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Quantum metrology with parametric amplifier-
based photon correlation interferometers
F. Hudelist1, Jia Kong1, Cunjin Liu1, Jietai Jing1, Z.Y. Ou1,2 & Weiping Zhang1

Conventional interferometers usually utilize beam splitters for wave splitting and recombi-

nation. These interferometers are widely used for precision measurement. Their sensitivity

for phase measurement is limited by the shot noise, which can be suppressed with squeezed

states of light. Here we study a new type of interferometer in which the beam splitting and

recombination elements are parametric amplifiers. We observe an improvement of

4.1±0.3 dB in signal-to-noise ratio compared with a conventional interferometer under the

same operating condition, which is a 1.6-fold enhancement in rms phase measurement

sensitivity beyond the shot noise limit. The improvement is due to signal enhancement.

Combined with the squeezed state technique for shot noise suppression, this interferometer

promises further improvement in sensitivity. Furthermore, because nonlinear processes are

involved in this interferometer, we can couple a variety of different waves and form new types

of hybrid interferometers, opening a door for many applications in metrology.
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I
nterferometers are such fundamental devices that they are the
irreplaceable elements in precision measurement and have
wide applications in modern metrology1. The state of the art is

the laser interferometer for gravitational wave detection2.
However, because of the vacuum quantum noise injected into
the unused port, the sensitivity of the interferometers in precision
phase measurement is limited to the shot noise limit (SNL):
DjSNL¼ 1/

ffiffiffiffi
N
p

with N as the photon number sensing the phase
change3,4. The SNL is also known sometimes as the standard
quantum limit (SQL), which is set for interferometry with
classical fields. It was pointed out by Caves3 that the vacuum
noise can be suppressed by using the squeezed state of light.
Soon after, sub-SNL interferometry was demonstrated
experimentally5,6. Recently, such a strategy was applied to the
laser interferometers for gravitational wave detection in a
prototype device7 and in GEO600 (ref. 8). Following this
approach, different types of quantum states9 with special noise
behaviour are studied for quantum noise suppression to improve
the sensitivity of a conventional interferometer (CI). Quantum
entanglement, which allows the correlation of quantum
fluctuations of distinct systems, can also be used to subtract out
quantum noise via quantum destructive interference10,11.

Reducing noise is the most straightforward way to increase the
sensitivity of an interferometer. On the other hand, the sensitivity
of an interferometer can also be improved by signal enhance-
ment. This is the approach in recent research using the so-called
NOON state, a photon number maximally entangled state, for
improving phase measurement sensitivity12–14. The NOON states
produce an interference fringe with super resolution that is more
sensitive to phase change than CIs15. The Heisenberg limit, with a
phase measurement sensitivity of DjHL¼ 1/N, can be reached
with this strategy in principle. It was claimed and experimentally
shown that the SQL can be beaten by a projected NOON state
with post-selection detection16. However, a further analysis shows
that challenges still exist for surpassing the SQL with post-
selection17. NOON-state interferometry beyond four photons was
also demonstrated18. However, difficulty in obtaining NOON
states with larger photon numbers hinders the practical
applications of such a scheme.

CIs use beam splitters or the equivalent as the basic elements.
A non-conventional approach for interferometry was adopted by
Yurke et al.19, who, in the quest for the Heisenberg limit,
proposed to use parametric processes for wave splitting and
recombination to form a non-conventional SU(1,1) inter-
ferometer. A similar approach was used by Jacobson et al.20

who used a cavity-QED device to split a coherent state into a
Schrödinger cat-like superposition state. Ou21 also proposed to
use a hypothetical interaction to split an N-photon state into a
NOON state. Such an interaction was later realized by Leibfried
et al.22 via a quantum simulator in a trapped ion system. This was
the first realization of a non-conventional interferometer (NCI)
even though the quantum number is small (3 at most).

It should be noted that recently there is another class of
interferometers that measures a ‘nonlinear’ phase shift23–26,
which is induced in a nonlinear process. The phase measured
there is totally different from the phase we measured here and has
a sensitivity limit that follows different photon number scaling
laws24–26. Moreover, the interferometrical technique used there is
still the conventional one using beam splitters.

In this Article, we report the experimental implementation of
the SU(1,1) NCI with parametric amplifiers for precision phase
measurement. However, different from the original proposal by
Yurke et al.19, which also suffers the shortcomings of low photon
number, we adopt a variation proposed by Plick et al.27 to use
coherent state injection for photon number ‘boost’. We initially
reported its classical version28. Here we concentrate on the

quantum nature of its performance. We find that the fringe size
(that is, the peak-to-peak output intensity) of the interferometer
is increased via parametric amplification while the noise level is
kept low, close to vacuum noise level, due to destructive quantum
interference. We compare the performance of our NCI with a
conventional Mach–Zehnder (MZ) interferometer and observe an
improvement of 4.1 dB in signal-to-noise ratio under the same
phase-sensing intensity conditions. As a CI operates at the SNL,
the phase measurement sensitivity of our NCI beats the SNL by a
factor of 1.6 in root-mean-square value (rms). The enhancement
is mostly limited by the losses inside the interferometer, but
unlike the squeezed state scheme, our interferometer is less
sensitive to the external losses such as detector inefficiency. Like
the NOON-state scheme, the improvement in sensitivity in our
approach here is because of the increase in the signal related to
the phase change with an amplified fringe. However, our scheme
is not limited by photon number.

Results
Comparison between different types of interferometers. As
mentioned before, the increase in phase measurement sensitivity
in the NCI is not due to noise reduction but due to signal
enhancement. In order to demonstrate this, we experimentally
compare it with a CI, which works at the SNL. As the SNL is
related to the phase-sensing photon number. We make the
comparison under the same condition of phase-sensing light
intensity.

We first look at the principle of operation for the two kinds of
interferometers. The schematic diagrams of an SU(1,1) NCI and a
conventional MZ interferometer (CI) are shown in Fig. 1a,b. For
the NCI, beam splitters are replaced by parametric amplifiers
(PA1, PA2), which amplify the incoming ‘signal’ field ain
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Figure 1 | Schematic diagram and interference fringes for two types of

interferometers. (a) An SU(1,1) NCI; (b) a conventional MZ interferometer.

PA, parametric amplifier; G,g, amplitude gains of PAs; j, overall phase shift;

d, small phase change; I0, average input intensity; Ips, the intensity that

senses the phase change; HD, homodyne detection. (c) The interference

fringes at the outputs of the NCI (blue) and the CI (red) with the same

phase-sensing intensity INCI
ps ¼ ICI

ps¼ 60mW. The fringe enhancement of NCI

to CI is BS¼ 5.5¼ 7.4 dB.
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produce a correlated ‘idler’ field through nonlinear interaction.
The ‘idler’ input field is labelled as ain

i and is in vacuum. In the
present realization of NCI, the parametric amplifier is based on
non-degenerate four-wave mixing in hot Rb-85 atomic vapour
cells29 (see Methods for the details of the experimental
arrangement). A full quantum analysis of the NCI is presented
in ref. 30. For completeness, we briefly present it here. The input–
output relation for a parametric amplifier is given by:

âs ¼ Gâin
s þ gâiny

i ; âi ¼ Gâin
i þ gâiny

s ; ð1Þ
where G is the amplitude gain and g2¼G2� 1. With an overall
phase shift j in the idler arm, we obtain the output fields of the
interferometer:

âout
s ¼ �GðjÞâin

s þ �gðjÞâiny
i ; âout

i ¼ �GðjÞâin
i þ �gðjÞâiny

s ; ð2Þ
with �G(j)¼G2e� ijþ g2, �g(j)¼Gg(1þ e� ij) as the phase-
sensitive gains. For a coherent state |ai injected in the signal input
and vacuum in the idler input, we obtain the output intensity in
the idler port or one of the outputs of the NCI as

INCI ¼ hâouty
i âout

i i ¼ 2G2g2ð ja j 2 þ 1Þð1þ cosjÞ

¼ 2G2INCI
ps ð1þ cosjÞ; ð3Þ

where INCI
ps � g2(INCI

0 þ 1) is the intensity of the phase-sensing
field (idler field in Fig. 1a) with INCI

0 �|a|2 as the input intensity.
For INCI

0 441, INCI
ps Eg2INCI

0 . A conventional MZ interferometer
shown in Fig. 1b, on the other hand, has a fringe given by

ICI ¼ hâouty
1 âout

1 i ¼ ICI
ps ð1þ cosjÞ ð4Þ

with 50:50 beam splitters and a coherent state |ai input.
INCI

ps �ICI
0 /2¼ |a|2/2 is the phase-sensing intensity for the CI.

Since the sensitivity of an interferometer is related to the photon
number inside the interferometer, for a fair comparison between
NCI and CI, we set INCI

ps ¼ ICI
ps , which can be achieved by adjusting

INCI
0 ,ICI

0 independently. Therefore, we see from equations (3) and
(4) that, under the condition of the same phase-sensing intensity,
the output of the NCI is 2G2 times that of the CI.

The increase in the signal for the NCI in Fig. 1a is not
surprising because of the amplification within the interferometer.
However, as is well known, for any amplifier, the amplification of
signal is also accompanied by the amplification of the noise. So,
the signal-to-noise ratio at best does not change in the process31.
Fortunately, it is not the case for the NCI discussed here. From
equation (2), at dark fringe when j¼ (2nþ 1)p, we have
âout

i ¼ âin
i . However, since âin

i is in vacuum, the output of the
NCI is at vacuum noise level, just like the CI at dark fringe. Thus,
the signal in the NCI is increased while the noise level is not and
we should expect an enhancement of 2G2 in signal-to-noise ratio
of the NCI over the CI. What happens here for the NCI is that
although each amplifier increases signal and noise together, the
first parametric amplifier (PA1) produces two fields (two arms of
the NCI) that are quantum mechanically entangled32–34 so that
their noises are also correlated, and a destructive interference
occurs at the second parametric amplifier (PA2) when the
interferometer is operated at dark fringe so that most of the
amplified noise from PA1 are cancelled and only the vacuum
noise is left35. Therefore, the NCI increases the signal while it
keeps the noise unchanged, leading to an enhancement in signal-
to-noise ratio for phase measurement as compared with the CI.

Experimental results. Figure 1c shows the interference fringes
observed for both NCI and CI with the same phase-sensing
intensity INCI

ps ¼ ICI
ps . The fringe size of the NCI is bigger than that

of the CI because of the amplification at PA2, which leads to an

enhancement in the phase signal. This is the key difference
between an NCI and a CI. When operated at dark fringe with a
small phase change: j¼ (2nþ 1)pþ d (doo1, n¼ integer), we
obtain from equations (3) and (4) the change in the output
intensities of the two interferometers due to d as:

DINCI � 2G2INCI
ps d2; DICI � ICI

ps d
2: ð5Þ

So, the signal is enhanced by BS�DINCI/DICI¼ 2G2 for the
same d and INCI

ps ¼ ICI
ps . The fringe enhancement in Fig. 1c is

BS¼ 5.5¼ 7.4 dB.
The noise performance of the NCI is measured by homodyne

detection (HD) method at the idler output port, as shown in
Fig. 1a. The results are shown in Fig. 2 together with their graphic
representation. The trace in dark blue in Fig. 2c shows the noise
level at the output of the NCI when the phase is scanned. The
minimum noise occurs at dark fringe when there is a destructive
quantum interference at PA2. This is in contrast to the trace in
yellow when one arm of the NCI is blocked and there is no
interference effect. The trace in yellow corresponds to two
uncorrelated amplifiers in series, as depicted in Fig. 2b. The traces
in green and dark brown respectively show the noise levels for
individual amplifiers when the other one is not active. Notice that
at some phases, the output noise level (the trace in dark blue) of
the NCI is even lower than the amplified noise levels of individual
amplifiers (the traces in green and dark brown) as a result of
noise cancelation.

The traces in light blue and red in Fig. 2c respectively show the
measured noise levels at dark fringe setting for the NCI and the
CI under the same condition when the fringes in Fig. 1c are
measured. The observed noise level for the NCI is 3.3±0.3 dB
higher than that of the CI. This is not what is predicted in
previous paragraphs, that is, the noise level of the NCI is the same
as that of the CI at the vacuum noise level. The higher measured
output noise of the NCI is due to internal losses of the
interferometer (more on this later). Even so, combined with the
7.4 dB of signal enhancement from Fig. 1c (it was shown in ref. 30
that the signal due to a small phase shift d in HD of an
interferometer has the same form as that in direct intensity
detection), we still obtain an enhancement of 4.1±0.3 dB in
signal-to-noise ratio for the NCI over the CI, that is, SNRNCI/
SNRCI¼ 4.1 dB¼ 2.5. From equation (5), we know that the signal
is proportional to d2, whereas the noise measured in the
experiment is the noise power. So, we have the phase
measurement sensitivity as dNCI

min ¼ dCI
min=

ffiffiffiffiffiffi
2:5
p

in rms value. As
the CI has a phase measurement sensitivity at SNL3, our NCI
beats the shot noise level by a factor of

ffiffiffiffiffiffi
2:5
p

¼ 1.6 in rms value.
The simple theory in the previous part does not include losses

in the system and predicts the continuous increase of the SNR
with the gain of the amplifiers. Losses, however, will introduce
extra vacuum noise, which is also amplified by PA1 and PA2 but
is not correlated and cannot be cancelled, thus leading to higher
noise level for the NCI than the CI but at a manageable level, as
observed in Fig. 2c. The extra amplified vacuum noise will
increase with the gain of the amplifiers in the same way as the
phase signal. Therefore, this makes SNR independent of the gain
at high gain30. This effect is shown in Fig. 3 where we plot in blue
diamond shape the ratio of the output noise level of the
interferometer at dark fringe (the light blue trace in Fig. 2c) to
the vacuum noise level (the red trace in Fig. 2c) as a function of
the average noise gain of individual amplifiers (the traces in green
and dark brown in Fig. 2c). Since the vacuum noise level is also
the output noise level of the CI at dark fringe, this is also the noise
level ratio of the NCI to the CI. Shown also in Fig. 3 in black
square shape are the ratio of the signal level of the NCI to that of
the CI, or the signal enhancement factor BS extracted from the
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fringes similar to Fig. 1c. Therefore, the ratio of the black square
to the blue diamond gives the enhancement of the signal-to-noise
ratio of the NCI over the CI, which is shown as red triangle in
Fig. 3. As seen in the figure, both the signal enhancement factor
(black) and the noise level (blue) at the output increase with the
amplifier gain in about the same rate at high gain. So, the signal-
to-noise improvement factor (red) levels out at a gain of B4 dB,
in qualitative agreement with ref. 30.

Next, we characterize the effect of losses on the performance of
the NCI by introducing some extra losses. First, we place an
attenuator with loss L in front of the homodyne detector and vary

the attenuation. Figure 4a shows the results. We can model the
attenuator by a beam splitter of transmission 1� L. Then, the
signal enhancement factor BS and noise N above vacuum noise
level after the attenuator will change with the loss L by

BS ¼ BS0ð1� LÞ; N ¼ N0ð1� LÞþ L; ð6Þ
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where BS0 and N0 are the respective values before the attenuator.
So, the signal-to-noise ratio after the attenuator becomes

SNR ¼ BS0=N0½1þ L=N0ð1� LÞ�: ð7Þ
The solid lines in Fig. 4a are fitted to equations (6) and (7) with

BS0¼ 7.5 dB and N0¼ 3.2 dB. So, the signal-to-noise improve-
ment factor does not change much at small loss for large N0. This
is well known for amplification process: the amplified noise is
above the vacuum level so that the noise will decrease under loss
just like the signal, making SNR less sensitive to external losses.
This is quite different from the squeezed state scheme5,6 in which
the improvement will suffer under loss. For large loss, however,
SNR will drop with the increase of the loss because the noise level
is mostly vacuum noise already and won’t decrease further.

For the effect of internal loss, we place a variable attenuator in
the paths of both arms of the NCI. We need to readjust the gain
of PA2 to re-balance the interferometer so that it produces fringe
visibility close to 100%. In the meantime, gain balancing also
leads to optimized output noise levels shown Fig. 4b. As seen in
Fig. 4b, the output noise level (blue diamond) increases as the loss
increases—more uncorrelated vacuum noise enters the inter-
ferometer and gets amplified. However, the signal size (black
square) drops for increased loss. Therefore, the improvement
factor in signal-to-noise ratio decreases more quickly with
internal loss (Fig. 4b) than with external loss (Fig. 4a). The effect
of internal loss on the NCI is complicated so we cannot fit the
data to a theoretical prediction. However, the general trend is
correct qualitatively.

Discussions
We have demonstrated an SU(1,1) NCI with 4 dB improvement
in signal-to-noise ratio in phase measurement over a CI operated
under the same condition. The improvement is mostly limited by
the loss inside the interferometer and is less sensitive to external
loss than the squeezed state method. The improvement in signal-
to-noise ratio comes from the increase in signal rather than the
reduction of noise. Furthermore, if we inject squeezed states into
the unused idler input port of PA1 (see Fig. 1a), reduction of the
noise of the interferometer is possible, leading to further
improvement of signal-to-noise ratio. Therefore, the current
scheme and the squeezed state scheme are complementary to
each other.

Notice that our NCI involves amplification of the input field
whereas a conventional MZ interferometer (CI) does not.

Therefore, it seems that the NCI uses more resources than the
CI. However, according to refs 21,25, it is the photon number of
the phase probing field that counts for the limit of sensitivity.
Therefore, when we compare the performance of our NCI with
the CI, we make sure that the light fields probing the phase
change have the same intensity in both NCI and CI.

When we reduce the intensity of the injected coherent state,
this interferometer will approach to the originally proposed
SU(1,1) interferometer by Yurke et al.19, which can have a phase
measurement sensitivity reaching the Heisenberg limit. Our
simple theoretical model shows that the sensitivity improvement
increases with the gain. However, as we have shown in Fig. 3, the
internal loss of the interferometer is the main limiting factor in
achieving higher sensitivity at higher gain. This is consistent with
the results of ref. 30 and Demkowicz-Dobrzanski et al.36

Then, it is natural to ask what kind of phase measurement
sensitivity limit we can reach in our new interferometer. To
answer that, we need to use Fisher information estimation
method37. Unfortunately, our measurement technique, that is, the
HD method, does not allow us to perform an analysis with Fisher
information method, which requires photon counting technique.
Phase estimate with Fisher information method for this new type
of interferometer will be the topic in future researches. What we
did in current work is to compare the performance of our new
interferometer with a conventional MZ interferometer, which has
the well-known SNL (1/

ffiffiffiffi
N
p

-dependence for phase measurement
uncertainty), and show a 4-dB improvement in signal-to-noise
ratio.

The use of a nonlinear process to mix the signal and idler fields
means that the two fields may have different frequencies. Indeed,
in our experiment, the frequency difference between the signal
and the idler fields is B6 GHz. In fact, they may not necessarily
be the same type of waves. This opens up a new way to construct
hybrid interferometers involving different waves and thus
broadens the scope of precision measurement involving
interferometry.

Methods
Detailed experimental arrangement. The detailed experimental arrangement is
shown in Fig. 5. The two parametric amplifiers (PA1, PA2) employed for the NCI
as shown in Fig. 1a are based on non-degenerate four-wave mixing process in two
hot Rb-85 atomic vapour cells temperature-stabilized at 117 �C (ref. 29); see
inset of Fig. 5 for energy diagram of relevant components). They are respectively
pumped by a vertically polarized beam (P1, P3) at a maximum power of
400 mW with a waist of 500mm. The pump beams are from a Ti:sapphire laser
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frequency-stabilized to a stable reference cavity. The pump beams are detuned
about 0.8 GHz above the transition line of Rb-85 F¼ 2-F0 at 795 nm. The pump
power can be adjusted with a combination of polarization beam splitters (PBS) and
half-wave plates. A horizontally polarized seed beam (also known as ‘signal’) with
waist of 200 mm is injected with an angle of 0.4� relative to the pump. The ‘signal’
beam is 3.04 GHz red shifted from the pump beam by an acousto-optic modulator
in double-pass configuration. The pump and signal beams are combined with a
Glan-laser PBS before being sent into the atomic cell. At the output of the atomic
cell, the seed signal beam is amplified with a gain that depends on the power and
frequency detuning of the pump beam. The amplification of the signal beam is
accompanied by a conjugate beam (called ‘idler’) with a frequency of 3.04 GHz blue
shift from the pump at the other side of the pump beam. The second cell is
identical to the first one except that both the signal and the idler fields have inputs
that are from the first cell. A 4-F imaging system (L1, L2) is used to mode match
the fields of the two cells.

A CI of MZ type is formed in the path of the idler field with a pair of flipping
PBS (PBS1, PBS2) and a beam-redirecting mirror. In this way, minimum alignment
is required to switch between CI and NCI. We block the signal arm and the pump
to cell 2 (P3) when we operate the CI. A PZT-mounted mirror (PZT) is placed in
both interferometers as the phase modulator so that we can compare the
performance of both interferometers under the same phase change. Since the PBS
splits the idler beam into two equal parts in the CI and reduces the phase-sensing
intensity to half, we need to increase the injected signal at cell 1 to bring the phase-
sensing intensity of the CI to the same level as that of the NCI (Ips¼ 60 mW with
Iseed¼ 16mW). A regular silicon photo-detector (D) is placed in the idler output
port of the NCI, which is also the output port for the CI. This detector records the
fringes of the NCI and the CI in a digital scope, as shown in Fig. 1c.

The noise performance of the NCI is measured by HD (with a 98% homodyne
efficiency) at the output of the idler side of the NCI under different circumstances.
The local oscillator of 726mW for HD is obtained from cell 1 with another seed
(196 mW) and pump (P2¼ 300 mW)34. The local oscillator goes through the same
imaging system to match its mode with those in the interferometer. The shot noise
level is B10 dB above the electronic noise level.
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