
Translating Lung Microbiome Profiles into the Next-
Generation Diagnostic Gold Standard for Pneumonia: a
Clinical Investigator’s Perspective

Georgios D. Kitsiosa,b

aDivision of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh
School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA

bCenter for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

ABSTRACT Severe bacterial pneumonia is a major global cause of morbidity and
mortality, yet current diagnostic approaches rely on identification of causative
pathogens by cultures, which require extended incubation periods and often fail to
detect relevant pathogens. Consequently, patients are prescribed broad-spectrum
antibiotics in a “one-size-fits-all” manner, which may be inappropriate for their indi-
vidual needs and promote antibiotic resistance. My research focuses on leveraging
next-generation sequencing of microbial DNA directly from patient samples for the
development of new, culture-independent definitions of pneumonia. In this perspec-
tive article, I discuss the current state of the field and focus on the conceptual and
research design challenges for clinical translation. With ongoing technological ad-
vancements and application of computational biology methods for assessing clinical
validity and utility, I anticipate that sequencing-based diagnostics will soon be able
to positively disrupt the way we think about, diagnose, and treat pulmonary infec-
tions.
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SCOPE OF THE CLINICAL PROBLEM

In caring for patients with severe pneumonia in the intensive care unit (ICU), I am
routinely faced with the frustrating challenges familiar to all clinicians treating

infections: “What is the causative pathogen? Are we using the right antibiotics? Did the
sputum culture results ever come back? No pathogen identified, but our patient is not
getting better . . . Have we actually ruled out an infection? Is our patient going to
recover from this?” Critical questions that frequently cannot be answered at the
bedside. The root cause of the problem stems from our reliance on culture-based
diagnostic tests that are neither sensitive nor fast enough to guide precise and timely
treatment, resulting in empirical, suboptimal care for individual patients.

With substantial diagnostic limitations, it is not surprising that severe pneumonia
has high mortality rates from 20 to 50% and long-term morbidity in ICU survivors (1).
For patients presenting with fevers, sputum purulence, hypoxia, and an abnormal chest
radiograph, an infectious bacterial pneumonia is rightly on top of the differential
diagnosis. Along with collection of microbiologic culture specimens (respiratory secre-
tions and/or blood samples), prompt initiation of empirical antibiotics is imperative, as
even small delays translate into measurable increases in mortality (2). Following this
initial encounter of clinical syndrome recognition and response, precise identification of
the culprit pathogen (and its antimicrobial susceptibility) is needed to tailor further
therapy. However, cultures require long incubation periods of 48 to 72 h to provide
actionable results, and they frequently fail to define a causative organism (in up to 60%
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of cases despite systematic workup) (3), offering no specific guidance to clinicians
(Fig. 1A). The resultant untailored, broad-spectrum antibiotics (typically targeting Gram-
positive/negative and atypical bacteria) can be disproportionately intense, inadequate,
or entirely unnecessary, depending on the causative microbial agent (4). Such intense
regimens also increase the risk of toxicity, ablate indigenous protective microbiota
leading to secondary infections such as Clostridium difficile colitis, and most concerning
of all, apply selective pressure for emergence of multiresistant microbial strains, a major
public health threat (5). Thus, the ability to efficiently and precisely target antibiotics is
an unmet critical need in the care of severe pneumonia in the ICU, which has fueled my
interest in leveraging the lung microbiome study tools for this purpose.

RESPIRATORY MICROBIOME RESEARCH IN THE ICU

The recent wave of human lung microbiome research was made possible by the
development of next-generation sequencing (NGS) techniques. Without the need for ex
vivo growth and isolation of microbial species, amplicon-based sequencing of the
highly conserved 16S rRNA gene (16S sequencing) in bacteria has uncovered bacterial

FIG 1 Stepwise clinical translation of next-generation sequencing (NGS) diagnostics for pneumonia. (A)
Scope of the clinical problem, as delays or the inability to establish an etiologic diagnosis of bacterial
pneumonia based on culture results lead to empirical one-size-fits-all antibiotic regimens. (B) Current
state of research in the field with comparisons of either point-of-care or standard sequencing device
outputs with clinical, culture-based diagnoses of pneumonia. The lack of a diagnostic gold standard
limits our ability to assess the diagnostic performance of NGS in this context. (C) Clinical validity
assessment of NGS output (and specifically metagenomic sequencing) against construction of a gold
standard (incorporating clinical variables, vital signs, chest radiography scores, culture results, and
validated biomarkers of injury and inflammation) with the use of machine-learning algorithms to develop
a sequencing-based definition of pneumonia (pneumonia index). (D) Clinical utility assessment of the
developed pneumonia index in a randomized clinical trial design of NGS (metagenomics) versus
standard-of-care cultures for assessment of NGS impact on antibiotic prescriptions and clinical outcomes.
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communities in respiratory health and disease that are low in biomass but complex in
composition, debunking long-held dogmas of “lung sterility” (6).

In proof-of-concept examinations of the validity of 16S sequencing as a diagnostic
tool for pneumonia, my group (7) and others (8) have demonstrated that respiratory
samples from intubated patients with pneumonia have profiles of low alpha diversity
and dominance by taxa corresponding to clinically significant pathogenic organisms
isolated in cultures, such as Staphylococcus aureus and Klebsiella pneumoniae. 16S
sequencing has also afforded us with first-time surveys of the composition of the
diagnostic “black box” that culture-negative cases represent: in our cohort, about 20%
of communities are dominated by common pathogens (yet missed by cultures), and the
remaining majority of cases show high abundance of bacteria with probable oral origin
(e.g., Prevotella, Veillonella, etc.) (9), challenging our conventional thinking of pneumo-
nia pathogenesis and the presumptive clinical diagnosis (7). Despite these novel
insights into the ecology of pneumonia, 16S sequencing cannot be deployed quickly
enough for clinical applications and does not provide information on bacterial species/
strains, antibiotic resistance, or nonbacterial pathogens.

To overcome the limitations of 16S sequencing, whole metacommunity shotgun
sequencing of DNA (metagenomics) or RNA (metatranscriptomics) has begun to be
applied to respiratory samples to capture the wide microorganismal breadth and
coding potential of pathogens with metagenomics (10, 11) and the functional activity
of communities with metatranscriptomics (12, 13). With the advent of rapid, point-of-
care (POC) sequencing devices (nanopore sequencing; Oxford Nanopore Technologies),
bedside pathogen identification and antibiotic resistance prediction may become
feasible in a matter of hours (14). In proof-of-concept case reports, investigators used
nanopore sequencing competing against the clinical microbiology lab to determine
who defines the causative pathogen first, and indeed they won by detecting pathogen
sequences several hours before cultures provided a diagnostic signal (15). Apart from
their potential for faster diagnosis, shotgun approaches offer an unprecedented op-
portunity for “hypothesis-free” diagnostics: with “agnostic” interrogation of metacom-
munity members (including viruses, fungi, or parasites), metagenomics/transcriptomics
can expand our knowledge of pathogenic organisms (16), characterize poorly defined
clinical syndromes (17, 18), and help identify emerging disease entities (19) across the
spectrum of human pathology. However, shotgun approaches have yet to be optimized
for application in respiratory samples with overwhelming amounts of human DNA
compared to microbial DNA (ratio of up to 99:1) that compromise signal and analyses
(11).

Shotgun approaches are not ready for clinical prime time, not just due to technical
challenges but also because we still lack the diagnostic test framework to utilize their
output. Feeding sequencing reports to clinicians without the obligatory (but yet to be
developed) interpretive decision support would stir more confusion and clinically
inappropriate decision making. As a clinical investigator, I am looking at the future
research needs and the type of clinical studies that will allow us to develop actionable
diagnostic tests, with a primary focus on metagenomics for the diagnosis of bacterial
pneumonias that mandate targeted antibiotic therapies.

CHALLENGES ON THE WAY TO CLINICAL TRANSLATION

Creating a clinically useful diagnostic test based on metagenomics needs to over-
come several technological, practical, and cost-related challenges, including but not
limited to sample preparation optimization, minimization of hands-on time, sequencing
error reduction, and streamlining of analytical pipelines. Whereas such tasks are not
trivial, I expect that with alignment of academic and industry interests in this field, the
technical capacities of rapid sequencing devices will continue to evolve with measur-
able improvements in fidelity, resolution, timeliness, and cost-effectiveness within the
next 5 years (20, 21). Such advancements hold the potential to change diagnostic
paradigms not only for pulmonary infections but also for several infectious diseases
where culture-based diagnostic approaches are currently being used (16–18). None-
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theless, from a clinical translation standpoint, the question remains: how can we move
from sequencing outputs to a clinically actionable test result?

This is a formidable challenge, not unique to critical care or pulmonary infec-
tions: diagnostic performance in the absence of a gold standard, or rather, in the
presence of a standard of care that is not golden (22). Metagenomic sequencing
directly from patient samples can comprehensively detect viable, dead, or fastidious
bacteria, whereas clinical microbiologic cultures can effectively grow only the
subset of cultivable bacteria that have not been inhibited or killed by antecedent
antibiotic administration. Given that metagenomics is a far more sensitive technol-
ogy, conventional sensitivity/specificity analyses contrasting metagenomics with
cultures are meaningless (Fig. 1B). At the same time, this “ultrasensitivity” of
metagenomics can create reporting problems, as the detection of commensal
communities or bacteria not typically considered pathogenic will require context-
specific interpretation of their “pathogenicity” or lack thereof. To overcome these
diagnostic framework challenges, we ought to apply more advanced methods for
assessing clinical validity and utility (22).

A TRANSLATIONAL ROADMAP AHEAD
Clinical validity assessment: Can metagenomics identify the correct pathogen

in pneumonia cases? To answer the clinical validity question, the main prerequisite is
knowledge of the true pathogen(s) in pneumonia, which can be unavailable in up to
60% of cases despite systematic workup (3). Thus, analyses have to be split into those
with a known answer versus unknown answer.

Pathogen-confirmed cases (by cultures or rarely ancillary antigenic/antibody testing)
allow for direct comparisons to derive diagnostic thresholds of sequencing output (e.g.,
number of specific pathogen reads, community diversity indices) associated with
bacterial culture positivity above clinically accepted thresholds (e.g. �10�4 CFU).
Culture-positive cases also offer the opportunity to refine predictive algorithms of
antibiotic resistance gene detection versus clinical antibiograms (14), so that real-time
antibiotic recommendations would become feasible. Consequently, observational stud-
ies of culture-confirmed cases can help develop statistical models and/or train machine-
learning algorithms for sequencing-based definitions of pneumonia (pneumonia in-
dex).

In culture-negative cases, the true pathogen (if any) is unknown, and diagnosis is
syndromic based on clinical constellations. To interpret the metagenomic bacterial
signal in these cases, we need to refine the clinical reference standard with synthesis of
multilevel data. These data can include clinical variables (e.g., vital signs, leukocytosis,
sputum purulence), chest radiography scores, validated biomarkers of host inflamma-
tion (e.g., interleukin-6 and -8), alveolar epithelial injury (receptor of advanced glycation
products [RAGE]), and infectious responses (procalcitonin) to be combined in “construct
gold standard” pneumonia definitions. Such definitions can emerge either from super-
vised learning (involving expert input) of clear-cut cases (on the two ends of the
pneumonia diagnosis distribution) or unsupervised classification methods identifying
phenotypic classes directly from metagenomic and clinical data (22–24). With iterative
training, metagenomic profiles can be translated into probabilities of pneumonia
diagnosis, also incorporating prior probabilities learned from the reference culture-
positive profiles. At the end of such complex algorithms, the output has to be simple
and binary in order to be clinically usable: “Pneumonia by Pathogen X” or “No
Pneumonia” (Fig. 1C).

Clinical utility assessment: Does use of metagenomics in clinical practice result
in better outcomes? Demonstration of clinical efficacy for improving patient outcomes
is the ultimate determinant for clinical adoption of any diagnostic test, regardless of its
sophistication. The idea of “genetic exceptionalism,” i.e., the belief that genetic infor-
mation is uniquely important for disease prediction over other clinically available
information, did not prove to be conducive for clinical translation of genomics (25).
Similarly, microbiome-based approaches have to reach standard thresholds of scientific
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evidence rigor to be recommended for use. Thus, metagenomics-based diagnostic tests
have to be compared against standard-of-care microbiologic cultures in randomized
clinical trials, anticipating that improved diagnostic accuracy with sequencing would
cut down empirical and unnecessary antibiotics and result in improved (or at least
noninferior) clinical response outcomes.

CONCLUSIONS

The advent of NGS and the microbiome scientific field offer revolutionizing oppor-
tunities for entering a new, culture-independent epoch of clinical thinking, definitions,
and management of infectious diseases. Ongoing technological and bioinformatic
innovations, coupled with smart clinical testing and sophisticated computational biol-
ogy analytics, will hopefully bring to the bedside the next-generation diagnostic tools
for timely, targeted and precise antibiotic use in the ICU. Despite the challenges on the
way to this culture-independent era, “the Rubicon has been crossed.”
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