial Odometry Dataset
(OxIOD) [21] were used. For the MAV scenario, the evaluation was performed using the sequences
from the EuRoC MAV dataset [22].

OxIOD provides angular velocity and linear acceleration data recorded with phones at a sampling
rate of 100 Hz while moving around the environment under different conditions. It also contains
precise and synchronized ground truth 6-DOF poses. The data collected from user #1 holding an iPhone
7 Plus by hand while normally walking in a room was used, with a total of 24 sequences, a recording
time of approximately 2 h and 27 min and a walking distance of 7.193 km. Due to the presence of noise
in the ground truth measurements, the initial 12 s and the final 3 s of each sequence were discarded.
From this data, 17 sequences were randomly chosen for the training and the remaining sequences
were used for the testing, as can be seen in Table 1. Training IMU data windows also have a stride
of 10 frames, resulting in a total amount of 55,003 training samples. Excerpts of 20 s from the test
sequences were employed for both qualitative and quantitative evaluations.

Table 1. Train and test splits of OxIOD handheld sequences.

Training Data Testing Data

data1/seq1 data1/seq2
data1/seq3 data1/seq5
data1/seq4 data1/seq6
data1/seq7 data3/seq1
data2/seq1 data4/seq1
data2/seq2 data4/seq3
data2/seq3 data5/seq1
data3/seq2
data3/seq3
data3/seq4
data3/seq5
data4/seq2
data4/seq4
data4/seq5
data5/seq2
data5/seq3
data5/seq4

EuRoC MAV dataset provides angular velocity and raw acceleration data recorded with an AscTec
Firefly MAV equipped with a ADIS16448 IMU at a sampling rate of 200 Hz. Precise and synchronized
ground truth 6-DOF poses are also provided. The dataset contains 11 sequences, a recording time



Sensors 2019, 19, 3777 7 of 16

of approximately 23 min and a total trajectory length of 894 m. It was adopted the same train and
test splits from [6], which is shown in Table 2, with 6 sequences for the training and 5 sequences for
the testing. Considering the stride of 10 frames for training IMU reading windows, we have a total
amount of 13,122 training samples.

Table 2. Train and test splits of EuRoC MAV dataset.

Training Data Testing Data

MH_01_easy MH_02_easy
MH_03_medium MH_04_difficult
MH_05_difficult V1_03_difficult
V1_02_medium V2_02_medium
V2_01_easy V1_01_easy
V2_03_difficult

In order to generate ground truth data when using spherical coordinates, given a location change
(∆x, ∆y, ∆z) associated to an IMU data window, a previous inclination θt−1 and a previous heading
ψt−1, the corresponding relative pose (∆l, ∆θ, ∆ψ) can be obtained by

∆l =
√

∆x2 + ∆y2 + ∆z2

∆θ = arccos ∆z
∆l − θt−1

∆ψ = arctan ∆y
∆x − ψt−1

, (6)

where ∆θ and ∆ψ are enforced to be within [−π, π]. When the translation vector and quaternion based
representation is used, a relative pose (∆p, ∆q) is computed from previous and current positions and
orientations pt−1, qt−1, pt, qt associated to a given IMU data window as follows:{

∆p = RT(qt−1)(pt − pt−1)

∆q = q∗t−1 ⊗ qt
. (7)

Uniqueness of quaternion ∆q is enforced by constraining it to the upper hemisphere of S3.

3.6. Detail of Training

The Adam optimizer [23] was used with a learning rate of 0.0001. Keras (https://keras.io/) 2.2.4
together with TensorFlow (https://www.tensorflow.org/) 1.13.1 were employed. The training was
done on a single NVIDIA GeForce GTX 1050 Ti GPU with a batch size of 32 samples. The neural
network was trained for 500 epochs. 10% of the training data was used as validation data in the
training. The model with best validation loss throughout training was chosen as the final one for the
testing. Figure 4 shows an example of training and validation loss lines obtained with the proposed
approach. The best validation loss was achieved in epoch #436, which justifies the choice of 500 epochs.

https://keras.io/
https://www.tensorflow.org/
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Figure 4. Training and validation loss of the proposed multi-task learning approach using translation
vector with quaternion as relative pose representation and translation MAE with quaternion
multiplicative error as individual task losses.

4. Results

Quantitative and qualitative evaluations were conducted in order to assess the effectiveness of
the proposed 6-DOF inertial odometry solution.

4.1. OxIOD Handheld Qualitative Evaluation

Table 3 presents the variants of the proposed method that were evaluated using OxIOD handheld
sequences. All of them use LMTL as the final weighted loss function.

Table 3. Evaluation configuration for 6-DOF relative pose representation and individual task losses:
spherical coordinates + mean squared error (SMSE), translation and quaternion + mean squared
error (TQMSE), translation mean absolute error + quaternion multiplicative error (TMAE+QME) and
translation mean absolute error + quaternion inner product (TMAE+QIP).

Configuration 6-DOF Relative Pose Individual Task Losses

SMSE (∆l, ∆θ, ∆ψ) LMSE
TQMSE (∆p, ∆q) LMSE
TMAE+QME (∆p, ∆q) LTMAE, LQME
TMAE+QIP (∆p, ∆q) LTMAE, LQIP

Visual representations of the predicted 3D trajectories using our proposed method for two different
sequences are presented in Figures 5 and 6. Each plot shows aligned ground truth and predicted
trajectories. The trajectories are shown in both top and side perspectives, allowing the assessment of
6-DOF pose estimation. The TMAE+QME configuration clearly obtained the most accurate trajectory,
being able to precisely describe the circular-like path in Figure 5 and obtaining the best results with
a more complex motion shown in Figure 6.
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Figure 5. Top (left column) and side (right column) views of ground truth (blue) and predicted (orange)
trajectories for an excerpt of the “handheld/data5/seq1” dataset using different configurations: SMSE
(first row), TQMSE (second row), TMAE+QME (third row) and TMAE+QIP (fourth row).
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Figure 6. Top (left column) and side (right column) views of ground truth (blue) and predicted
(orange) trajectories for an excerpt of the “handheld/data4/seq3” dataset using different configurations:
SMSE (first row), TQMSE (second row), TMAE+QME (third row) and TMAE+QIP (fourth row).
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4.2. OxIOD Handheld Quantitative Evaluation

In order to quantitatively compare the different configurations in our proposed method,
the root-mean-square error (RMSE) of the predicted trajectories was computed for the excerpts of all
7 test sequences considered. It should be noted that changes in both position and orientation affect the
estimated trajectory. Table 4 lists the name of each sequence used together with the corresponding
RMSE of the trajectory estimated by a given variant of the method. TMAE+QME was the best in most
of the cases. The mean RMSE of TMAE+QME was nearly 60% of both TMAE+QIP and TQMSE and
less than one third of the SMSE one.

Table 4. Comparison of trajectory RMSE in meters for excerpts of the test sequences from OxIOD.

Sequence SMSE TQMSE TMAE+QME TMAE+QIP

data1/seq2 1.832 0.619 0.681 0.632
data1/seq5 2.394 0.667 0.575 1.172
data1/seq6 1.405 0.334 0.615 0.282
data3/seq1 1.453 0.763 0.353 0.470
data4/seq1 1.295 0.894 0.370 1.006
data4/seq3 0.847 1.760 0.518 1.156
data5/seq1 1.328 0.682 0.265 0.825

Mean 1.508 0.817 0.482 0.792

The average 6-DOF relative pose prediction time for all configurations was ≈8 ms. Therefore,
the technique is able to work in an interactive way.

4.3. EuRoC MAV Qualitative Evaluation

Since TMAE+QME was the best one in the tests using the OxIOD handheld datasets, only
this configuration was considered for the evaluations using the EuRoC MAV dataset. Top and side
perspectives of predicted 3D trajectories for all EuROC MAV test sequences using our TMAE+QME
method together with aligned ground truth trajectories are shown in Figure 7. One of the sequences is
depicted in the Supplementary Video. Our TMAE+QME method is able to obtain coherent trajectories,
despite having some error accumulation.
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Figure 7. Top (left column) and side (right column) views of ground truth (blue) and predicted
(orange) trajectories using the TMAE+QME configuration for different test sequences of the EuRoC
MAV dataset: MH_02_easy (first row), MH_04_difficult (second row), V1_03_difficult (third row),
V2_02_medium (fourth row) and V1_01_easy (fifth row).
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4.4. EuRoC MAV Quantitative Evaluation

Table 5 shows the RMSE of the predicted trajectories obtained by our TMAE+QME method for
the 5 test sequences from the EuRoC MAV dataset. Since these sequences are longer, with an average
time of ≈2 min, there is more error accumulation, which explains the increased values with respect to
the OxIOD handheld experiments.

Table 5. Trajectory RMSE in meters for the test sequences from EuRoC MAV dataset.

Sequence TMAE+QME

MH_02_easy 3.307
MH_04_difficult 5.199
V1_03_difficult 5.329
V2_02_medium 2.897
V1_01_easy 8.166

Mean 4.980

We also compared MAE and RMSE for magnitude of translation changes over windows of
10 frames with the values reported in [6]. Our TMAE+QME results are compared with SINS, IONet [5],
VINet [11], and AbolDeepIO2 [6] in Table 6. Our TMAE+QME method outperformed competing
techniques in almost all of the cases. The overall MAE and RMSE of our TMAE+QME approach were
≈70% of the best competing method, which was AbolDeepIO2. The magnitude of rotation changes
over windows of frames are also reported in [6]. Nevertheless, it was not possible to compare our
TMAE+QME results with them, since we use unit quaternions for representing orientation, so their
magnitude is always equals to one.

Table 6. Comparison of MAE/RMSE for magnitude of translation change over 10 IMU frames using
the test sequences from EuRoC MAV dataset.

Sequence SINS IONet VINet AbolDeepIO2 TMAE+QME

MH_02_easy 0.0212/0.0251 0.0115/0.0140 0.0116/0.0143 0.0095/0.0125 0.0077/0.0101
MH_04_difficult 0.0437/0.0544 0.0274/0.0350 0.0293/0.0376 0.0199/0.0265 0.0092/0.0127
V1_03_difficult 0.0346/0.0399 0.0167/0.0218 0.0172/0.0222 0.0137/0.0176 0.0130/0.0177
V2_02_medium 0.0337/0.0387 0.0159/0.0199 0.0166/0.0209 0.0158/0.0202 0.0131/0.0170
V1_01_easy 0.0172/0.0198 0.0137/0.0169 0.0112/0.0135 0.0122/0.0150 0.0075/0.0099
All 0.0286/0.0358 0.0164/0.0217 0.0163/0.0221 0.0138/0.0183 0.0098/0.0135

4.5. Limitation

Different from [14,15], no position fixes nor manual loop closures were used by our method
in any of the experiments. Due to this, error accumulation occurred in the estimated trajectories
when handling some long sequences, especially in the Z position coordinates. Figure 8 and
the Supplementary Video illustrates this, where the predicted trajectory using the TMAE+QME
configuration for a 1-minute sequence is compared with the ground truth. It is possible to note an
increased error in the position estimates along the Z axis. We were not able to establish a relationship
between trial dynamics and observed errors. For example, in the EuRoC MAV dataset, MH_04_difficult
and V1_03_difficult present fast motion and obtained the second and third worst errors, but the worst
results were obtained with the V1_01_easy sequence, which exhibits slow motion. In addition, the tests
with the V2_02_medium sequence, which presents fast motion, showed the best results. We should
also have in mind that, since all the OxIOD handheld sequences used for training were collected by the
same user and with the same device and motion model, problems may be experienced when testing
with different users/devices/motion models.
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Figure 8. Top (first column) and side (second column) views of ground truth (blue) and
predicted (orange) trajectories for 1 minute of the “handheld/data4/seq1” sequence using the
TMAE+QME configuration.

5. Conclusions

It was presented an odometry technique that works in an end-to-end manner and is able to
successfully provide 6-DOF relative pose estimates using solely noisy and biased inertial data obtained
from a low-cost IMU. The proposed approach is based on convolutional layers combined with
a two-layer stacked bidirectional LSTM deep learning model. In addition, a multi-task learning
approach was adopted, which automatically finds the best weights for the individual losses associated
to rotation and translation. The translation vector with unit quaternion 6-DOF based relative pose
representation provided better predicted trajectories than the spherical coordinate ones in all the tests.
Regarding the loss functions, best results were obtained when using translation MAE and quaternion
multiplicative error, respectively. The conducted experiments showed that the proposed method was
superior to state-of-the-art inertial odometry techniques.

As future work, we plan to tackle the error accumulation issue in some long sequences by
performing a visual update to the 6-DOF inertial odometry, similar to PIVO [13]. However, this update
does not need to happen at every camera frame. It can be done over frame batches or only when
there is a sufficient level of certainty in the visual information. This would make the system to trust
more on the purely inertial odometry in scenarios when there are not many reliable visual features.
It would also allow to save processing time and energy consumption. Investigations will be performed
regarding the use of traditional approaches for computing orientation such as [24] together with
translation regression using deep learning to check if this would yield better results. Although OxIOD
also provides magnetometer data, from our experience such information is less reliable due to noise
caused by magnetic fields from electrical devices. Nevertheless, other strategies such as zero-velocity
updates (ZUPTs) can be adopted to improve trajectory estimation when the system becomes stationary,
as done in [14]. We also plan to perform domain adaptation using a generative adversarial network
(GAN) in order to better handle data collected by different users and with different devices and motion
models [25].
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