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Background: Although intrinsic molecular subtype has been widely used, there remains
great clinical heterogeneity of prognosis in the estrogen receptor (ER)- and/or
progesterone receptor (PR)-positive and human epidermal growth factor receptor 2
(HER2)-negative breast cancer (BC).

Methods: The transcriptome expression data of messenger RNA (mRNA) were
downloaded from The Cancer Genome Atlas (TCGA), Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC), and the Gene Expression Omnibus (GEO)
databases. Immune-related genes were acquired from the ImmPort database and
additional literature search. Univariate Cox, LASSO regression, and multivariate Cox
regression were used to screen prognostic immune-related genes and establish the
risk signature. The correlation between the risk signature and clinical characteristics, the
abundances of immune cells within the tumor microenvironment, and cancer phenotypes
were further assessed.

Results: Of note, 102 immune-related prognostic genes were identified in the METABRIC
dataset by univariate Cox analysis. Consecutively, 7 immune-related genes (SHMT2, AGA,
COL17A1, FLT3, SLC7A2, ATP6AP1, and CCL19) were selected to establish the risk
signature by LASSO regression and multivariate Cox analysis. Its performance was further
verified in TCGA and GSE21653 datasets. Multivariate Cox analysis showed that the risk
signature was an independent prognostic factor. The 7-gene signature showed a
significant correlation with intrinsic molecular subtypes and 70-gene signature.
Furthermore, the CD4+ memory T cells were significantly higher in the low-risk group
while a significantly higher proportion of M0-type macrophages was found in the high-risk
group in both METABRIC and TCGA cohorts, which may have an influence on the
prognosis. Furthermore, we found that the low-risk group may be associated with the
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immune-related pathway and the high-risk group was with the cell cycle-related pathway,
which also showed an impact on the prognosis.

Conclusion: These seven immune-related gene risk signatures provided an effective
method for prognostic stratification in ER (+) and/or PR (+) and HER2 (−) BC.

Keywords: breast cancer, immune gene signature, prognosis, immune cell, cancer phenotypes

HIGHLIGHTS

1. Based on TCGA, METABRIC, and GSE21653 cohorts, we
analyzed the characteristics of TME in ER (+) and/or PR (+)
and HER2 (−) breast cancer.

2. Seven immune-related genes were selected to establish the
gene risk signature.

3. Gene risk signatures provided an effective method for
prognostic stratification in ER (+) and/or PR (+) and HER2
(−) breast cancer.

BACKGROUND

Breast cancer (BC) ranks the first in female malignant tumors and
poses a notable threat to women’s health worldwide. BC is a
heterogeneous disease, demonstrating substantial intrinsic
heterogeneity in terms of genetic, epigenetic, and phenotypic
modifications and metabolism and is also affected by the estrogen
receptor (ER) status, progesterone receptor (PR) status, and
human epidermal growth factor receptor 2 (HER2) status
(Baliu-Piqué et al., 2020). The ER (+) and/or PR (+) and
HER2 (−) groups account for two-thirds of all BC (Ignatiadis
and Sotiriou, 2013), which is sensitive to endocrine therapy and
has a better prognosis than HER2-positive or triple-negative BC
(TNBC). Although treated as the whole population, significant
heterogeneity still exists in the ER (+) and/or PR (+) and HER2
(−) breast cancer (Cancer Genome Atlas Network, 2012; Curtis
et al., 2012). This population has been shown to have different
gene expression profiles, prognostic features, and sensitivity to
endocrine therapy (Sørlie et al., 2001).

Currently, the most common method used for the
classification of this population was according to the St
Gallen criteria, which divided these patients into luminal-A
and luminal-B subgroups by the immunohistochemical
expression of ER, PR, and Ki67. However, some studies
have reported that the luminal A/B classification does not
fully distinguish the heterogeneity in ER (+) and/or PR (+) and
HER2 (−) breast cancer (Gatza et al., 2014; Netanely et al.,
2016; Zhu et al., 2019). Moreover, the optimal cut-off values of
PR and ki67 to define the luminal-B subtype are still
controversial (Focke et al., 2017). Consequently, novel
biomarkers are needed for the effective discrimination of
the ER (+) and/or PR (+) and HER2 (−) breast cancer.

The tumor microenvironment (TME) has been identified
playing a critical role in tumor heterogeneity, but the
mechanism has not been fully elucidated. Emerging evidence
demonstrated that the TME comprises endothelial cells,

fibroblasts, immune cells, and extracellular components that
contribute to tumor heterogeneity (Jiang et al., 2021; Yuan et al.,
2021). According to the characteristics of TME, BC was
classified into different TME clusters (Xiao et al., 2019). The
different TME clusters played an important role in tumor
biology behavior and had an association with prognosis and
even led to drugs that target TME specifically (Bareche et al.,
2020).

Several prognostic risk tools were also used to clarify the
association between TMEwith outcomes in tumors, including 70-
gene prognostic risk score, OncotypeDX, and FoundationOne
CDx. In patients with multiple myeloma, the results of a 70-gene
prognostic risk score identified five main microenvironment
clusters, and the clusters can be used to refine risk
stratification to elucidate tumor treatment response. The
specific cluster 5 with “low-granulocyte” was associated with
poor survival (Danziger et al., 2020). A previous study by 21-
gene recurrence score (OncotypeDX) showed that F/B from the
tumor–stroma interface can be an independent prognostic
indicator of metastasis-free survival in TME (Desa et al.,
2020). Based on the 29 eligible patients and 523 patients/
samples of TCGA database with metastatic head and neck
squamous cell carcinoma, the phase II ALPHA study by
FoundationOne CDx panel demonstrated that patients with
MTAP mutation or loss led to a low fraction of CD8+ T cells
and was associated with suppressed immune reaction factors in
the TME (Kao et al., 2022).

Nonetheless, most BCmolecular subtypes are mainly classified
according to phenotypic characteristics, ignoring the supportive
role of TME. Thus, it is necessary to explore new subtyping to
improve the prognosis of this population. Here, our study aimed
to discover key biomarkers in the TME of ER (+) and/or PR (+)
and HER2 (−) breast cancer.

METHODS

Data Acquisition and Preprocessing
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) and The Cancer Genome Atlas (TCGA) data were
downloaded from the UCSC Cancer Browser website together
with accompanying clinical information. The downloaded RNA-
seq gene expression data were produced by the Illumina HiSeq
platform and then RSEM-normalized and log2-transformed.

The GSE21653 cohort was derived from a study of gene
expression profiling conducted on fresh frozen BC tissue
collected from 266 patients in conjunction with thoroughly
documented clinical data. All clinical and microarray data of
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FIGURE 1 | Flow chart showing the selection of immune-related genes and analysis process.

FIGURE 2 | Prognostic significance of the seven-immune-related-gene IRS in ER (+) and/or PR (+) and HER2 (−) breast cancer. (A) Forest plot of prognostic
significance of the seven immune-related genes. (B) Association of IRS with OS in the METABRIC cohort. (C) Association of RS with DFS in TCGA cohort. (D)
Association of RS with OS in the GSE21653 cohort. IRS: immune risk signature; METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; TCGA:
The Cancer Genome Atlas.
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these patients can be publicly downloaded at the GEO website
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21653).

The inclusion criteria included female; breast carcinoma with
HER2 status negative and ER or PR status positive; complete
clinical and follow-up information; and available RNA expression
profile. The exclusion criteria included HER2 status positive or
undetermined; both the ER and PR status negative or
undetermined; incomplete follow-up information; and RNA
expression data cannot be obtained. Finally, a total of 1,369
patients from the METABRIC dataset, 561 patients from
TCGA dataset, and 129 patients from the GSE21653 dataset
were enrolled.

Bioinformatic Analysis
The R package “genefu” was used to classify the PAM50
molecular subtypes and calculate the 70-gene signature score
of each case based on the gene expression data (Parker et al.,
2009). To determine the optimal group number, we utilized the
Nbclust and ConsensusClusterPlus R packages to perform the
analysis (Marcum and Butts, 2015). The number of clusters tested
by NbClust ranged between 2 and 10 clusters, and it can obtain
the highest clustering number according to the calculation results.
The parameters for the Nbclust algorithm were set as follows:
Euclidean distance, K-means clustering, and index of all long. The
ConsensusClusterPlus was performed based on the parameters
including Euclidean distance, km clustering algorithm with 50
replicates and kmax of 10, pItem = 0.8, and pFeature = 0.8. The
deconvolution approach CIBERSORT algorithm was performed
on transcriptional expression data to estimate the proportions of
twenty-two types of immune cells in each case using the
CIBERSORT R package (Newman et al., 2015). The stromal,
immune, and ESTIMATE scores of each sample were obtained
from the website (Verhaak Lab; https://bioinformatics.
mdanderson.org/estimate) (Yoshihara et al., 2013), which were
used to characterize immune cell composition and calculate the
ratio of immune-stromal components in the tumor
microenvironment in a given sample.

We used the “limma” R package to identify the significantly
differentially expressed genes (DEGs) between the high-risk
and low-risk groups in TCGA dataset with the false discovery
rate (FDR)-corrected p-value below 0.05 (Ritchie et al., 2015).

The heatmap of the representative DEGs was generated using
the package ComplexHeatmap in R version 3.6.1 (Gu et al.,
2016). To explore different DEG-enriched signaling pathways
in high- versus low-risk groups, the gene set enrichment
analysis (GSEA) from those DEGs was conducted by the R
package clusterProfiler using gene sets from the
comprehensive Molecular Signatures Database (MSigDB)
collections (Yu et al., 2012). Single-sample GSEA was
performed using the GSVA Bioconductor package
(Hänzelmann et al., 2013). We selected gene sets for various
cell cycle- and immune-related pathways. For each case, the
enrichment score of the selected gene set was obtained using
the gene expression profile.

Statistical Analyses
Statistical analyses were performed using SPSS version 23.0 (IBM,
United States), GraphPad Prism version 8.00 (GraphPad
Software, United States), and R version 3.6.1 (R Core Team,
Vienna, Austria). Pearson’s chi-square test and Fisher’s exact test
were used to compare the categorical variables and ordered
categorical variables. Pearson correlation analysis was used to
evaluate the association between two continuous variables.
Mann–Whitney U tests were performed to evaluate the
statistical significance within boxplots. Survival analysis was
implemented by the log-rank test. LASSO Cox regression
analysis (LASSO, least absolute shrinkage and selection
operator) can achieve shrinkage and variable selection
simultaneously by performing the Cox regression model with
LASSO penalty. The LASSO Cox regression model was analyzed
using the glmnet package. Univariate and multivariate regression
analyses were performed with the Cox proportional hazards
regression model to determine the parameters that were
significantly correlated with prognosis. The statistical
significance level with p value was set at 0.05.

RESULTS

Identification of Prognostic
Immune-Related Genes
The workflow of this study is delineated in Figure 1. A total of
2,600 genes were identified from two datasets (CIBERSORT and

TABLE 1 | Multivariate Cox analysis of prognostic factors in the METABRIC
cohort.

p-value HR 95% LI 95% UI

Tumor grade 0.753 1.02 0.88 1.19
TNM stage <0.001 1.37 1.17 1.61
Risk group <0.001 1.43 1.18 1.73
PAM50
Basal Reference - - -
HER2 0.123 2.14 0.82 5.61
Luminal-A 0.089 2.18 0.89 5.36
Luminal-B 0.09 2.09 0.89 4.89
Normal 0.161 2.18 0.73 6.45

Number of positive node <0.001 1.07 1.04 1.10
Age <0.001 1.04 1.04 1.05
70-gene score 0.106 1.76 0.89 3.48

TABLE 2 | Multivariate Cox analysis of prognostic factors in TCGA cohort.

p-value HR 95% LI 95% UI

Age 0.998 1.00 0.97 1.03
TNM stage <0.001 2.86 1.83 4.48
PAM50
Basal Reference - - -
HER2 0.978 0.00 0.00
Luminal A 0.744 0.73 0.11 4.76
Luminal B 0.914 1.09 0.24 4.86
Normal 0.865 0.80 0.06 11.28

Risk group 0.002 3.25 1.54 6.90
70-gene score 0.631 0.57 0.06 5.77
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ImmPort) (Bhattacharya et al., 2014; Newman et al., 2015) and
literature search (Safonov et al., 2017; Xiao et al., 2019). Then, the
gene expression profiles from 1,369 patients with ER (+) and/or
PR (+) and HER2 (−) BC identified in the METABRIC dataset
were used to perform the univariate Cox analysis. As a result, 102
genes were discovered to be significantly associated with overall
survival.

Then, we performed the LASSO Cox regression analysis to
eliminate the redundant collinearity and further validate the
robustness (Supplementary Figures S1A, B). As a result, 7 genes
were identified by LASSO regression analysis from the 102 genes.
Then, we performed multivariate Cox regression analysis of the 7
genes in the METABRIC dataset, and ultimately, a prognostic
signature comprising these 7 genes, including SHMT2, AGA,
COL17A1, FLT3, SLC7A2, ATP6AP1, and CCL19, were selected
to construct a predictionmodel. As shown in the forest plot, SHMT2
and ATP6AP1 were risk factors, whereas the other five genes were
protective factors (Figure 2A). The comprehensive immune risk
score (IRS) was imputed as follows: IRS = (0.19*SHMT2 value) +
(−0.36*AGA value) + (−0.14*COL17A1 value) + (−0.23*FLT value)
+ (−0.09*SLC7A2) + (0.25*ATP6AP1) + (−0.09*CCL19).

The Nbclust and ConsensusClusterPlus analyses showed that the
optimal number of clusters was two (Supplementary Figures
S1C–E). Therefore, the median immune risk score was set as the
cut-off value, and patients were categorized into two groups: high-risk
(with higher IRS score) and low-risk group (with lower IRS score).

Performance of the Immune Risk Score in
ER (+) and/or PR (+) and HER2(−) Breast
Cancer From METABRIC and TCGA
Datasets
Figure 2B showed the survival discrimination power of IRS-
based groups in the discovery cohort. Moreover, in order to
further validate the prognostic predicting role of the IRS-based
group, two different databases including TCGA and GSE21653
cohorts were included. As a result, patients in the low-risk groups
showed consistently superior clinical outcomes than those in the
high-risk groups in both datasets (Figures 2C,D).

Multivariate Cox analysis showed that the risk signature was
the independent prognostic factor in both METABRIC and
TCGA cohorts, after adjusting for established prognostic
variables (Tables 1, 2).

The Correlation Between the Immune Risk
Score and Clinical Characteristics
It is shown that the high-risk group accounted for the highest
percentage (>80%) in the disease with HER2-enriched subtype,
followed by luminal-B and basal subtype in both METABRIC
and TCGA cohorts (Figures 3A,B).

In order to explore the relationship between the published
prognostic score and our risk signature, we calculated the 70-gene

FIGURE 3 |Relationship between seven-immune-related-gene IRS and the clinicopathological characteristics. (A)Relationship between IRS and PAM50 subtypes
in the METABRIC cohort. (B) Relationship between IRS and PAM50 subtypes in TCGA cohort. (C) Relationship between IRS and 70-gene score in METABRIC and (D)
TCGA cohorts. IRS: immune risk signature; METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; TCGA: The Cancer Genome Atlas; ****: p <
0.0001. The Wilcoxon rank-sum test was performed.
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FIGURE 4 | Association between seven-immune-related-gene IRS and TME. (A) Association between IRS and stromal score in METABRIC and TCGA cohorts. (B)
Association between IRS and immune score in METABRIC and TCGA cohorts. (C) Association between IRS and IL33 in TCGA cohort. (D) Association between IRS and
TGFBR2 in TCGA cohort. (E) Association between IRS and CX3CR1 in TCGA cohort. (F) Association between IRS and GZMK in TCGA cohort. (G) Association between
IRS and resting memory CD4+ T cells in METABRIC and TCGA cohorts. (H)OS for patients with high or low resting memory CD4+ T cells in the METABRIC cohort.
(I) Association between IRS andM0 cell score in METABRIC and TCGA cohorts. (J)OS for patients with high or lowmacrophageM0 cell score in the METABRIC cohort.
IRS: immune risk signature; TME: tumor microenvironment; METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; TCGA: The Cancer Genome
Atlas; OS: overall survival; ***: p < 0.001; ****: p < 0.0001.
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prognostic score using the genefu package. The results
demonstrated that the 70-gene prognostic score was
significantly higher in the high-risk group than the low-risk
group (Figures 3C,D).

Correlation of the Immune Risk Score With
Tumor Microenvironment
To address the correlation between tumor immunity and the risk
signature, we applied the ESTIMATE and CIBERSORT
algorithms to calculate the tumor purity and abundances of
infiltrating stromal cells and immune cells in TCGA and
METABRIC databases. As shown in Figures 4A,B, the

stromal- and immune-scores were both significantly higher in
the low-risk group. In addition, the risk signature was strongly
anti-correlated with several important immune-related genes
such as IL33 and TGFBR2 (Figures 4C–F).

By applying the CIBERSORT algorithm, the relative
proportions of 22 immune cell subsets of ER- or PR-positive
and HER2-negative BC in TCGA and METABRIC datasets were
estimated. Consecutively, compared with the high-risk group, the
level of CD4 memory resting T cell was increased, while the level
of macrophage M0 was decreased significantly in the low-risk
group (Figures 4G,I).

We further investigated the prognostic significance of the
abundance of immune cells. The survival analysis showed that

FIGURE 5 | Functional analysis of seven-immune-related-gene IRS. (A) GSEA of IRS. (B) Relationship between seven-immune-related-gene IRS and signaling
pathways. IRS: immune risk signature; GSEA: gene set enrichment analysis.
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the high abundance of CD4 memory resting T cells was
significantly associated with favorable prognosis (p < 0.001),
while the high abundance of macrophage M0 was associated
with unfavorable survival (p = 0.021) (Figures 4H–J).

Immune Risk Score is Associated With
Immune-and Cell Cycle-Related
Phenotypes
In order to further characterize the phenotype contributing to the
worse prognosis in the high-risk group, we first performed
differential expressed gene (DEG) analysis of the high-risk

versus low-risk group in the METABRIC and TCGA datasets.
Then, we performed GSEA using the collection of theMsigDB for
these DEGs. As a result, we found that in the low-risk group, the
immune-related pathway such as GSE22886_NAIVE_BCELL_VS._
NEUTROPHIL_UP and KEGG_CYTOKINE–CYTOKINE
RECEPTOR_INTERACTION were significantly enriched, while
in the high-risk group, the cell cycle-related pathways such as
KONG_E2F3_TARGETS and ISHIDA_E2F_TARGETS were
enriched (Figure 5A). The heatmap displayed the expression of
the core genes that contribute to pathway enrichment between the
two groups. Notably, those cell cycle-related genes were
predominantly upregulated in the high-risk group, while the

FIGURE 6 | Forest plot of prognostic significance of the seven-immune-related-gene IRS. Prognostic factors in the METABRIC cohort (A) and TCGA cohort (B).
IRS: immune risk signature; BC: breast cancer; TCGA: The Cancer Genome Atlas.
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immune-related genes were significantly upregulated in the low-risk
group (Figure 5B).

In order to explore the relationship between the enrichment of
pathway and prognosis, we selected those gene sets involving
immune and cell cycle pathways to examine their prognostic
significance, respectively. A total of 10 MsigDB gene sets were
selected, and the gene set enrichment score of each sample was
calculated by the GSVAmethod (Ritchie et al., 2015). The activity
of the gene sets in each sample was estimated by the enrichment
score. Then, the univariate Cox analysis was performed. As
shown in Figures 6A,B, the enrichment of the cell cycle-
related pathway was significantly associated with worse
survival, and the enrichment of the immune-related pathway
was significantly related with favorable survival in both
METABRIC and TCGA databases.

DISCUSSION

ER (+) and/or PR (+) and HER2 (−) BC is a heterogeneous
disease, which has a distinct profile of response to endocrine
therapy. However, based on the immunohistochemical staining
of ER, PR, and Ki67, the traditional classification does not fully
distinguish heterogeneity in this group. Hence, it is crucial to
determine a new classification method and to improve the
prognosis.

The TME profiling has become a prediction model for BC
classification and for selections of antitumor treatment. Emerging
evidence has demonstrated that the TME plays an increasing role
in screening tumor biomarkers, predicting the prognosis, and
recently selecting patients for immunotherapy trials in BC (Xiao
et al., 2019; Bonneau et al., 2020). Based on TCGA cohort,
METABRIC cohort, and GSE21653 cohort, the article analyzed
the characteristics of TME and its potential prognostic value in
luminal BC. The results of risk stratification revealed that resting
memory CD4+ T cells were significantly decreased in the high-
risk group. Conversely, M0-type macrophages were remarkably
increased in the high-risk group in both TCGA and METABRIC
cohorts, which may have an effect on the prognosis.

In our study, two TME subtypes (high-risk group and low-risk
group) were identified based on tumor immune cell compositions
calculated by CIBERSORT and ESTIMATE algorithms. The
results in our study demonstrated that the higher TMS risk
was positively correlated with the resting memory CD4+

T cells and was negatively correlated with M0 macrophages,
which also showed that enrichment of resting memory CD4+

T cells and lack of M0 macrophages had better prognoses in BC.
Previous evidence has confirmed the prognostic values of TMS in
various cancers (Netanely et al., 2016). One previous study has
identified that the resting memory CD4+ T cells and M0
macrophages were positively correlated with the TMS score in
colon adenocarcinoma (Chen and Zhao, 2021). In addition to
higher TME scores, resting memory CD4+ T cells and M0
macrophages were usually associated with worse prognoses.
Moreover, the following study showed that a high abundance
of CD4+ memory T cells was associated with better survival in
gastric cancer (Ning et al., 2020). Additionally, previous research

confirmed that the high-risk group had higher M0 macrophages
than the low-risk group in hepatocellular carcinoma (Long et al.,
2019). Our findings added to the emerging body of evidence that
the expression of immune genes could provide additional
prognostic information.

In addition, we detected the functional enrichment pathways
using GSEA in the high-risk and low-risk TME groups. These
pathways were all unregulated in the high-risk TME group,
including TANG_SENESCENCE_TP53_TARGETS_DN,
HALLMARK_G2M_CHECKPOINT, and
HALLMARK_E2F_TARGETS. Trabectedin, an anticancer drug
targeting TME, exerted a potent antitumor activity against
Hodgkin Reed–Sternberg by inducing the G2M cell cycle
(Casagrande et al., 2021). Meanwhile, we identified the other
immune- and cell cycle-related genes associated with BC,
including CCL21, IL17B, CXCL12, FLT3, CCL19, GZMK,
PTGS2, and JAK2. CCL21, a potential therapeutic target,
enhanced the responsiveness to immune checkpoint blockade
(Whyte et al., 2020).

Although this study analyzed the TME characteristics of BC in
four cohorts with strict inclusive and exclusive criteria, it also has
several limitations. First, the selection and recall bias of the study,
which as a retrospective, are unavoidable. Second, the prognostic
values could not be fully elucidated due to lacking of complete
chemotherapy and radiotherapy regimens in the current study.
Thus, the results should be interpreted with caution when
establishing a correlation between IRS and specific treatment.
Third, the detailed molecular mechanism has not been
investigated in the current study. It is necessary to explore the
underlying mechanisms behind the risk scores and poor survival
outcomes of BC in further in vitro or in vivo experiments.

CONCLUSION

In summary, we developed and validated a 7-gene prognostic
signature based on immune gene expression in ER (+) and/or PR
(+) and HER2 (−) BC, which displayed distinct patterns of
prognosis and genomic features. If confirmed, these findings
may have important clinical implications in risk stratification
for precision oncology treatment in this population.
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