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ABSTRACT
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types
of cancer within the urinary system. Great efforts have been made to elucidate the
pathogeny. However, the molecular mechanism of ccRCC is still not well understood.
The aim of this study is to identify key genes in the carcinogenesis and progression
of ccRCC. The mRNA microarray dataset GSE53757 was downloaded from the Gene
Expression Omnibus database. The GSE53757 dataset contains tumor and matched
paracancerous specimens from 72 ccRCC patients with clinical stage I to IV. The
linear model of microarray data (limma) package in R language was used to identify
differentially expressed genes (DEGs). The protein–protein interaction (PPI) network
of the DEGs was constructed using the search tool for the retrieval of interacting genes
(STRING). Subsequently, we visualized molecular interaction networks by Cytoscape
software and analyzed modules with MCODE. A total of 1,284, 1,416, 1,610 and 1,185
up-regulated genes, and 932, 1,236, 1,006 and 929 down-regulated genes were identified
from clinical stage I to IV ccRCC patients, respectively. The overlapping DEGs among
the four clinical stages contain 870 up-regulated and 645 down-regulated genes. The
enrichment analysis of DEGs in the top module was carried out with DAVID. The
results showed the DEGs of the top module were mainly enriched in microtubule-
based movement, mitotic cytokinesis and mitotic chromosome condensation. Eleven
up-regulated genes and one down-regulated gene were identified as hub genes. Survival
analysis showed the high expression of CENPE, KIF20A, KIF4A, MELK, NCAPG,
NDC80, NUF2, TOP2A, TPX2 and UBE2C, and low expression of ACADM gene could
be involved in the carcinogenesis, invasion or recurrence of ccRCC. Literature retrieval
results showed the hub gene NDC80, CENPE and ACADM might be novel targets for
the diagnosis, clinical treatment and prognosis of ccRCC. In conclusion, the findings
of present study may help us understand the molecular mechanisms underlying the
carcinogenesis and progression of ccRCC, and provide potential diagnostic, therapeutic
and prognostic biomarkers.
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INTRODUCTION
Renal cell carcinoma (RCC) is a heterogeneous group of cancers, and is one of the
10 most common cancers in the world. Based on the histopathological and molecular
characterization of RCC (Hes, 2014; Moch et al., 2016), clear cell RCC (ccRCC), papillary
RCC and chromophobe RCC are the major subtypes with≥5% incidence (Cancer Genome
Atlas Research Network, 2013; Cancer Genome Atlas Research Network et al., 2016; Chen et
al., 2016). Clear cell RCC is the most prevalent subtype and accounts for about 80% of
all RCC (Hsieh et al., 2017; Shenoy & Pagliaro, 2016). Although somatic gene mutations,
including VHL, BAP-1, PBRM-1, KDM5C, SETD2, and MTOR genes (Chow, Dong &
Devesa, 2010; Ricketts et al., 2018) are involved in the pathogenesis of ccRCC, the molecular
mechanism of ccRCC is still not fully elucidated.Moreover, up to one-third of RCC patients
have already presented with primary metastases at the time of diagnosis (Fujioka et al.,
2012). Therefore, it is important to explore the molecular mechanisms of RCC and find
effective biomarkers for early diagnosis. In the last decade, the high-throughput analysis
platform for gene expression, such as microarray technology, has been widely used to
obtain genetic alteration during tumorigenesis. Bioinformatics is a study field that uses
computation to extract knowledge from biological data. It includes the collection, retrieval,
manipulation and modeling of data for analysis, visualization or prediction through the
algorithms and software. Bioinformatics analysis can help us identify differentially expressed
genes (DEGs) and functional pathways related to the carcinogenesis and progression of
cancer.

In the present study, mRNA microarray dataset from Gene Expression Omnibus
(GEO) was downloaded and analyzed to obtain DEGs between ccRCC and paracancerous
tissue. Afterwards, protein-protein interaction (PPI) network, gene ontology (GO) and
kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were
performed, which help us understand the molecular mechanism of carcinogenesis and
progression. In summary, in total of eleven up-regulated and one down-regulated genes
were identified as hub gene, which may be candidate biomarkers for ccRCC.

MATERIALS AND METHODS
Microarray data
The gene expression profile of GSE53757 was downloaded from the Gene Expression
Omnibus (GEO) database. GSE53757, which is based on Affymetrix GPL570 platform
(Affymetrix Human Genome U133 Plus 2.0 Array), was submitted by Copland et al. (Von
Roemeling et al., 2014). The GSE53757 dataset contained 144 samples, including 72 ccRCC
samples (Stage I 24, stage II 19, stage III 14 and stage IV 15 cases) and 72 matched normal
kidney tissue.
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Affymetrix microarray data processing
Raw data (CEL file) were read by an Affy package (http://bioconductor.org/packages/
release/bioc/html/affy.html) of R (version 3.4.4; http://r-project.org/). Chip data
preprocessing includes background correction, data normalization, combining normal
and tumor group data, ID transform gene symbol, and probe supplemental missing
value. The data normalization was conducted using a robust multi-array average
analysis method (Hochreiter, Clevert & Obermayer, 2006). Probe supplemental missing
value was performed using k-nearest neighbor method (Sim, Kim & Lee, 2005). When
multiple probes were mapped to the same gene ID, the mean expression of those
probes was calculated. The linear models of microarray data (limma) package (http:
//bioconductor.org/packages/release/bioc/html/limma.html) in R language was used to
identify DEGs between ccRCC and normal samples. Only genes with an adjusted p < 0.05
and |log2FC|>1 were selected as DEGs (where FC = fold change).

KEGG and GO enrichment analyses of DEGs
The Database for annotation, visualization and integrated discovery (DAVID, https:
//david.ncifcrf.gov/tools.jsp) is an online program that provides a comprehensive set of
functional annotation tools for researchers to understand biological meaning behind plenty
of genes(Sherman et al., 2007). Gene ontology (GO) and kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analysis were performed for identified DEGs using
DAVID database. P < 0.05 was set as the cut-off criterion.

Construction of protein–protein interaction network and module
analysis
The functional interactions between proteins may provide insights into the molecular
mechanism of cellular processing. In this study, protein-protein interaction (PPI) networks
were constructed for the DEGs using the STRING database (https://string-db.org/)
(Szklarczyk et al., 2015), which provides a critical integration of PPIs, including known and
predicted interactions. The interacting pairs with a combined score >0.7 (high confidence)
were selected for the PPI network construction. Subsequently, PPI network was visualized
using Cytoscape software (3.6.1) (Demchak et al., 2014). The molecular complex detection
(MCODE, version 1.5.1) algorithm is a Cytoscape plugin (Bader & Hogue, 2003), which
clusters a given network based on topology to find densely connected regions. The most
significant module in the PPI networks was screened using MCODE with score >5, degree
cut-off = 10, node score cut-off = 0.2, k-core = 2 and max depth = 100.

The functional enrichment analysis of genes in each module was performed by DAVID.

Hub genes selection
In this study, Cytoscape plugin cytoHubba is used for selected hub genes. CytoHubba is a
novel Cytoscape plugin for exploring important nodes in an interactome network by several
topological algorithms, including degree, edge percolated component (EPC), maximum
neighborhood component (MNC) and maximal clique centrality (MCC) (Chin et al.,
2014). The overlapped genes were selected as candidate hub gene in the four algorithms of
cytoHubba.
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Validation of the hub genes using MEXPRESS database and survival
analysis
MEXPRESS (http://mexpress.be/) is a data tool designed for the easy visualization of the
Cancer Genome Atlas (TCGA) expression and clinical data, as well as the relationships
between them (Koch et al., 2015). To confirm the reliability of the hub genes, we used the
MEXPRESS to validate the expression level of the candidate hub genes in ccRCC. The overall
survival analyses of hub genes were performed using gene expression profiling interactive
analysis (GEPIA, http://gepia.cancer-pku.cn/index.html) online platform, which based on
TCGA datasets.

Validation of the hub genes by quantitative real-time PCR
Validation of selected hub genewas conducted using quantitative real-time PCR. Forty-four
primary ccRCC and paired normal tissues were obtained from the operative specimens. The
patients consisted of 6 females and 38 males, with age from 17 to 85 years (55.88± 13.36).
All the protocols conformed to the ethical guidelines of the 1975 Helsinki Declaration, and
were approved by the ethics committee on clinical new technologies and scientific research
ofWuxi People’s Hospital (Permit number: KS00025). The written informed consents were
obtained before the specimens were collected. The total RNA was extracted using Trizol
(Invitrogen GIBco) following the manufacturer’s instructions. First-strand cDNA was
synthesized using MMLV reverse transcriptase (Promega, America) and random primers
according to the manufacturer’s instructions. 20 µL PCR reaction system contains 2 µL
25 mM/L MgCl2, 5mM/ µL sense and antisense primers (1.0 µL each), 0.4 µL 10 mM/L
dNTP, 1.0 µL Evagreen (Biotium), 2.0 µL 5*PCR buffer, 2.0 µL cDNA, 0.5 Unit Taq DNA
polymerase (Promega). Quantitative real-time PCR analysis was conducted on Lightcycler
480 (Roche, Switzerland) with the following PCR profile: predenaturation at 95 ◦C for
5 min; 40 cycles of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 10 s and elongation
at 72 ◦C for 15 s. The expression changes of candidate hub genes between malignant and
adjacent normal tissues were calculated as 2−11CT using the comparative 11CT method.

Statistical analysis
The student’s t -test was used to check whether real-time PCR expression data in malignant
and adjacent normal tissues differ significantly. Gene with p < 0.05 and >2-fold change
was considered to be significantly different.

RESULTS
Identification of DEGs
A total of 1,284, 1,416, 1,610 and 1,185 up-regulated genes, and 932, 1,236, 1,006 and 929
down-regulated genes were identified between normal and malignant tissue samples from
stage I, II, III and IV ccRCC patients, respectively. The overlapping DEGs across all stages
contained 870 up-regulated and 645 down-regulated genes, as shown in the Venn diagram
(Figs. 1A and 1B).

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.8096 4/26

https://peerj.com
http://mexpress.be/
http://gepia.cancer-pku.cn/index.html
http://dx.doi.org/10.7717/peerj.8096


Figure 1 Venn Diagram showing the numbers of overlap differentially expressed genes in the four
stages clear cell renal cell carcinoma: (A) the numbers of upregulated genes in four stages of ccRCC pa-
tients; (B) the numbers of downregulated genes in four stages of ccRCC patients.

Full-size DOI: 10.7717/peerj.8096/fig-1

KEGG and GO enrichment analyses of DEGs
To gain further insight into the identified DEGs, functional and pathway enrichment
analyses were conducted using DAVID. Gene ontology (GO) enrichment analysis showed
that up-regulated DEGs were mainly involved in biological processes (BP), including
immune response, inflammatory response, and interferon-gamma-mediated signaling
pathway, while down-regulated DEGs were significantly enriched in oxidation—reduction
process, sodium ion transport and excretion process. KEGG pathway analysis showed the
up-regulated DEGs were enriched in phagosome and allograft rejection, while the down-
regulated DEGs were enriched in metabolic pathways and biosynthesis of antibiotics. The
top five over-represented GO terms under biological process (BP), cellular component
(CC) and molecular function (MF), and the main enriched pathways are shown in Table 1.

PPI network construction and modules analysis
The PPI network of DEGs was constructed using Cytoscape. The PPI networks of up and
down-regulated DEGs consisted of 543 nodes and 3,590 edges, 301 nodes and 507 edges,
respectively (Figs. 2 and 3). Using the MCODE app, the most significant module with
highest score in the PPI network for ccRCC was detected. The most significant module
from up-regulated DEGs PPI network contains 31 nodes and 432 edges (Fig. 4A), and eight
nodes and 28 edges form down-regulated DEGs PPI network (Fig. 4B). The enrichment
analysis of DEGs in the modules was also carried out with DAVID. The results showed that
these genes were mainly enriched in microtubule-based movement, mitotic cytokinesis
and mitotic chromosome condensation.

Hub gene selection
In the present study, Cytoscape plugin cytoHubba is used for selected hub genes. Degree is
equal to or greater than 10 as the threshold of the hub gene. In this PPI network, the degree
of 267 up-regulated and 16 down-regulated genes is equal to or greater than 10. Twenty-
one genes appeared in the top 50 up-regulated genes list in terms of degree, EPC, MNC
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Table 1 Top five GO terms and significant pathways enriched by DEGs.

Expression change Category Term Count FDR

Up BP GO:0006955∼immune response 82 1.68E–27
GO:0006954∼inflammatory response 65 4.94E–18
GO:0060333∼interferon-gamma-mediated signaling
pathway

25 1.81E–12

GO:0050776∼regulation of immune response 37 1.17E–11
GO:0051607∼defense response to virus 31 1.68 E–27

CC GO:0009897∼external side of plasma membrane 40 1.37 E–11
GO:0005886∼plasma membrane 267 4.06 E–11
GO:0009986∼cell surface 66 5.70 E–11
GO:0005887∼integral component of plasma membrane 118 2.64 E–09
GO:0005615∼extracellular space 107 6.10 E–07

MF GO:0004872∼receptor activity 32 5.21 E–06
GO:0005102∼receptor binding 42 9.04 E–06
GO:0042605∼peptide antigen binding 12 1.35 E–05
GO:0005201∼extracellular matrix structural constituent 14 6.51 E–03
GO:0005515∼protein binding 431 2.13 E–02

PATHWAY hsa04145:Phagosome 37 5.57 E–12
hsa05416:Viral myocarditis 23 3.25 E–11
hsa05330:Allograft rejection 19 5.75 E–11
hsa05332:Graft-versus-host disease 18 8.75 E–11
hsa05150:Staphylococcus aureus infection 22 1.07 E–10

Down BP GO:0055114∼oxidation–reduction process 56 1.02 E–09
GO:0006814∼sodium ion transport 16 5.11 E–05
GO:0007588∼excretion 11 2.49 E–04
GO:0055078∼sodium ion homeostasis 7 6.67 E–04
GO:0001657∼ureteric bud development 10 3.58 E–03

CC GO:0070062∼extracellular exosome 215 7.05 E–38
GO:0016324∼apical plasma membrane 44 9.64 E–15
GO:0016323∼basolateral plasma membrane 31 4.53 E–11
GO:0005759∼mitochondrial matrix 38 1.05E–08
GO:0005782∼peroxisomal matrix 11 0.001373

MF GO:0003824∼catalytic activity 23 1.23E–04
GO:0009055∼electron carrier activity 16 1.42E–04
GO:0050660∼flavin adenine dinucleotide binding 13 7.38E–04
GO:0016491∼oxidoreductase activity 22 1.50E–03
GO:0030170∼pyridoxal phosphate binding 12 1.64E–03

PATHWAY hsa01100:Metabolic pathways 111 3.54E–16
hsa01130:Biosynthesis of antibiotics 31 1.14E–06
hsa00280:Valine, leucine and isoleucine degradation 13 2.41E–04
hsa01200:Carbon metabolism 18 2.50E–03
hsa00071:Fatty acid degradation 11 5.18E–03
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Figure 2 Protein–protein interaction network among up–regulated genes detected in ccRCC
(GSE53757 dataset). Nodes represent genes and edges indicate interaction between proteins. Nodes
are colored based on the number of degrees: 1∼15 (light blue), 16∼30 (yellow) and 30∼57(red). Node
size indicates betweenness centrality values. Hub genes are represented with a thicker blue border.

Full-size DOI: 10.7717/peerj.8096/fig-2
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Figure 3 Protein-protein interaction network among down–regulated genes detected in ccRCC
(GSE53757 dataset). Nodes represent genes and edges indicate interaction between proteins. Nodes
are colored based on the number of degrees: 1∼9 (light blue) and 10∼19 (yellow). Node size indicate
betweenness centrality values. Hub genes are represented with a thicker blue border.

Full-size DOI: 10.7717/peerj.8096/fig-3

and MCC, simultaneously. Similarly, four genes appeared in the top 10 down-regulated
genes list. These genes were selected as candidate hub gene which overlapped in the four
algorithms of cytoHubba.
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Figure 4 The most significant module of differentially expressed genes (DEGs). (A) The most signifi-
cant module was obtained from PPI network of up-regulated DEGs with 31 nodes and 432 edges. (B) The
most significant module was obtained from PPI network down-regulated DEGs with eight nodes and 28
edges. The thicker blue border represents the hub gene.

Full-size DOI: 10.7717/peerj.8096/fig-4

Hub genes validation using MEXPRESS database
To confirm the reliability of the hub genes, we used MEXPRESS to validate the expression
level of candidate hub genes in ccRCC. This TCGA dataset contains RNA-seq v2 (log2)
from 343 clinical ccRCC specimens. The data showed that except for two down-regulated
candidate hub genes, the expression of other candidate hub genes were consistent with the
TCGA database (p < 0.05). Nevertheless, MEXPRESS visualization showed that for some
genes with significant differences in expression, the distribution of tumor specimens was
not highly concentrated. In order to ensure the reliability of hub gene selection, we screened
15 up-regulated and one down-regulated genes with p < 1.0E–10 for further verification
(Fig. 5).

Validation of hub gene by quantitative real-time PCR
Quantitative real-time PCR was used to verify the expression profiles of 15 up-regulated
genes and one down-regulated gene in 44 patients with ccRCC. Table 2 lists the primers
for real-time PCR detection of 16 candidate hub genes. Table 3 shows mRNA expression
of candidate hub genes between tumor and paracancerous tissue. The data showed that
the expression of 11 up-regulated genes and one down-regulated gene had significant
difference between tumors and adjacent tissues, but not for CCNA2, NUSAP1, PBK and
RRM2 gene. Therefore, a total of 11 up-regulated genes and one down-regulated gene
were identified as the hub genes. The names, abbreviations and functions of hub genes are
shown in Table 4. Table 5 shows the average fold change of hub genes between malignant
and normal tissue samples from chip dataset.

Survival analyses of hub genes
The overall survival analyses of hub genes were performed using Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html) online platform,
which based on TCGA datasets. The data showed the ccRCC patients with high expression
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Figure 5 Visualization of the TCGA data for candidate hub differentially expressed genes usingMEX-
PRESS.Visualization of the TCGA data for candidate hub differentially expressed genes in clear cell renal
cell carcinoma. The height of the orange line represents the logarithm of the level 3 RNA-sequencing data
in TCGA (normalized RNASeqV2 values per gene). The expression data forms the basis of the whole plot,
because the samples are ranked based on their expression value for the gene we selected with the highest
expression on the left side and the lowest on the right.

Full-size DOI: 10.7717/peerj.8096/fig-5

of CENPE, KIF20A, KIF4A, MELK, NCAPG, NDC80, NUF2, TOP2A, TPX2 and UBE2C
gene had worse overall survival (Figs. 6A, 6C–6K, p < 0.05). The data also showed the
ccRCC patients with low expression of ACADM gene had worse overall survival (Fig. 6L,
p < 0.01).
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Table 2 Primers of candidate hub genes for real-time PCR assay.

Gene Gene ID Sequence Amplicon
(bp)

Sense 5′-CTCTACACAGTCACGGGACAAAG-3′
CCNA2 890

Antisense 5′-CTGTGGTGCTTTGAGGTAGGTC-3′
120

Sense 5′-GGAGAAAGATGACCTACAGAGGC-3′
CENPE 1,062

Antisense 5′-AGTTCCTCTTCAGTTTCCAGGTG-3′
111

Sense 5′-CCAGCCTTAGTCCAGATGACCA-3′
DTL 51,514

Antisense 5′-GAGAATGACCCAGGAGCACAGT-3′
114

Sense 5′-CAAGAGGCAGACTTTGCGGCTA-3′
KIF20A 10,112

Antisense 5′-GCTCTGGTTCTTACGACCCACT-3′
130

Sense 5′- GTGGAGCAAGAAGCCCAAGT-3′
KIF4A 24,137

Antisense 5′-TAGACATCTGCGCTTGACGG-3′
97

Sense 5′-TCCTGTGGACAAGCCAGTGCTA-3′
MELK 9,833

Antisense 5′-GGGAGTAGCAGCACCTGTTGAT-3′
102

Sense 5′-ACAGGATTTTAATCGGGCATCAG-3′
NCAPG 64,151

Antisense 5′-TGCAATGTTTCAGCATCATTCTTCT-3′
138

Sense 5′-CTGACACAAAGTTTGAAGAAGAGG-3′
NDC80 10,403

Antisense 5′-TAAGGCTGCCACAATGTGAGGC-3′
128

Sense 5′-TGGAGACTCAGTTGACTGCCTG-3′
NUF2 83,540

Antisense 5′-ATTTGGTCCTCCAAGTTCAGGCT-3′
135

Sense 5′-CTGACCAAGACTCCAGCCAG-3′
NUSAP1 51,203

Antisense 5′-AGCAGAATTCCCCGTGATGG-3′
114

Sense 5′-AATATGACTGTGACTGACCCTGA-3′
PBK 55,872

Antisense 5′-ACACCATTCTCCTCCACAGC-3′
83

Sense 5′-CTGGCTCAAGAAACGAGGACTG-3′
RRM2 6,241

Antisense 5′-CTCTCCTCCGATGGTTTGTGTAC-3′
132

Sense 5′-GTGGCAAGGATTCTGCTAGTCC-3′
TOP2A 7,153

Antisense 5′-ACCATTCAGGCTCAACACGCTG-3′
135

Sense 5′-GACTTCCACTTCCGCACAGA-3′
TPX2 22,974

Antisense 5′-TTAGTCACTCGGGCAGGAGA-3′
122

Sense 5′-TGATGTCTGGCGATAAAGGGA-3′
UBE2C 11,065

Antisense 5′-AGCGAGAGCTTATACCTCAGG-3′
121

Sense 5′-GCCAATCGACAACGTGAACC-3′
ACADM 34

Antisense 5′-TGCAGCCACTGGGATGATTT-3′
117

Sense 5′-CAACTTTGGTATCGTGGAAGGACTC-3′
GAPDH 2,597

Antisense 5′-AGGGATGATGTTCTGGAGAGCC-3′
128

DISCUSSION
Clear cell renal cell carcinoma (ccRCC) is the most frequent form of urologic malignancy
with numerous genetic alterations. The most common genetic changes associated with the
development of ccRCC are the deletion of the short arm of chromosome 3. Other genetic
alterations include gain of 5q, partial loss of 14q, 8p deletion, 9p loss and 7q gain (Li et
al., 2017). Despite our understanding of the biology and pathophysiology of ccRCC has
improved significantly over the past decade, the overall mortality of ccRCC has remained
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Table 3 The mRNA expression of candidate hub genes in 44 ccRCC patients using real-time PCR.

Gene Transcript
ID

Cancer tissue
(N = 44)

Paracanceroustissue
(N = 44)

2−(11CT) t

CCNA2 NM_001237 30.56± 1.59 34.39± 1.69 1.78 1.65
CENPE NM_001813 33.65± 1.57 38.30± 1.67 3.13 3.28*

DTL NM_016448 27.18± 1.60 32.76± 1.88 5.99 4.96*

KIF20A NM_005733 32.79± 1.62 37.54± 1.90 3.39 3.36*

KIF4A NM_012310 28.45± 1.78 32.59± 1.50 2.20 2.26#

MELK NM_014791 24.45± 1.55 28.78± 2.12 2.52 2.48*

NCAPG NM_022346 28.97± 1.72 34.35± 2.63 5.23 4.01*

NDC80 NM_006101.3 29.65± 1.84 35.57± 2.40 7.56 5.01*

NUF2 NM_145697.3 28.20± 2.07 32.12± 1.62 1.90 1.73#

NUSAP1 NM_016359 25.48± 1.41 28.31± 1.03 0.89 0.36
PBK NM_018492 28.66± 1.43 30.75± 1.69 0.53 1.84
RRM2 NM_001165931 24.72± 1.58 28.26± 1.71 1.02 0.06
TOP2A NM_001067 26.74± 1.92 32.71± 2.25 7.84 5.16*

TPX2 NM_012112 27.22± 1.58 32.62± 1.84 5.28 4.66*

UBE2C NM_007019 29.82± 2.38 36.08± 2.18 9.64 5.38*

ACADM NM_000016 23.55± 1.34 23.99± 1.81 0.17 4.78*

GAPDH NM_002046.7 18.01± 1.69 21.00± 1.72

Notes.
All results were expressed as the Means± SD of cycle threshold (Cq).
*p< 0.01.
#p< 0.05.

largely unchanged. The lethality of ccRCC is mainly due to the difficulty of early detection
and the lack of effective treatment. Traditional chemotherapy and radiotherapy are almost
ineffective in the treatment of ccRCC (Makhov et al., 2018). Therefore, potential markers
for early diagnosis and effective treatment are urgently demanded. With the development
of high-throughput technology nowadays, bioinformatics analysis enables us to explore
the genetic alterations and identify new biomarkers in ccRCC (Batai et al., 2018), which
have possible clinical applications for diagnosis, therapeutic, and prognosis.

In the present study, we analyzed the mRNAmicroarray dataset to obtain DEGs between
ccRCC and paracancerous tissues. A total of 896 up-regulated and 653 down-regulated
genes were identified in four stages of ccRCC.We constructed the PPI network of DEGs and
got the most significant module. Functional annotation showed that DEGs in the modules
were mainly enriched in mitotic cell cycle regulation. High expression of these genes
accelerates cell cycle progression and promotes the proliferation of cancer cells (Santo, Siu
& Raje, 2015). Eleven up-regulated and one down-regulated gene were identified as hub
genes by validation of TCGA database and clinical specimens. All the up-regulated hub
genes are located in the most significant module.

Aberrations of the mitotic cell cycle play important roles in the carcinogenesis or
progression of tumors. Dysregulation of the cell cycle is recognized as a hallmark of
malignancy (Hanahan &Weinberg, 2011). In the present study, we found five high
expression hub genes involved in the cell cycle, including DTL, MELK, NDC80, NUF2 and
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Table 4 Functional roles of hub genes.

Gene Full name Function

CENPE Centromere Protein E Required for kinetochore function and chromosome
segregation in mitosis.

DTL Denticleless E3 Ubiquitin Protein Ligase Homolog Required for cell cycle control, DNA damage response and
translesion DNA synthesis.

KIF20A Kinesin family member 20A Required for chromosome passenger complex (CPC)-
mediated cytokinesis.

KIF4A Kinesin Family Member 4A Translocates PRC1 to the plus ends of interdigitating
spindle microtubules during the metaphase to anaphase
transition.

MELK Maternal Embryonic Leucine Zipper Kinase Involved in various processes such as cell cycle regulation,
self-renewal of stem cells, apoptosis and splicing regulation.

NCAPG Non-SMC Condensin I Complex Subunit G Regulatory subunit of the condensin complex, required
for conversion of interphase chromatin into mitotic-like
condense chromosomes.

NDC80 Kinetochore Complex Component Acts as a component of NDC80 complex, which is required
for chromosome segregation and spindle checkpoint
activity.

NUF2 NDC80 Kinetochore Complex Component Acts as a component of NDC80 complex, which is required
for chromosome segregation and spindle checkpoint
activity.

TOP2A DNA Topoisomerase II Alpha Catalyzing the ATP dependent breakage and rejoining of
double strand of DNA,

TPX2 Microtubule Nucleation Factor Spindle assembly factor required for normal assembly of
mitotic spindles.

UBE2C Ubiquitin Conjugating Enzyme E2 C Acts as an essential factor of the anaphase promoting
complex.

ACADM Acyl-CoA Dehydrogenase Medium Chain Catalyzes the initial step of fatty acid beta-oxidation.

Table 5 Fold change of hub genes between normal andmalignant tissue samples from chip dataset.

Gene
symbol

LogFC
(Average in four stages)

FDR
(Max in four stages)

CENPE 1.32 3.24E–06
DTL 1.38 1.78E–08
KIF20A 2.27 2.42E–07
KIF4A 1.70 3.88E–06
MELK 1.32 8.26E–09
NCAPG 1.51 2.92E–08
NDC80 1.47 2.43E–04
NUF2 1.65 1.82E–06
TOP2A 1.60 1.68E–09
TPX2 1.70 3.38E–06
UBE2C 2.00 2.64E–08
ACADM 2.77 3.46E–05

Notes.
FC, fold change; FDR, false discovery rate.
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Figure 6 Overall survival analyses of hub genes were performed using gene expression profiling interactive analysis (GEPIA) online platform.
p < 0.05 was considered statistically significant. Kaplan-Meier survival curve showed that 11 hub genes with high expression level (A, CENPE; C,
KIF20A; D, KIF4A; E, MELK; F, NCAPG; G, NDC80; H, NUF2; I, TOP2A; J, TPX2; K, UBE2C) and a low expression gene (L, ACADM) were sig-
nificantly associated with malignant outcome in ccRCC patients. High expression of DTL gene was not significantly associated with prognosis in
ccRCC patients.

Full-size DOI: 10.7717/peerj.8096/fig-6

UBE2C. DTL (Denticleless E3 Ubiquitin Protein Ligase Homolog) is a critical regulator
of cell cycle progression and genome stability. DTL mediates the poly-ubiquitination
and subsequent degradation of CDKN1A/p21 and CDT1 (Baraniskin et al., 2012; Ma et
al., 2014). Overexpression of DTL is related to the poor outcome in gastric carcinoma
(Kobayashi et al., 2015), breast and lung cancers (Perez-Pena et al., 2017). MELK (Maternal
embryonic leucine zipper kinase) is involved in various processes such as cell cycle, apoptosis
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and splicing regulation. MELK is an oncogenic kinase essential for early recurrence of
hepatocellular carcinoma (Xia et al., 2016). Studies have shown that MELK is a novel
biomarker and a potential therapeutic target in cervical cancer (Lv et al., 2018), triple-
negative breast cancer (Moreno, 2016) and gastric cancer (Zhang et al., 2016a). NDC80
(Nuclear division cycle 80) is also known as highly expressed in cancer 1 (HEC1). NDC80
is a mitotic protein that regulates cell cycle by interacting with SAC protein kinase (Ji, Gao
& Yu, 2015), binding with phosphorylated spindle and kinetochore-associated protein 3
(Zhang et al., 2017). Studies have shown that NDC80 is overexpressed in colorectal cancer
(Yan et al., 2018), pancreatic cancer (Meng et al., 2015) and gastric cancer (Qu et al., 2014),
which may play a crucial role in carcinogenesis. NUF2 also called as CDCA1, is a member
of the NDC80 complex, which plays an important role in regulating mitosis. NUF2 is
a novel cancer biomarker overexpressed in lung cancer (Harao et al., 2008), colorectal
cancer and pancreatic cancer (Hu et al., 2015; Kobayashi et al., 2014). Study suggests NUF2
as a novel prognostic biomarker and therapeutic target for cancers (Thang et al., 2016).
UBE2C (Ubiquitin conjugating enzyme E2C) is a member of the E2 ubiquitin conjugating
enzyme family. UBE2C is necessary for the destruction of mitotic cyclins and cell cycle
progression, and may participate in the cancer progression (Zollner et al., 2017). UBE2C
is considered to be a crucial factor upregulated in various malignancies, including breast
cancer, melanoma, esophageal squamous cell carcinoma, colorectal cancer and gastric
cancer (Kraft et al., 2017; Ma et al., 2018; Palumbo Jr et al., 2016; Pellino et al., 2016; Qin et
al., 2017).

In recent years, kinesin motor proteins have become a potential target for cancer
therapy (Huszar et al., 2009;Kaestner & Bastians, 2010). In the present study, kinesinmotor
protein KIF4A, KIF20A and CENPE are involved in the carcinogenesis and progression
of ccRCC. KIF4A and KIF20A are members of the kinesin protein superfamily, which
is microtubule-dependent molecular motor and mediates the transport of organelles,
vesicles and chromosomes, as well as the movement of microtubules within the cell. In
hepatocellular carcinoma (Huang et al., 2018), breast cancer (Xue et al., 2018) and prostate
cancer (Huang & Gao, 2018), the up-regulation of KIF4A can predict poor prognosis.
Increased expression of KIF4A is also associated with lymph node metastasis in colorectal
cancer (Matsumoto et al., 2018). KIF20A expression is aberrant in various cancers, such as
cervical squamous cell carcinoma (Zhang et al., 2016b), pancreatic cancer (Stangel et al.,
2015) and glioma (Saito et al., 2017). Overexpression of KIF20A is correlated with poor
overall survival of hepatocellular carcinoma (De Carcer et al., 2018), lung adenocarcinoma
(Zhao et al., 2018) and ccRCC (Yuan et al., 2017). CENPE (Centrosome-associated protein
E) is a kinesin-like motor protein that accumulates in the G2 phase of the cell cycle.
CENPE plays an important role in chromosome congression, microtubule-kinetochore
conjugation and spindle assembly checkpoint activation. CENPE is highly expressed in
lung adenocarcinoma (Gao, Wang & Zhang, 2019), breast cancer (Yuan et al., 2018) and
esophageal adenocarcinoma (Zhu et al., 2019). The study showed the overall survival rate
of NSCLC patients with high expression of CENPE was poor (Hao & Qu, 2019).

Microtubule-associated proteins are involved in various cellular functions, such as
motility, intracellular trafficking and mitotic spindle formation. Drugs that interfere with
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microtubule function can cause cell cycle arrest or apoptosis and prevent cells frommitosis.
Owing to its critical role inmitotic exit and cytokinesis,microtubules have gained significant
interest as important target of cancer therapy (Tangutur et al., 2017). In the present study,
microtubule-associated protein TPX2 was highly expressed in ccRCC. TPX2 (Targeting
protein for Xenopus kinesin-like protein 2) is required for microtubule formation in
human cells. As a critical regulator of mitosis, TPX2 cooperates with Aurora-A kinase and
Eg5 kinesin to control microtubule assembly and spindle stability. Several studies have
demonstrated that TPX2 is overexpressed in esophageal squamous cell carcinoma, breast,
colon and prostate cancer (Hsu et al., 2014; Wei et al., 2013; Yang et al., 2015; Zou et al.,
2018). TPX2 was reported as a prognostic marker and potential therapeutic target in ccRCC
(Glaser et al., 2017).

The multiple genomic alterations in most cancers may be linked to various DNA
metabolic processes, including fidelity of the DNA synthesis and mismatch repair. In this
study, hub gene TOP2A is involved in the DNA synthesis and highly expressed in ccRCC.
TOP2A (Topoisomerase 2-alpha) is a critical enzyme in DNA replication, transcription and
regulating the topologic states of DNA. Studies have confirmed that TOP2A is implicated in
various types of tumors, such as gastric cancer (Terashima et al., 2017), colon cancer (Hou
et al., 2018), pancreatic cancer (Pei, Yin & Liu, 2018) and papillary renal cell carcinoma (Ye
et al., 2018). TOP2A is reported to be a novel prognostic marker in renal cell carcinoma
(Lu et al., 2017).

In addition, hub gene NCAPG is highly expressed in ccRCC. NCAPG (Non-SMC
condensin I complex subunit G) is a mitosis-related chromosome condensation protein,
which reconstitutes long and thin chromatin strands into compact short chromosomes.
The non-SMC subunits control the activity of ATP-dependent DNA supercoiling and
chromosome segregation. Dysregulation of NCAPG may contribute to the progression of
gastric cancer (Song et al., 2018). Overexpression of NCAPG is associated with recurrence
and survival of tumor patients (Sun et al., 2018).

Fatty acid metabolic disorders are considered to be a component of malignant
transformation in many cancers (Monaco, 2017). In the present study, low-expression
of ACADM is involved in the ccRCC tumorigenesis. ACADM (Acyl-CoA Dehydrogenase
Medium Chain) is specific for acyl chain of 4 to 16 lengths. The homotetramer ACADM
catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Although
the molecular pathological mechanisms of low expression of ACADM in cancer remain
unclear, study has shown thatHIF-1mediated suppression of acyl-CoAdehydrogenases and
fatty acid oxidation is critical for cancer progression (Huang Li et al., 2014). Another study
also showed that in a breast cancer transgenic mouse model, attenuating medium-chain
acyl-CoA dehydrogenase activity accelerated cancer progression (Niu et al., 2017).

In the present study, the survival analyses revealed that ten up-regulated and one
down-regulated hub genes were significantly correlated with worse overall survival of
ccRCC patients. These genes include CENPE, KIF20A, KIF4A, MELK, NCAPG, NDC80,
NUF2, TOP2A, TPX2, UBE2C and ACADM. The survival analyses indicate that these hub
genes may play important roles in the carcinogenesis, progression, invasion or recurrence
of ccRCC.
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The pathogenesis of ccRCC is a complex process driven by specific genetic and epigenetic
alterations. The discovery of new potential markers will contribute to the early diagnosis
and effective treatment of ccRCC. Literature retrieval results showed that some hub genes
in present study (DTL, KIF20A, KIF4A, MELK, NCAPG, NUF2, TOP2A, TPX2 and
UBE2C) were consistent with previous studies (Chen et al., 2018; Wang et al., 2019; Yuan
et al., 2018). Meanwhile, we found three new hub genes (NDC80, CENPE and ACADM)
related to the prognosis of ccRCC. These findings may advance the understanding of the
pathogenesis of ccRCC and provide novel targets for diagnosis, clinical treatment and
prognosis.

Some limitations of our study should be mentioned. First, relatively few samples carry
a risk of failing to demonstrate the hub genes. This may explain four candidate hub genes
have no statistically significant differences in 44 pairs of specimens. Similarly, two candidate
hub genes identified from chip dataset with 72 pairs of samples can’t be validated in TCGA
database with 343 samples. Second, 44 pairs of samples used for hub genes validation
originate from Chinese Han ethnicity, which is different from that of chip dataset samples
(American population). This may be the reason why some hub genes cannot be verified.
Therefore, these hub genes may need to be validated in different ethnic population.

CONCLUSIONS
In conclusion, the present study identified 12 hub genes that may be involved in the
carcinogenesis or progression of ccRCC. Among them, 11 hub genes are closely related to
the prognosis of ccRCC. These hub genes may be regarded as diagnostic and prognostic
biomarkers, and could become potential targets for future ccRCC therapeutic strategies.
However, the function of these genes in ccRCC needs further study to elucidate the
biological characteristics.
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