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Abstract Motivated by the wealth of experimental data recently available, we present a cellular-

automaton-based modeling framework focussing on high-level cell functions and their concerted

effect on cellular migration patterns. Specifically, we formulate a coarse-grained description of cell

polarity through self-regulated actin organization and its response to mechanical cues.

Furthermore, we address the impact of cell adhesion on collective migration in cell cohorts. The

model faithfully reproduces typical cell shapes and movements down to the level of single cells,

yet allows for the efficient simulation of confluent tissues. In confined circular geometries, we find

that specific properties of individual cells (polarizability; contractility) influence the emerging

collective motion of small cell cohorts. Finally, we study the properties of expanding cellular

monolayers (front morphology; stress and velocity distributions) at the level of extended tissues.

Introduction
Cell movements range from uncoordinated ruffling of cell boundaries to the migration of single cells

(Ridley et al., 2003) to the collective motions of cohesive cell groups (Friedl and Gilmour, 2009).

Single-cell migration enables cells to move towards and between tissue compartments – a process

that plays an important role in the inflammation-induced migration of leukocytes (Friedl and Weige-

lin, 2008). One can distinguish between amoeboid and mesenchymal migration, which are charac-

terized by widely different cell morphologies and adhesive interactions with their respective

environments (Friedl, 2004; Lämmermann and Sixt, 2009). Cells may also form cohesive clusters

and mobilize as a collective (Trepat et al., 2009; Angelini et al., 2011; Doxzen et al., 2013;

Deforet et al., 2014; Vedula et al., 2012; Marel et al., 2014). This last mode of cell migration is

known to drive tissue remodelling during embryonic morphogenesis (Lecaudey and Gilmour, 2006)

and wound repair (Poujade et al., 2007).

Despite this broad diversity of migration modes, there appears to be a general consensus that all

require (to varying degrees) the following factors: (i) Cell polarization, cytoskeletal (re)organization,

and force generation driven by the interplay between actin polymerization and contraction of acto-

myosin networks. (ii) Cell-cell cohesion and coupling mediated by adherens-junction proteins which

are coupled to the cytoskeleton. (iii) Guidance by chemical and physical signals. The basic functional-

ities implemented by these different factors confer on cells the ability to generate forces, adhere

(differentially) to each other and to a substrate, and respond to mechanical and chemical signals.

However, a fully mechanistic understanding of how these basic functionalities are integrated into sin-

gle-cell migration and coordinated multicellular movement is still lacking.

Here, we present a computational model which enables us to study cell migration at various

scales, and thus provides an integrative perspective on the basic cell functions that enable the emer-

gence of collective cell migration. While a variety of very successful modeling approaches has been

used to describe single-cell dynamics (Mogilner, 2009; Marée et al., 2006; Marée et al., 2012;

Shao et al., 2010; Ziebert et al., 2012; Ziebert and Aranson, 2013; Camley et al., 2013;

Albert and Schwarz, 2014; Dietrich et al., 2018; Goychuk et al., 2018) or the movements of
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extended tissues (Szabó et al., 2006; Szabó et al., 2010; Kabla, 2012; Sepúlveda et al., 2013;

Basan et al., 2013; Banerjee et al., 2015; Alt et al., 2017; Tarle et al., 2017), these models are

hard to reconcile with each other. Models that focus on single cells are typically difficult to extend to

larger cell numbers, largely due to their computational complexity. On the other hand, approaches

which are designed to capture the dynamics at the scale of entire tissues generally adopt a rather

coarse-grained point of view, and are therefore difficult to transfer to single cells or small cell

cohorts. At present there are two partly competing and partly complementary approaches to bridge

the gap between single-cell migration and collective dynamics, namely phase-field models

(Shao et al., 2010; Ziebert et al., 2012; Shao et al., 2012; Camley et al., 2014; Camley and Rap-

pel, 2014; Löber et al., 2015), and cellular Potts models (CPMs) (Szabó et al., 2010; Kabla, 2012;

Szabó and Merks, 2013; van Oers et al., 2014; Segerer et al., 2015; Niculescu et al., 2015;

Albert and Schwarz, 2016; Rens and Merks, 2017) first introduced by Graner and Glazier (1992).

Box 1. A simple description of complex cells?

Mammalian cells are made up of around 10
9 interacting proteins (Milo and Phillips, 2015) in

an aqueous compartment enclosed by a lipid bilayer membrane. A substantial fraction of these

proteins is devoted to the structural support of the cell. The cytoskeletal systems that perform

this function also mediate elastic deformations of the cell through stresses induced by motor

proteins. Cell migration is enabled by transient, transmembrane attachment of the cytoskele-

ton to external structures (extracellular matrix or a substrate) via integrins, and regulated by

various signaling pathways. To gain insights into such a complex system, we simplify these net-

works, each comprised of many interacting components, into coarse building blocks, which

might seem arbitrary at first, but serve to qualitatively capture generic features of the underly-

ing machinery. These generic and qualitative building blocks allow us to finally arrive at a

quantitative description of cell dynamics.

Building on and generalizing the CPM (Graner and Glazier, 1992), we present a cellular automa-

ton model that is designed to capture essential cellular features even in the context of the migration

of single cells and of small sets of cells. At the same time, it is computationally efficient for simula-

tions with very large cell numbers (currently up to Oð104Þ cells), thus permitting investigations of col-

lective dynamics at the scale of tissues. Our model reproduces the most pertinent features of cell

migration even in the limiting case of solitary cells, and is compatible with a wealth of experimental

evidence derived from both small cell groups and larger collectives made up of several thousand

cells. Specifically, by studying the characteristics of single-cell trajectories and of small cell groups

confined to circular territories, we demonstrate that persistency of movements is significantly

affected by cell stiffness and cell polarizability. Moreover, we investigate the dynamics of tissues in

the context of a typical wound-healing assay (Poujade et al., 2007; Trepat et al., 2009; Serra-

Picamal et al., 2012), and show that the model exhibits the recurring mechanical waves observed

experimentally (Serra-Picamal et al., 2012), a feature which we attribute to the coupling between

cell-sheet expansion and cell-density-induced growth inhibition.

Computational model
Model geometry
We consider cells that adhere to a two-dimensional surface, spanned by the coordinates ðx; yÞ,
through some contact area (Figure 1A). Membrane protrusions and retractions, which determine

cell motion and shape (Pollard and Borisy, 2003; Lauffenburger and Horwitz, 1996), correspond

to size and shape changes of the surface contact area. We assume that processes that take place at

the cell boundary drive cell motion, and therefore disregard the cell body, which extends into the z-

direction. In our computational model, we tesselate the available surface into a honeycomb lattice,

where each hexagon corresponds to a discrete adhesion between the cell and the substrate. Then,

protrusion and retraction events correspond to the gain and loss of hexagons at the boundary of the

substrate contact area, respectively. The occurrence of these events is determined by a Monte Carlo

scheme gradually minimizing an effective energy, H, which is associated with the cell configuration.
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The cell is perpetually driven out of equilibrium by active reorganization of its actomyosin network

and focal adhesions.

Coarse-grained cellular mechanics
As discussed above, the configuration of a cell at any given time t is associated with a substrate con-

tact area AðtÞ and perimeter PðtÞ. We assume that the membrane and cortex deformations of each

cell are constrained by the elastic energy

HcontðtÞ ¼ kAA
2ðtÞþkPP

2ðtÞ ; (1)

where kA and kP are cell-type-specific stiffness parameters, similar to the original implementation of

the CPM (Graner and Glazier, 1992). If the cell does not form adhesions to the substrate, then

membrane and cortex contractility will round up the cell body, thereby collapsing the substrate con-

tact area into a contact point.
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Figure 1. Illustration of the computational model with the pertinent simulation steps. (A) Illustration of a small cell

cohort that adheres to a surface (ðx; yÞ-plane). The polarization field, �, is defined on the contact surface with the

adhesion plane. The magnitude of the polarization field, which is indicated by the colorbar in Figure (C), encodes

the local strength of cell-substrate adhesions and emulates the local mass of force-generating (pushing)

cytoskeletal structures. Cell-cell adhesions are indicated in red. (B) Cytoskeletal structures respond to external

mechanical stimuli through reaction networks involving different feedback loops. We greatly simplify these

complex processes into two prototypic feedback loops, which break detailed balance and drive cell migration, as

follows. The polarization field induces membrane protrusions and inhibits retractions. In turn, protrusions increase

the polarization field (positive feedback) and therefore the likelihood of further protrusive activity, while retractions

decrease the polarization field (negative feedback). In the absence of mechanochemical signals, the polarization

field approaches its rest state. (C) Zoom-in to a common boundary shared between the substrate contact areas of

three cells (bounded by the red lines), each represented by a contiguous set of occupied grid sites (hexagons).

Top left: The upper right corner of the lower left cell (source cell) initiates a protrusion event against a neighboring

element in the cell to its right (target cell), as indicated by the arrow, in an attempt to displace it. The success of

each such attempted elementary event depends on the balance between contractile forces, cytoskeletal forces,

and cell adhesion. Top right: If the protrusion event is successful, then the levels of regulatory factors are

increased (decreased) in integer steps, at all lattice sites inside the source (target) cell that lie within a radius R of

the accepted protrusion event (as indicated by the plus and minus signs). Bottom right: During the course of one

MCS, different levels of regulatory factors accumulate locally within each cell, with positive levels of regulatory

factors (green plus signs) promoting a build-up of cytoskeletal structures, negative levels of regulatory factors (red

minus signs) causing degradation of cytoskeletal structures, and neutral levels of regulatory factors (white zero

signs) causing relaxation towards a resting state, as indicated in the lower left image. The color code indicates

local levels of cytoskeletal structures, �.
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Gripping the surface through the cell cytoskeleton
Detachment of the cell from the substrate is counteracted by focal adhesions, where the cell cyto-

skeleton is connected to the underlying substrate by integrins. Cellular protrusions are driven by out-

ward pushing forces generated by the assembly and disassembly of cytoskeletal structures

(Pollard and Borisy, 2003; Mogilner, 2009). As a first approximation, we subsume all of these com-

plex dynamic processes, like the formation/degradation of focal adhesions and the assembly/disas-

sembly of cytoskeletal structures, into a single time-dependent and spatially resolved internal field

for each cell, �ðx; tÞ. This polarization field emulates the mass of force-generating cytoskeletal struc-

tures in the associated hexagon, at position x, which results in an effective, locally regulated, adhe-

sion energy between cell and substrate. Consequently, the total energy associated with this

polarization field is given by

HcytoðtÞ ¼�
X

x

�ðx; tÞ : (2)

The polarization field must vanish at positions that are not occupied by a cell. Therefore, a retrac-

tion is associated with an energy penalty due to the loss of a substrate adhesion. Consequently, a

protrusion, where one source hexagon ‘conquers’ a nearby target hexagon, is associated with an

energy gain due to an increase of the substrate contact area. Here, we assume that the newly incor-

porated hexagon has the same polarization field as its conqueror.

There are several biological factors that constrain the local density of actin filaments, myosin and

focal adhesions, whose limited availability corresponds to an upper bound on the polarization field.

Furthermore, we assume that there is some minimal attachment energy associated with adhesions

that prevents the cells from detaching from the substrate, which implies a lower bound on the polar-

ization field. This motivates to introduce cell-type-specific bounds for the polarization field:

�ðx; tÞ 2 ½�0 � D�=2; �0 þ D�=2�, where �0 is the average polarization field and D� is the maximum cell

polarity.

Active self-regulation of the cytoskeleton
Assembly and disassembly of cytoskeletal structures are controlled by a myriad of accessory proteins

(Lauffenburger and Horwitz, 1996; Ridley et al., 2003). These regulatory proteins form a reaction

network involving different feedback mechanisms, which allow cytoskeletal structures to respond to

external mechanical stimuli (Marée et al., 2006; Marée et al., 2012). Furthermore, cytoskeletal

structures like integrins play a role in the spatiotemporal control of these regulatory proteins

(Schwartz and Shattil, 2000). Here, we refrain from formulating a detailed reaction-diffusion model

that accounts for the interactions between all of these contributing players. Instead, we assume that

the internal chemistry of the cell will generically produce protein patterns, with a typical length scale

R, which locally up- or down-regulate cellular cytoskeleton and focal adhesion (dis)assembly. Then,

we greatly simplify these complex processes (Lauffenburger and Horwitz, 1996; Schwartz and

Shattil, 2000; Ridley et al., 2003) into two prototypic feedback loops (Figure 1B,C):

A. The polarization field locally promotes outward motion of the membrane, because it contains
a contribution from the local amount of actin filaments. Membrane protrusions facilitate the
formation of substrate adhesions and further polymerization of actin filaments, leading to a
positive feedback on the polarization field within a range R.

B. The polarization field also locally inhibits inward motion of the membrane, by emulating the
local adhesion strength of the cell to the substrate. If a membrane retraction is successful,
then the loss of substrate adhesions locally further increases cell contractility, leading to a neg-
ative feedback on the polarization field within a range R.

In the absence of regulatory signals, we assume that the polarization field decays to a fixed value,

� ! �0, which corresponds to a resting state of the cell cytoskeleton and focal adhesions. For the

sake of keeping our model as simple as possible, we assume that all protein patterns have the same

range R, and that the regulation of the cell cytoskeleton and focal adhesions follows a single time-

scale that corresponds to an update rate �. Because at heart, our model is only based on generic

feedback loops with a certain signaling range R, we would argue that any model with similar feed-

back should, in general, lead to similar cell behavior. Indeed, mutually repressing feedback loops

(Marée et al., 2006) and mutually activating feedback loops (Shao et al., 2010; Ziebert et al.,
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2012; Albert and Schwarz, 2016) are crucial recurring motifs among multiple cell migration studies.

Notably, these theoretical approaches all recover comparable cell behavior even when the model

setup seems quite different at first glance:

1. Cell migration couples mechanochemically to a scalar field (Shao et al., 2010), if stresses in
the cell are isotropic; this is analogous to the present study.

2. Cell migration couples mechanochemically to a vector field (Marée et al., 2006;
Ziebert et al., 2012), if stresses in the cell are anisotropic.

3. Cell migration couples to a single polarity vector (Albert and Schwarz, 2016), if propulsive
forces are distributed homogeneously throughout the cell. However, this simplification of the
former two cases cannot account for the formation of multiple competing lamellopodia/
pseudopods.

These different modeling approaches (of varying complexity) surprisingly yield a universal phe-

nomenology. The puzzling similarity between these models suggests generic common features that

determine cell shape and motility: mechanical constraints like cell elasticity and mechanochemical

feedback mechanisms that break detailed balance, maintain cell polarity and drive cell motion.

Intercellular adhesion and friction
In addition to internal remodeling of the cytoskeleton, adhesion of cells to neighboring cells and to

the substrate plays a key role in explaining migratory phenotypes (Mogilner, 2009; Friedl and Gil-

mour, 2009). From a mechanical point of view, the implications of cell adhesion are two-fold:

1. Cell adhesion supports growth of cell-cell and cell-matrix contacts and may thus be described
in terms of effective surface energies. In our computational model, cell-matrix contacts are
readily accounted for by the polarization field, �. In addition, we associate the formation of
cell-cell adhesions with an energy benefit B, which we call cell-cell adhesion parameter.

2. Once formed, adhesive bonds anchor the cell to the substrate and to neighboring cells. During
cell migration, these anchoring points must continuously be broken up and reassembled
(Webb et al., 2002; Gumbiner, 2005) and, hence, provide a constant source of
energy dissipation. Therefore, we assume that the cost for rupturing an existing cell-cell adhe-
sion, Bþ DB>B, exceeds the gain from forming a new cell-cell adhesion. Then, the dissipative
nature of cell-cell adhesions is accounted for by the cell-cell friction parameter DB. Similarly,
cell-matrix contacts can also provide a source of dissipation, which is further discussed in
Appendix 2.

Environmental cues
The polarization field, �, readily includes contributions from cell-substrate adhesions, which are

locally up- or down-regulated by the cell. These cell-substrate adhesions require the abundance of

surface ligands, which serve as substrate tethers that the cell can attach to, and which are not neces-

sarily distributed homogeneously. By substrate micropatterning, one can arrange areas where the

cell is likely to adhere to the surface, and no-go-areas, where the cell adheres less (or cannot adhere

at all). To replicate such environmental cues, we introduce a second scalar field ’ðxÞ, whose value is

taken to reflect the relative availability of substrate sites at which focal adhesions between cell and

substrate can be formed. Here, we have chosen to model micropatterns as impenetrable walls; we

locally add a large energy penalty, ’ � 0, to the polarization field (� ! �þ ’), that a cell has to pay

for trespassing onto a no-go-area. However, it is equally valid to treat ’ as a multiplicative constant

modulating the polarization field (� ! ’ �), where ’ ¼ 0 models a local inability of the cell to attach

to the substrate. Analogously to cell-cell contacts, we account for the dissipative nature of cell-sub-

strate adhesions by associating the breaking of such contacts with an additional energy cost D.

Tissue growth by cell division
In the description so far, the cells are arrested in the cell cycle (mitostatic). To investigate the effect

of cell proliferation on tissue dynamics, we introduce a simplified three-state model of cell division.

Cells start off in a quiescent state, in which their properties remain constant over time. The cell sizes

fluctuate around an average value determined by the cell properties and the local tissue pressure.

Cell growth typically arrests at large cell densities, in a phenomenon coined contact inhibition of pro-

liferation (Stoker and Rubin, 1967; Puliafito et al., 2012; Pavel et al., 2018). Since large cell
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densities correspond to a small spread area for each individual cell, this implies that cell growth is

arrested below a critical threshold size (AT). Upon exceeding this threshold size due to size fluctua-

tions, cells leave the quiescent state and enter a growth state. The duration of the quiescent state is

thus a random variable, whose average value depends on the tissue pressure, and lower pressure

(due to a lower cell density) leads to a shorter quiescent state. During the subsequent deterministic

growth state of duration Tg, cells double all of their cellular material and thus double in size. We

model this growth as a gradual decrease in the effective cell contractility (kA and kP). As there is no

a priori reason to assume that a cell’s migratory behavior should depend on its size, we constrain the

parameters accordingly; this is described in detail in Appendix 2. After having grown for a

duration Tg, cells switch to a deterministic division state of duration Td. During division, cells strongly

contract, which leads to mitotic rounding and a drastic decrease of their contact area with the sub-

strate (Jones et al., 2018; Lock et al., 2018). In principle, a decrease of cell contact area could also

lead to perturbations of the stress field in the monolayer. Here, however, we neglect the decrease

of the cell spreading area, as the division phase is short compared to the growth phase. We expect

that a drastic increase of cell contractility also leads to a loss of polarity in the cell’s migratory

machinery. Therefore, each cell reduces its polarizability to zero (D� ! 0) in order to utilize its cyto-

skeleton for the separation of the cellular material, leading to mitotic rounding. At the end of the

division state, each dividing cell splits into two identical daughter cells, whose properties and param-

eters are identical to the mother cell’s initial values in the quiescent state. Finally, the daughter cells

re-initialize migration from an unpolarized state. For a detailed and more technical description we

refer the interested reader to Appendix 1.

Results

Persistent migration of single cells
The macroscopic properties of cell clusters and tissues emerge from an interplay between many indi-

vidual cells. Then, what determines the mechanical and migratory features of these individual cells?

In our computational model, we have studied this question by screening its multidimensional param-

eter space. For such a brute force approach to be numerically feasible, one must first distinguish rel-

evant parameters (these determine the resulting dynamics) from irrelevant parameters. Specifically,

in our extended cellular Potts model, there are reference parameters whose sole purpose is to con-

trol the spatial and temporal discretization of the numerical model:

1. The cytoskeletal update rate endows the cellular Potts model with a reference timescale and
determines the temporal discretization. In this study, we have set � ¼ 0:1.

2. The average polarization field �0 encodes the energy gain for creating new cell-substrate adhe-
sions, while the area stiffness kA represents the energy cost for increasing the substrate con-
tact area. Then, the number of hexagons occupied by the cell is proportional to the ratio
�0=kA. If we use a desired cell area as reference value, then the ratio �0=kA controls the spatial
discretization of the cell. To study the migration of single cells and small cell cohorts, we have
set the average polarization field to �0 ¼ 225 and the area stiffness to kA ¼ 0:18.

3. In cellular Potts models, which are Monte-Carlo simulations, the reference energy of fluctua-
tions is determined by an effective temperature. In this study, we have set kBT � 1.

Furthermore, we used a large computational grid with 9 � 104 sites and periodic boundary condi-

tions to study the migration of single cells. This leaves three parameters that control cell motility in

the absence of cell-substrate dissipation: cell polarizability D�, cell contractility kP and signalling

radius R. However, it is not clear yet whether all of these are independent relevant parameters. In

fact, in the following sections it will become clear that cell polarizability and contractility are degen-

erate parameters (in the sense that the phenomenology only depends strongly on their ratio, which

is the corresponding relevant parameter).

Cell persistence increases with polarizability
First, we investigated the impact of varying levels of cell perimeter stiffness kP and maximum cell

polarity D� on the cell’s migratory patterns (Figure 2—video 1), at a fixed signaling radius R ¼ 5. To

assess the statistics of the cell trajectories, we recorded the cell’s orientation v̂ðtÞ � vðtÞ=kvðtÞk (v:

cell velocity) and (geometrical) center of mass position RðtÞ during a total simulation time of
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Tsim ¼ 10
4 Monte-Carlo steps (MCS). For each set of parameters, we performed 100 statistically inde-

pendent simulations, from which we computed the mean squared displacement,

MSDðtÞ � h½Rðt þ tÞ � RðtÞ�2i, and the normalized velocity auto-correlation function,

CðtÞ � hv̂ðt þ tÞ � v̂ðtÞi. Here, h. . .i denotes an average with respect to simulation time t as well as

over all 100 independent simulations.

These computer simulations show that the statistics of the migratory patterns is well described by

a persistent random walk model (Stokes et al., 1991; Wu et al., 2014) with its two hallmarks: a

mean square displacement that exhibits a crossover from ballistic to diffusive motion (Figure 2A),

and on sufficiently long time scales an exponential decay of the velocity autocorrelation function

CðtÞ / e�t=tp (inset of Figure 2A). We determined the persistence time of directed migration, tp, by

fitting the mean squared displacement with a persistent random walk model. In addition, we also

measured cell speed, v, and cell aspect ratio, lþ=l�, to further characterize cell motility and shape.
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Figure 2. Cell shape and persistence of migration as a function of cell polarizability. (A) Mean-squared

displacement (MSD) for single-cell movements at different maximum cell polarity D� (stiffness parameters

kP ¼ 0:060, kA ¼ 0:18; average polarization field �0 ¼ 225; signaling radius R¼ 5; cell-substrate dissipation D¼ 0; cell-

substrate adhesion penalty ’¼ 0; cytoskeletal update rate � ¼ 0:1; 100 independent simulations for each set of

parameters). Single cells perform a persistent random walk, i.e. they move ballistically (MSD/ t

2) for t� tp, and

diffusively (MSD/ t) for t� tp. Inset: Normalized velocity auto-correlation function for the same parameters as in

the main figure. (B) Persistence time of directed cell migration plotted as a function of maximum cell polarity D�,

and perimeter stiffness kP (area stiffness kA ¼ 0:18; average polarization field �0 ¼ 225; signaling radius R ¼ 5; cell-

substrate dissipation D¼ 0; cell-substrate adhesion penalty ’¼ 0; cytoskeletal update rate � ¼ 0:1; 100

independent simulations for each set of parameters). The persistence time of the random walk increases with

increasing cytoskeletal polarity and decreasing perimeter elasticity. (C) Cytoskeletal polarity also controls cell

shapes, with crescent cell shapes (long persistence times) being observed at large cytoskeletal polartities, and

round cell shapes (short persistence times) at small cytoskeletal polarities. Color code: cell polarization; cf. color

bar in Figure 1C. (D) Single cell speed plotted as a function of maximum cell polarity D�, and perimeter stiffness

kP. (E) Single cell aspect ratio plotted as a function of maximum cell polarity D�, and perimeter stiffness kP. (F)

Speed and persistence time of single cells are correlated with the cell aspect ratio.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Role of substrate dissipation for cell shape and motility.

Figure 2—video 1. Single cell motility and shape for different maximum cell polarities (kP ¼ 0:060, R ¼ 5).

https://elifesciences.org/articles/46842#fig2video1
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Surprisingly, for each of these variables we found a master curve that only depends on the ratio

between cell polarizability and cell contractility, D�=kP (Figure 2B,D,E). This data collapse suggests

D�=kP as a relevant parameter (while cell polarizability and contractility are degenerate parameters),

which we will henceforth refer to as specific polarizability.

The cells’ persistence times of directed migration, speeds and aspect ratios all show a characteris-

tic dependence on the specific cell polarizability. There is a threshold value for the specific polariz-

ability, D�=kP » 500, below which cells remain immobile (Figure 2B,D,E; grey regions). Above this

threshold, the persistence time of directed migration, speed and aspect ratio increase markedly with

the specific polarizability (Figure 2B,D,E). In our model, the area and perimeter stiffnesses refer to

global and homogeneous cell contractility, while the cell polarization field drives cell migration. As

discussed in ‘Gripping the surface through the cell cytoskeleton’, the cell polarization field does not

explicitly distinguish between a local extensibility (e.g. due to actin polymerization), a local contrac-

tility (due to myosin-induced contraction) of the cytoskeleton or spatially regulated cell-substrate

adhesions. For example, if cell migration is driven by actin polymerization, then blebbistatin treat-

ment will decrease the global cell contractility, which we predict to lead to more elongated cells that

move faster and exhibit extended episodes of ballistic motion. Indeed, an increase of cell migration

speed after blebbistatin treatment was observed for mouse hepatic stellate cells (Liu et al., 2010).

Alternatively, cell migration could also be driven by myosin contractility, for example by pulling the

cell forward or by locally detaching adhesions. Then, polarizability and contractility concomitantly

depend on the ability of the cell to exert forces, which can be inhibited by blebbistatin treatment. If

polarizability, D�, and contractility, kP, are equally reduced by a blebbistatin-dependent prefactor,

then the specific polarizability, D�=kP, and the resulting cell phenomenology should remain

unchanged. Indeed, blebbistatin treatment of keratocytes and keratocyte fragments was reported

not to affect cell shape and speed to any significant degree (Wilson et al., 2010; Ofer et al., 2011).

Therefore, blebbistatin treatment can either increase or decrease cell motility, depending on the cell

type and possibly on the specific mechanism that drives cell migration.

Interestingly, because of this universal dependence of all the mentioned quantities on the specific

polarizability, our simulations also show that there is a strong correlation between cell shape (aspect

ratio) and cell motility (speed and persistence time of directed migration); see Figure 2F. While

highly persistent trajectories are observed for cells with ‘crescent’ shapes, more erratic cell motion is

typically found for cells with more rounded outlines (Figure 2C). In other words, our computational

model predicts that cells which are able to polarize their cytoskeletal structures more strongly will

adopt crescent shapes and show a higher degree of persistent cell motion. It would be interesting

to further test these predictions by using phenotypic variations in cell shapes like those reported in

experiments with keratocytes (Keren et al., 2008); there, the authors also found a correlation

between cell shape and speed.

Feedback range determines whether individual cells move persistently or
rotate
Moreover, we investigated the influence of different signaling radii R (typical range in which signal-

ling molecules diffuse and mediate feedback mechanisms during a single Monte-Carlo step) on the

persistence of single-cell trajectories. Since R is the relevant parameter that controls the spatial orga-

nization of lamellipodium formation, its value should strongly affect the statistics of a cell’s trajectory

(Figure 3A). Indeed, at small values of R, we observe that the spatial coherence of cytoskeletal rear-

rangements is low, which frequently results in the disruption of ballistic motion due to the formation

of independent lamellipodia in spatially separate sectors of the cell boundary (Figure 3C, lower

snapshot). In contrast, at larger values of R, we find that spatial coherence is restored, and the for-

mation of one extended lamellipodium across the cell’s leading edge maintains a distinct front-rear

axis of cell polarity (Figure 3C, upper snapshot). However, when the signaling radius is too large

compared to the cell size, we find an inhibition of ballistic motion and rounding of the cells as signals

originating from one cell edge begin to reach the opposing edge. This effect may also occur when

cells in tissue become smaller due to an increase of cell density through proliferation or

compression; in other words, this means that the cells become smaller than the typical length scale

of the chemical patterns that control cell migration. Then, one would not expect these chemical pat-

terns to form (Hubatsch et al., 2019). Therefore, depending on the cell polarizability (D�), there is an
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optimal signaling radius that shows both maximal cell elongation and maximal cell persistence

(Figure 3A,B).

Cells with low polarizability need a large signaling radius to feed the positive feedback mecha-

nism and to form a single large cell front. In contrast, highly polarizable cells can already sustain the

positive feedback mechanism with a short signaling radius and easily form at least one (or even mul-

tiple competing) short cell front(s). With increasing signaling radius, these cell fronts become increas-

ingly correlated and finally merge. Surprisingly, at small signaling radii, we observed that highly

polarizable cells slow down with increasing signaling radius (Figure 3D; yellow squares and black

circles), in contrast to the behavior of cells with low polarizability. Furthermore, at large signaling

radii, highly polarizable cells speed up, although their persistence time of directed migration has

dropped to small values (cf. Figure 3A,D; blue diamonds, green pentagons, yellow squares and
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Figure 3. Migratory behavior of single cells as a function of the cell’s signaling radius R at different values for the

maximal cytoskeletal polarity D�. (Stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization

field �0 ¼ 225; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; cytoskeletal update

rate � ¼ 0:1; 100 independent simulations for each set of parameters). (A) The persistence times of directed

migration of single cells exhibit a pronounced maximum at an optimal signaling radius, which depends on cell

polarizability. (B) The shapes of single cells exhibit a pronounced maximal elongation at an optimal signaling

radius, which depends on cell polarizability. (C) The signaling radius critically determines the synchronicity of

internal cytoskeletal remodeling processes. Small signaling radii frequently lead to transient formation of mutually

independent lamellipodia at different positions around the cell perimeter, thereby interrupting persistent motion

(reducing persistence times of directed migration). Large signaling radii lead to structurally stable front-rear

polarization profiles across the entire cell body (long persistence times of directed migration). Color code: cell

polarization; cf. color bar in Figure 1C. (D) The speed of single cells does not drop to zero even when their

persistence time of directed migration vanishes. This indicates single cell rotations. (E) The inverse curvature of the

cell trajectories as a function of the signaling radius. (F) Depending on whether a cell migrates along its long axis

(top) or short axis (bottom), it has to move a different projected contour length. If each protrusion takes roughly

the same amount of time, then migration along the long axis (top; cell has to move a smaller projected contour

length) allows for greater cell speeds than migration along the short axis (bottom; cell has to move a larger

projected contour length).

The online version of this article includes the following video for figure 3:

Figure 3—video 1. Single cell motility and shape for different signaling radii (D� ¼ 60, kP ¼ 0:060).

https://elifesciences.org/articles/46842#fig3video1
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black circles). To find an intuitive explanation for these observations, we inspected time-lapse videos

of a cell at high polarizability (D�=kP ¼ 1000; cf. Figure 3—video 1, top row), which show a qualita-

tive shift in cell behavior:

. For small signaling radii, R ¼ 2, short polarization fronts ‘pull’ the cell behind them, allowing
for transient polarization and quick but erratic movement along the long axis of the cell.

. For intermediate signaling radii, R ¼ 6, broad and correlated polarization fronts emerge, and
both the cell polarization and movement always orient themselves along the short axis of the
cell.

. For large signaling radii R ¼ 15, we observed circular motion of the cell; because of the large
signaling radius, signals originating from the trailing edge affect the leading edge of the cell
and vice versa. Due to this circular motion, the cell exhibits a non-zero speed and a vanishing
persistence time of directed migration.

Therefore, we find that the cell can transiently polarize and migrate along its long axis for small

signaling radii and for high polarizability. Furthermore, in a broad parameter regime, we find kerato-

cyte-like motion and polarization along the short axis of the cell. Note that we do not consider the

formation of stress fibers, which could lead to cell migration along the long axis in a broad parame-

ter regime (Kassianidou et al., 2019). Such stress fibers could be modeled via a nematic field that

represents the anisotropic part of the intracellular stress. Our counter-intuitive observation that cell

migration along the long axis is faster than cell migration along the short axis can be explained as

follows: If the cell migrates along its short axis, then it has to move a greater projected contour

length than if it migrates along its long axis (Figure 3F). Considering that each protrusion takes

roughly the same amount of time, migration along the long axis allows for greater cell speeds than

migration along the short axis, because the cell has to spend less time to move a smaller projected

contour length (Figure 3F).

To further characterize the single cell rotations that occur at large signaling radii, we determined

the average curvature of the trajectories hci ¼ hkqsv̂ðsÞ � v̂ðsÞki, where s is the contour length along

the corresponding trajectory. Here, we averaged the tangent vector v̂ðsÞ over 10 Monte-Carlo steps

to integrate out fluctuations that occur on short timescales (the internal dynamics of the cell has an

intrinsic time scale of 10 Monte-Carlo steps due to our choice of the cytoskeletal update rate,

� ¼ 0:1). We find that the curvature of the trajectories has a pronounced minimum at large signaling

radii (where the persistence time of directed migration vanishes), which indicates a transition from

straight to circular trajectories (Figure 3E). Such a transition from persistent migration to single cell

rotations was previously observed in experiments (Lou et al., 2015; Raynaud et al., 2016) and in

theory (Reeves et al., 2018; Allen et al., 2018).

Cell clusters on circular micropatterns
To assess the transition to collective cell motion, we next studied the dynamics of small cell groups

confined to circular micropatterns (Huang et al., 2005; Doxzen et al., 2013; Deforet et al., 2014;

Segerer et al., 2015). We implemented these structures in silico by setting ’ðxÞ ¼ 0 inside a radius

r0 and ’ðxÞ ! �¥ outside. During each simulation run, the number of cells was also kept constant

by deactivating cell division. We previously employed this setup to compare our numerical results

with actual experimental measurements, and found very good agreement (Segerer et al., 2015).

Here, we generalize these studies and present a detailed analysis of the statistical properties of the

collective dynamics of cell groups in terms of the key parameters of the computational model.

When adhesive groups of two or more motile cells are confined on a circular island, they arrange

themselves in a state of spontaneous collective migration, which manifests itself in the form of coor-

dinated and highly persistent cell rotations about the island’s midpoint x0 (Huang et al., 2005;

Doxzen et al., 2013; Deforet et al., 2014; Segerer et al., 2015). The statistics of these states of

rotational motion provide insight into the influence of cellular properties on the group’s ability to

coordinate cell movements. To quantify collective rotations, we recorded the average signed angular

velocity of the cell cluster !ðtÞ ¼ êz � h~vðtÞ � ~RðtÞ=k~RðtÞk2iC. Here, êz is the out-of-plane unit vector,

. . .h iC denotes an average with respect to the cell population, and ~vðtÞ ¼ vðtÞ � hvðtÞiC as well as

~R ¼ RðtÞ � hRðtÞiC measure the velocity and position of each cell relative to the cell cluster (we have

omitted the indices that identify individual cells for the sake of convenience and clarity). The result-

ing random variables for the magnitude of the angular velocity of the cell assembly, j!ðtÞj, and the
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average cell perimeter PðtÞ � hPaðtÞiC were then used to characterize the statistics of collective cell

rotation. For each specific choice of simulation parameters, we monitored j!ðtÞj and PðtÞ for a set of

100 statistically independent systems, each of which was observed over Tsim ¼ 10
4 MCS. From these

data, we then computed the mean overall rotation speed hj!ji, its standard deviation s!, and the

standard deviation of the cell perimeter, sP.

Figure 4 illustrates the characteristic properties of collective cell rotations in systems containing

jCj ¼ 4 cells endowed with varying maximum cell polarity D� and varying cell contractility kP. Analo-

gously to our observations for single cells, the statistical measures shown in Figure 4A do not sepa-

rately depend on cell contractility and maximum cell polarity, but depend only on the specific

polarizability D�=kP. Overall, we find that upon increasing the specific polarizability there is a marked

transition from a quiescent state to a state where the cells are collectively moving. Below a threshold

value for the specific polarizability (D�=kP » 450 in Figure 4A), the rotation speed hj!ji (purple curves

in Figure 4A) vanishes and the cells are immobile. In this regime, which we term the stagnation

phase, or S-phase, cytoskeletal forces are too weak to initiate coherent cell rotation, and the sys-

tem’s dynamics is dominated by relatively strong contractile forces, which tend to arrest the system

in a ‘low energy’ configuration. Beyond this threshold, we identify three distinct phases of collective

cell rotation. In the R1-phase, we find a steep increase in the average rotation speed and a local

maximum in the fluctuations of both cell shape and rotation speed; cf. green (sP) and blue (s!)

curves in Figure 4A. Now, cytoskeletal forces are sufficiently large to establish actual membrane
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Figure 4. Phases of collective motion. (4-cell systems; confinement radius r0 ¼ 30:6; area stiffness kA ¼ 0:18;

average polarization field �0 ¼ 225; signaling radius R ¼ 5; cytoskeletal update rate � ¼ 0:1; cell-cell adhesion

B ¼ 0; cell-cell dissipation DB ¼ 12; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0 (r<r0),

’ ! �¥ (r>r0); 100 independent simulations for each set of parameters). (A) Characteristic observables of

collective cell rotation at different values of the cell perimeter stiffness parameter kP: mean (hj!ji) and standard

deviation (s!) of the magnitude of the cell cluster’s angular velocity, and the standard deviation of the cell

perimeter (sP). The statistics of collective cell motion depends only on the ratio of maximum cell polarity, D�, to

cell contractility, kP (specific polarizability). (B) Representative angular trajectories and (C) cell shapes (color code

represents cell polarization; cf. Figure 1C) for the different parameter regimes as described in the main text. The

cellular dynamics in the different parameter regimes are shown in Figure 4—video 1, Figure 4—video 2

and Figure 4—video 3.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Collective motion for varying number of cells at low polarizability.

Figure supplement 2. Collective motion for varying number of cells at intermediate polarizability.

Figure supplement 3. Collective motion for varying number of cells at high polarizability.

Figure 4—video 1. Collective rotations of 4 cells in the R1-phase (D� ¼ 28; D�=kP ¼ 467).

https://elifesciences.org/articles/46842#fig4video1

Figure 4—video 2. Collective rotations of 4 cells in the R2-phase (D� ¼ 50; D�=kP ¼ 833).

https://elifesciences.org/articles/46842#fig4video2

Figure 4—video 3. Collective rotations of 4 cells in the R3-phase (D� ¼ 70; D�=kP ¼ 1167).

https://elifesciences.org/articles/46842#fig4video3
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protrusions against the contractile forces, and cells begin to rotate (Figure 4B,C). However, the con-

tractile forces still dominate, such that cellular interfaces tend to straighten out and lamellipodium

formation is sustained only over finite lifetimes. Thus, due to the dominance of contractile forces, the

systems frequently experience transient episodes of stagnation and repeatedly change their direc-

tion of rotation (cf. blue trajectory in Figure 4B).

At intermediate values of specific polarizability (R2-phase), the cellular systems reach a regime of

enduring rotational motion, where hj!ji varies linearly with the local specific polarizability, and where

sP and s! exhibit a rather broad minimum (Figure 4A). In this regime, a range of ‘optimal ratios’ of

cytoskeletal to contractile forces sustains stable cell shapes, and sets the stage for the formation of

extended lamellipodia and the establishment of permanent front-rear polarizations of cells. As a

result, the cells’ persistence times of directed migration become very large, rendering cellular rota-

tions strictly unidirectional within the observed time window (Figure 4B). Finally, at large values of

the specific polarizability (R3-phase), the system’s dynamics is dominated by cytoskeletal forces and

the rotational speed hj!ji saturates at some maximal value. Due to the relatively small contractile

forces, cell shapes tend to become unstable, as reflected in the growing variance of the cell perime-

ter sP (green curve in Figure 4A). These instabilities in cell shape frequently lead to a loss of persis-

tence in the rotational motion of the cells (growing s!; blue curve in Figure 4A).

Tissue-level dynamics
As an application of our computational model at the tissue level, we considered a setup in which an

epithelial cell sheet expands into free space. As in recent experimental studies (Serra-Picamal et al.,

2012; Sepúlveda et al., 2013; Trepat et al., 2009; Poujade et al., 2007), we confined cells laterally

between two fixed boundaries, within which they proliferated until they reached confluence; in the y-

direction we imposed periodic boundary conditions. Then we removed the boundaries and studied

how the cell sheet expands. In order to quantify tissue expansion, we monitored cell density and

velocity, as well as the mechanical stresses driving the expansion process. Figure 5 shows our results

for two representative parameter regimes that highlight the difference between a dynamics domi-

nated by cell motility in the absence of cell proliferation, and a contrasting regime where cells with

low motility grow and divide depending on the local cell density. To simulate large numbers of cells,

we decreased the amount of hexagons that are typically occupied by each cell (the simulation cost

scales linearly with the summed area of all cells) by setting the average polarization field to �0 ¼ 35.

For each set of parameters, we performed and averaged 100 independent simulations.

We first investigated how a densely packed pre-grown tissue of mitostatic cells with high polariz-

ability (large D�) expands into cell-free space upon removal of the confining boundaries at the tis-

sue’s lateral edges (Figure 5A). As the cells migrate into the cell-free space, we observe a strongly

(spatially) heterogeneous decrease in the initially high and uniform cell density and mechanical pres-

sure in the expanding monolayer (Figure 5B,C). This is quite distinct from the behavior of a homoge-

neous and ideally elastic thin sheet, which would simply show a homogeneous relaxation in density

as it relaxes towards its rest state. Moreover, cell polarization and the ensuing active cell migration

lead to inhomogeneously distributed traction stresses in the monolayer. After initial expansion of the

monolayer, facilitated by high mechanical pressure, the cells at the monolayer edge begin to polar-

ize outwards, which enhances outward front migration. These actively propagating cells exert trac-

tion on the trailing cells, and thereby yield a trailing region with negative stress (Figure 5C). Taken

together, this gives rise to a characteristic X-shaped pattern in the kymograph of the total mechani-

cal stresses hsxxiy (Figure 5C). This profile closely resembles the first period of mechanical waves

observed experimentally (Serra-Picamal et al., 2012). It illustrates how stress is transferred towards

the center of the monolayer when cells are highly motile and collectively contribute to tissue expan-

sion. At the end of the simulated time window, the cell density exhibited a minimum in the center of

the sheet (Figure 5B). This is due to stretching of the central group of cells caused by the equally

strong traction forces exerted by their migrating neighbors on both sides. Finally, the simulations

also show that outward cell velocities increase approximately linearly with the distance from the cen-

ter, confirming that in this configuration the entire cell sheet contributes to the monolayer expansion

(Figure 5D).

To explore the possible range of tissue dynamics and expansion, we also investigated a qualita-

tively different parameter regime where cells are less densely packed and can also polarize less due
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to a narrower range of polarizability (Figure 5E). Here, the expansion of the monolayer is mainly

driven by cell division, and cells keep dividing until they reach a homeostatic cell density (Figure 5F).

Even though cells should typically exceed the threshold size and hence enter the growth phase at

different times, we observe that the cell sheet exhibits periodic ‘bursts’ of growth (Figure 5F) coin-

ciding with the total duration of a complete cell cycle (200 MCS) and alternating with cell migration

(Figure 5H). These periodic ‘bursts’ can be explained as follows. Initially, the slightly compressed

monolayer expands to relieve mechanical pressure. Due to this initial motion, the cells at the mono-

layer edge begin to polarize outwards. As in the previous case, where cell proliferation is absent

(Figure 5A–D), the polarized cells enhance outward front migration and stretch the cells in the bulk

of the cell sheet. For the same reasons as before, we observe a typical X-shaped stress pattern in

the kymograph (Figure 5G), albeit less pronounced due to the lower polarizability of the cells (cf.

Figure 5C). Because a broad region in the monolayer bulk is stretched by the actively migrating cell
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Figure 5. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x ¼ �175 for two

different parameter settings. (Stiffness parameters kP ¼ 0:12, kA ¼ 0:18; average polarization

field �0 ¼ 35; signaling radius R ¼ 2; cytoskeletal update rate � ¼ 0:1; cell-cell adhesion B ¼ 12; cell-cell

dissipation DB ¼ 0; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; 100 independent

simulations for each set of parameters). (A–D) Tissue expansion for a migration-dominated setup without explicit

cell growth and mitosis. (3300-cell system; maximum cell polarity D� ¼ 30). (E–H) Tissue expansion at low density

and cell polarizability for a cell sheet comprised of dividing cells. (Initially a 2500-cell system; maximum cell polarity

D� ¼ 10; growth time Tg ¼ 180; division time Td ¼ 20; size threshold for cell growth AT ¼ 1Aref , where Aref is the

size of a solitary cell in equilibrium). (A, E) Snapshots of the polarization field �; cf. Figure 5—video 1 and

Figure 5—video 2. (B, F) Kymographs showing the cell density averaged over the y-direction and (top) final

snapshots of the cell density profiles. (C, G) Kymographs showing the component sxx of the stress tensor

averaged over the y-direction and (top) final snapshots of the stress profiles. (D, H) Kymographs showing the

component vx of the cell velocities averaged over the y-direction and (top) final snapshot of the velocity profiles.

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Monolayer expansion depends on dissipation and cell polarizability.

Figure 5—video 1. Motility-dominated tissue dynamics.

https://elifesciences.org/articles/46842#fig5video1

Figure 5—video 2. Proliferation-dominated tissue dynamics.

https://elifesciences.org/articles/46842#fig5video2
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fronts, these cells exceed the threshold size and begin growing approximately in phase. Once the

mechanical pressure of the cell sheet is relieved, it will stop expanding (Figure 5H). However, cell

growth and division once more lead to an increase in mechanical pressure (and cell density) in the

monolayer (Figure 5F,G). This cycle of migration-dominated monolayer expansion and cell-density-

dependent cell growth and division results in a periodic recurrence of the X-shaped stress pattern

(Figure 5G), closely resembling the pattern observed in experiments (Serra-Picamal et al.,

2012). On a sidenote, the synchronization of the cell division and cell migration phases by the deter-

ministic portion of the cell cycle can be counteracted by introducing additional stochastic terms in

the transition between the different phases of the cell cycle (cf. ’Cell proliferation and mitosis’ in

Appendix 1).

Note that the inhomogeneously distributed traction stresses in the monolayer, and its wave-like

behavior, ultimately emerge from cell polarization and the ensuing active cell migration. Therefore,
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Figure 6. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x ¼ �175 for two

different parameter settings that produce rough tissue fronts. (Initially a 2500-cell system; stiffness parameters

kP ¼ 0:10, kA ¼ 0:18; average polarization field �0 ¼ 35; maximum cell polarity D� ¼ 20; signaling radius R ¼ 5;

cytoskeletal update rate � ¼ 0:1; cell-cell adhesion B ¼ 5; cell-cell dissipation DB ¼ 10; cell-substrate dissipation

D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; growth time Tg ¼ 180; division time Td ¼ 20; 100 independent

simulations for each set of parameters). (A–D) Tissue expansion at low density and cell polarizability for a cell sheet

comprised of quickly dividing cells. (Size threshold for cell growth AT ¼ 1:05Aref , where Aref is the size of a solitary

cell in equilibrium). (E–H) Tissue expansion at low density and cell polarizability for a cell sheet comprised of slowly

dividing cells. (Size threshold for cell growth AT ¼ 1:10Aref , where Aref is the size of a solitary cell in equilibrium).

(A, E) Snapshots of the polarization field �; cf. Figure 6—video 1 and Figure 6—video 2. (B, F) Kymographs

showing the cell density averaged over the y-direction and (top) final snapshots of the cell density profiles. (C, G)

Kymographs showing the component sxx of the stress tensor averaged over the y-direction and (top) final

snapshots of the stress profiles. (D, H) Kymographs showing the component vx of the cell velocities averaged over

the y-direction and (top) final snapshot of the velocity profiles.

The online version of this article includes the following video(s) for figure 6:

Figure 6—video 1. Weak monolayer roughening (fingering) in motility-dominated tissue with quick proliferation.

https://elifesciences.org/articles/46842#fig6video1

Figure 6—video 2. Strong monolayer roughening in motility-dominated tissue with slow proliferation.

https://elifesciences.org/articles/46842#fig6video2
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these traction patterns would look much less prominent if one were to inhibit cell motility (compare

Figure 5C with Figure 5G).

Finally, we investigated which parameters control the roughness of the tissue fronts. We found

that increasing cell motility, or increasing cell-cell dissipation leads to rougher front morphologies

(Figure 5—figure supplement 1 and ‘Velocity and roughness of spreading tissue’ in Appendix 2).

Therefore, we hypothesized that one could observe fingering of cell monolayers by adjusting the

parameters accordingly:

. Increase of cell motility by decreasing the membrane stiffness and at the same time increasing
polarizability and signaling radius of the cells.

. Increase of cell-cell dissipation and slight decrease of cell-cell adhesion.

. Slower and less homogeneously distributed cell division by increasing the cell threshold size.

Indeed, we then observe a drastic roughening of the cell fronts and small cohorts of cells that

coherently move into cell-free space (Figure 6). This roughening is more pronounced if we further

increase the threshold size that a cell has to exceed to initiate growth (cf. Figure 6A,E). Analogously

to our previous discussion, we observe that an increasing mechanical pressure in the monolayer due

to the division of cells initiates outward cell migration (Figure 6B,F). Then, cells in the tissue begin

to polarize outwards and coordinate their motion with their neighboring cells, leading to small coor-

dinated cell cohorts. As before, we also find distinct traction force patterns, as recurring waves of

high stress travel backwards relative to the leading edges (Figure 6C,G), and distinct recurring

velocity patterns (Figure 6D,H).

Discussion
In this work, we have proposed a generalization of the cellular Potts model (Graner and Glazier,

1992). The model implements a coarse-grained routine that captures the salient features of cytoskel-

etal remodeling processes on subcellular scales, while being computationally tractable enough to

allow for the simulation of entire tissues containing up to Oð104Þ cells. We have used the model to

study the transition from single-cell to cohort cell migration in terms of the interplay between the

pertinent cellular functions. Specifically, we have demonstrated that our model consistently reprodu-

ces the dynamics and morphology of motile cells down to the level of solitary cells. Our studies also

Table 1. Source and parameter files used for each figure.

All source and parameter files are found in Source data 1.

Figure Simulation code Processing code Parameters

Figure 2 CPM_NoDivision TrajectoryAnalysisSingle single_Q

Figure 2—figure supplement 1 (A-D) CPM_NoDivision TrajectoryAnalysisSingle single_DQ

Figure 2—figure supplement 1 (E-H) CPM_NoDivision TrajectoryAnalysisSingle single_DM

Figure 3 CPM_NoDivision TrajectoryAnalysisSingle single_R

Figure 4 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_Q

Figure 4—figure supplement 1 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_N_R1

Figure 4—figure supplement 2 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_N_R2

Figure 4—figure supplement 3 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_N_R3

Figure 5 (A-D) CPM_Division wound_nodiv

Figure 5 (E-H) CPM_Division wound_div

Figure 5—figure supplement 1 (A-B) CPM_Division_Supplement FrontAnalysis wound_div_A

Figure 5—figure supplement 1 (C-D) CPM_Division_Supplement FrontAnalysis wound_div_D

Figure 5—figure supplement 1 (E, F) CPM_Division_Supplement FrontAnalysis wound_div_Q

Figure 6 (A-D) CPM_Division wound_div_fing_1.0

Figure 6 (E-H) CPM_Division wound_div_fing_1.1

Appendix 2—figure 1 CPM_NoDivision TrajectoryAnalysisSingle single_A

Thüroff et al. eLife 2019;8:e46842. DOI: https://doi.org/10.7554/eLife.46842 15 of 40

Research article Cell Biology Physics of Living Systems

https://doi.org/10.7554/eLife.46842


reveal that cytoskeletal forces (relative to cell contractility), as well as the spatial organization of the

cells’ lamellipodia, significantly affect the statistics of cellular trajectories, both in the context of sin-

gle-cell motion and in cohesive cell groups restricted to circular micropatterns. On larger scales, our

simulation results suggest that the dynamics of expanding tissues strongly depends on the specific

properties of the constituent cells. If monolayer expansion is driven by active cell migration through-

out the tissue, then the cell sheet exhibits typical traction-force patterns and an X-shape in the corre-

sponding kymograph. Additionally, a cell-density-dependent cell growth leads to a periodic

recurrence of these traction-force patterns in a cycle of migration-dominated expansion and ’burst’-

like cell proliferation.

Taken together, our results further highlight the intricacies of collective cell migration, which

involves a multitude of intra- and inter-cellular signaling mechanisms operating at different scales in

length and time. Establishing a comprehensive picture that incorporates and elucidates the mecha-

nistic basis of these phenomena remains a pressing and challenging task. The multiscale modeling

approach proposed here provides a direct link between subcellular processes and macroscopic

dynamic observables, and might thus offer a viable route towards this goal.

Materials and methods
The computational model is described in section ‘Computational model’. The numerical implementa-

tion of the model is discussed in detail in Appendix 1. The parameter files and source files associated

with the figures are given in Table 1.
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Appendix 1

Computational model
In this section, we describe in detail the implementation of our computational model, which

has been outlined briefly in the main text. While the biological rationale behind our modeling

approach has been discussed in the main text, our focus here is on the technical aspects and

the details of the numerical implementation. To facilitate subsequent discussions on

implementation details, we start by introducing some model-specific terminology which will be

used throughout this section to illustrate the mechanics of our model.

Computational grid
The basic data structure that underlies our computational model is referred to as the grid; see

Appendix 1—figure 1. The grid itself is implemented as a regular, space-filling lattice with

lattice vectors xif gi¼1;...;N . Each lattice vector xi is understood to represent its associated

Voronoi cell which will be referred to as grid site. To be specific, we consider triangular tilings

xif gi¼1;...;N , such that each grid site is a hexagon, which is surrounded by 6 nearest-neighbor

sites that define the neighborhood N k of xk:

N k ¼
n
xj

�� xj is nearest neighbor of xk
o

(S1)

Overall, the grid represents our general notion of (discretized) space, and each grid site

holds information specific to cells as well as to environmental factors. In what follows,

distances on this spatial grid will be measured in units of the distance between the midpoints

of neighboring lattice sites, i.e.

kxk � xjk ¼ 1 , j 2N k: (S2)

This then implies for the side length ‘ and the two-dimensional volume (area) a of each

hexagonal grid site: ‘ ¼ 1=
ffiffiffi
3

p
and a ¼ 3

ffiffiffi
3

p
‘2=2.

N (α)

D(α)

B(α)

Nk

xk

cell α

Appendix 1—figure 1. Illustration of the various sets defining a cell and its environment. Grid

sites occupied by cell a, i.e. its domain DðaÞ, are indicated in red colors. The cell’s membrane

sites, BðaÞ, are indicated by the lighter red color, the cell’s immediate neighborhood, N ðaÞ, is

indicated in gray. Elementary events involving cell a always involve one grid site in BðaÞ and

one grid site in N ðaÞ. For the hexagonal lattices used in this work, each grid site xk is

surrounded by 6 nearest neighbors which we collectively denote by N k.
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Representation of biological cells
In the spirit of the cellular Potts model (Graner and Glazier, 1992; Glazier and Graner,

1993), each cell is represented by a simply connected set of lattice sites

DðaÞ ¼
n
xk

�� cðxkÞ ¼ a
o
; (S3)

where the indicator function cðxkÞ gives the index of the cell occupying xk. Here and in the

following, we use latin indices to reference lattice sites, and greek indices to reference cells.

The set DðaÞ used to represent the spatial extension of cell a, will be referred to as the domain

of cell a. In our model, each grid site xk can be occupied by at most one cell (i.e. we do not

allow for overlapping cell domains). The absence of cells at xk is numerically implemented by

negative values of the indicator function, cðxkÞ<0. Following this terminology, the area and the

perimeter of cell a are given by:

Aa ¼ a
XN

k¼1

da;cðxkÞ ¼
3

ffiffiffi
3

p

2
‘2

XN

k¼1

da;cðxkÞ; (S4a)

Pa ¼ ‘
XN

k¼1

X

xl2N k

da;cðxkÞð1� da;cðxlÞÞ: (S4b)

Model dynamics

Protrusion and retraction of cells
Biological cells are highly dynamic entities which constantly change shape and move around in

space. To reflect this dynamic behavior computationally, the domain DðaÞ of cell a changes

over time. The evolution of cell shape and position, as represented by DðaÞ, proceeds via a

succession of elementary events. In our numerical model, elementary events come in one of

two basic flavors: protrusion events and retraction events. During a protrusion event, cell a

(referred to as source cell) incorporates one grid site xt (referred to as target grid site) from its

neighborhood N ðaÞ,

DðaÞ
old !DðaÞ

new ¼DðaÞ
old [fxtg; xt 2N ðaÞ

; (S5)

thereby increasing its cellular domain by one grid site. Here, the neighborhood of cell a, N ðaÞ,
is defined as

N ðaÞ ¼
n
xl

�� min
xk2DðaÞ

kxl � xkk ¼ 1

o
: (S6)

During a retraction event, source cell a expels one of its membrane grid sites xs 2 BðaÞ,

DðaÞ
old !DðaÞ

new ¼DðaÞ
old n fxsg; xs 2 BðaÞ

old ; (S7)

where the set of membrane grid sites BðaÞ is defined as

BðaÞ ¼
n
xk 2DðaÞ �� min

xl2N ðaÞ
kxk � xlk ¼ 1

o
: (S8)

Protrusion and retraction events are the numerical analogs of cell protrusions and cell

retractions.

In implementing the reassignment rules, Equation S5 and Equation S7, we have to take

into account that cellular domains must not overlap. For solitary cells moving in free space this

does not imply any restrictions, and Equation S5 and Equation S7 apply directly. In the bulk

of a confluent monolayer of adhesive cells, however, any protrusion of source cell a into the

domain of cell b (referred to as target cell) must be accompanied by a corresponding
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retraction event DðbÞ
old ! DðbÞ

new ¼DðbÞ
old n fxtg, where xt denotes the target grid site annexed by

cell a. We emphasize, however, that the reverse is not generally true. If source cell a retracts,

i.e. loses one of its boundary grid sites xs 2 BðaÞ, the lost grid site xs faces either one of two

conceivable fates: If, on the one hand, cohesion among cells is sufficiently strong (cf. section

‘Rupture of cell contacts’ for a definition of the notion ‘sufficiently strong’), then the retraction

of cell a exerts a pulling force on one of its neighboring cells b (the target cell) and forces the

target cell to fill the emerging void at xs, i.e. DðbÞ
old ! DðbÞ

new ¼DðbÞ
old [ fxsg, where xs denotes the

grid site lost by cell a. On the other hand, if adhesion between cells is weak, then retraction of

the source cell a can lead to a rupture of pre-existing cell contacts between a and other cells

at xs, such that the lost grid site xs becomes free space [cðxsÞ ¼ a � 0 ! cðxsÞ<0]. Details on
the actual implementation of cell rupture are discussed in section ‘Rupture of cell contacts’.

Monte-Carlo scheme
In the spirit of a standard Monte-Carlo scheme, the actual simulation proceeds via a

succession of Monte-Carlo steps, where each Monte-Carlo step (MCS) propagates the state of

the simulated cell population from time t to time t þ Dt, where we set the time step to Dt � 1.

One MCS consists in a series of attempts to perform elementary events, originating from

randomly chosen membrane grid sites of randomly chosen cells. The duration of one MCS, i.e.

the actual number of attempted elementary events, is chosen such that each of the cells’

membrane segments is given the opportunity to attempt, on average, one elementary event

per MCS. During each MCS, cell domains DðaÞ as well as the numerical values of cell areas Aa

and perimeters Pa are updated ‘on the fly’, while the cells’ polarization fields are updated only

once at the end of each MCS; cf. section ‘Cytoskeletal structures and focal adhesion’ for the

details of this update rule. The simulation then proceeds along the following Monte-Carlo

scheme:

1. Initialize the cell population and define the duration of the simulation, i.e. the number of
MCS, Tsim, to be performed.

2. Set the simulation time t ¼ 0.
3. Perform the next MCS; this step is further detailed below.
4. Update polarization fields (cf. section ‘Cytoskeletal structures and focal adhesion’).
5. Set t ¼ t þ Dt, where Dt � 1.
6. Repeat steps 3–5 while t<Tsim.

The implementation of a MCS, i.e. the sequence of elementary events, is based on the

following general considerations:

i. Choice of source and target grid sites. Each elementary event T originates from a mem-

brane grid site xs 2 BðaÞ of some cell a, referred to as source cell. This membrane grid site
will be referred to as source grid site. In addition, each elementary event involves a second
grid site which lies in the neighborhood of the source grid site xs and which is not currently

occupied by cell a: xt 2 N s n DðaÞ. In what follows, this additional grid site xt will be referred
to as target grid site. This grid site may either be an empty substrate site or a membrane
site of another cell b, in which case the respective cell will be referred to as target cell.
While the source grid site determines the location of the attempted elementary event, the
target grid site determines the direction along which the elementary event is bound to
proceed.

ii. Monte-Carlo method to generate the system’s dynamics. As mentioned above, the actual
dynamics of cells in our computational model is driven by a succession of elementary
events, whose cumulative effects over time allow cells to change shapes and to move rela-
tive to the substrate as well as relative to each other. Following a standard Monte-Carlo
procedure, the probability of occurrence of elementary events T is determined by a goal
function pðT Þ [cf. point (iii) below]. However, since elementary events come in two basic fla-
vors, protrusions T pro and retractions T ret, their actual occurrence is controlled by a two-
step process, once source and target grid sites have been determined: In a first step, two
alternative scenarios are proposed where either the source cell protrudes toward xt, or
retracts from xs. Then, a decision is made with equal probabilities as to whether one
attempts T pro or T ret. In a second step, the goal function p is used to compute the
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occurrence probability of the attempted event T . Finally, this elementary event T is being
accepted with probability pðT Þ.

iii. Choice of the goal function pðT Þ. As has been detailed above, we use a goal function pðT Þ
to control the occurrence and acceptance of elementary events T . Following the standard
cellular Potts model (Graner and Glazier, 1992; Glazier and Graner, 1993), this goal func-
tion takes into account the effects of cell contractility and cell-cell adhesion, using, however,
a slightly different implementation; cf. sections ‘Cell contractility’ and ‘Cell adhesion’. In
addition, we generalized the definition of the goal function pðT Þ to explicitly take into
account a simplified model of cytoskeletal structures and the ensuing polarization of cells.
The actual definition of the goal function will be developed in section ‘Implementation of
cellular traits’, where, moreover, details concerning the implementation of the cell polariza-
tion model will be discussed.

The implementation of a single MCS loop is then given by the following simulation scheme:

1. Determine the current number of trials per Monte-Carlo step (MCS), K¼ P
a Pa=‘, and set

the trial counter n ¼ 0.
2. With equal probability, choose a cell membrane segment (cf. solid black line in Appendix 1—

figure 1) from a random cell a of the cell population. Because the cell membrane represents
the border between lattice sites occupied by cell a and unoccupied by cell a, the chosen

membrane segment automatically defines the source grid site xs 2 BðaÞ and the correspond-

ing target grid site xt 2 N ðaÞ \ N s.
3. With equal probability, choose whether to attempt a protrusion event (T pro) or a retraction

event (T ret).
4. Compute the prospective acceptance probability pðT pro=retÞ corresponding to the attempted

event, and decide whether to accept the attempted event on the basis of this probability.
5. If the attempted elementary event has been accepted, then update the cellular domains of

source cell a and opponent cell b; for details see section ‘Cell domain update routine’.
6. If n<K, set n ! nþ 1 and then repeat steps 2 through 5.

Implementation of cellular traits
In this section, we discuss the various contributions of cellular traits to the overall acceptance

probability pðT Þ of an elementary event T . Specifically, our model takes into account cell

contractility, the assembly and disassembly of cytoskeletal structures, cell-cell adhesion, and

focal adhesions. We will assume that each of these cellular properties contributes

independently to the acceptance probability p, such that

p¼min
�
1; pcont � pcyto � padh

	
: (S9)

Anticipating our discussions in section ‘Cytoskeletal structures and focal adhesion’, the

effects due to focal adhesions have been combined with the effects due to assembly and

disassembly of cytoskeletal structures in pcytoðT Þ. In the following sections, we give detailed

discussions for each of these contributions, separately.

Cell contractility
In biological cells, membrane fluctuations are constrained by elastic forces and contractile

cytoskeletal structures, which play a vital role in cell migration (Alberts et al., 2015;

Raucher and Sheetz, 2000; Friedl, 2004). In our computational approach, we take cell

contractility into account by assigning a contractile ‘energy’

Hcont ¼
X

a

�
k
ðaÞ
P P2

a þk
ðaÞ
A A2

a

�
; (S10)

with positive coupling constants k
ðaÞ
P and k

ðaÞ
A characterizing the contractility of cell a; for

empty substrate sites (a<0) we set k
ðaÞ
P ¼k

ðaÞ
A ¼ 0. According to Equation S10, the cell’s

‘contractile energy’ increases with increasing cell perimeter and increasing cell area. The

model Hamiltonian Hcont can then be used to specify the contractile contribution to the goal

function pðT Þ. To this end, let DHcontðT Þ denote the contractile contribution to the energy
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difference entailed by accepting an elementary event T . Following a standard Metropolis

algorithm, we then define

pcontðT Þ :¼ exp½�DHcontðT Þ=kBT �; (S11)

where we set the effective thermal energy to kBT � 1. The contractile ‘energy’, Equation S10,

is similar to the corresponding energy model commonly used in cellular Potts models

(Ouchi et al., 2003). Unlike the standard cellular Potts model, however, where a target area

and target perimeter are used to keep the simulated cells from collapsing, the energetic

contribution in Equation S10 strictly contracts the cell’s body. As will be detailed in the next

section, to counteract these contractile forces, we explicitly model cytoskeletal structures

within each cell, which provide outward pushing forces to balance cell contraction.

Cytoskeletal structures and focal adhesion
The cytoskeleton plays key roles both in maintaining the mechanical integrity of the cell and in

the process of active cell migration (Alberts et al., 2015; Friedl, 2004; Mogilner, 2009). Our

model design aims at achieving high computational efficiency to allow for the simulation of

very large cell numbers (currently, cell numbers up to Oð104Þ can be achieved at acceptable

computation times) and, at the same time, to capture the essential effects of cytoskeletal

dynamics to attain meaningful results down to the level of single cells. Thus, instead of

accounting for a detailed biochemical description by means of reaction-diffusion networks

(Marée et al., 2006; Marée et al., 2012), we resort to a simplified implementation of the

most pertinent features of cytoskeletal dynamics. Specifically, we propose a rule-based

algorithm to model cytoskeletal structures and to assess the integrated effects of cell polarity,

cell contractility and adhesion on the collective dynamics of cells as parts of larger groups.

To this end, we define a scalar field �ðxnÞ, xn 2 DðaÞ, on the domain of each cell a. The local

quantity �ðxnÞ will be referred to as polarization field and is taken to be a measure for the

density of cytoskeletal structures at position xn within the cell’s body. The field variable �ðxnÞ is
dynamically updated as the simulation progresses, reflecting cytoskeletal remodeling. To set

up a system of rules underlying the actual implementation of these cytoskeletal remodeling

processes, we resort to the following biologically motivated premises:

1. The scalar polarization field � is bounded: The dynamics of cytoskeletal remodeling not only
depends on the local number (density) of actin monomers and polymers, but also on a multi-
tude of accessory proteins controlling cytoskeleton assembly and disassembly. Several bio-
logical factors—including the action of sequestering proteins like thymosin-b4, which act to
suppress actin polymerization, limited amounts of nucleating proteins like the activated
Arp2/3 complex, and the action of capping proteins—keep the local density of actin fila-
ments bounded. We, therefore, introduce bounds for the polarization field:
�ðxn; tÞ 2 ½�0 � D�=2; �0 þ D�=2�. These bounds are cell-type specific. While the upper bound
�0 þ D�=2 mainly reflects the limited availability of protein resources, the lower bound �0 �
D�=2 serves to prevent cells from collapsing.

2. Regulatory proteins affect assembly and disassembly of cytoskeletal structures: The assembly
and disassembly of cytoskeletal structures, numerically encoded by �ðxnÞ, is regulated by a
myriad of accessory proteins. In our computational model we simplify these complex pro-
cesses by resorting to a single ‘bookkeeping variable’ which we will refer to as ‘regulatory

factors’. Its local level is stored as an integer variable FðxnÞ for each grid site xn 2 DðaÞ. We
use FðxnÞ to implement the overall action of regulatory cytoskeletal proteins in an effective
and collective manner. Specifically, since the formation of lamellipodial structures depends
on active nucleation promoting factors (Pollard and Borisy, 2003), we assume that positive
levels, FðxnÞ>0, reflect local conditions in support of network-assembly, whereas negative lev-
els, FðxnÞ<0, represent predominantly degrading (or disassembly) conditions. For neutral lev-
els, FðxnÞ ¼ 0, the network gradually restores its rest state.

3. Feedback between cytoskeletal structures and regulatory factors: The activities of accessory
cytoskeletal proteins which regulate the local levels of cytoskeletal structures are themselves
controlled by a number of mechanical and chemical signals received by the cell. Here and in
the following, our focus will be on mechanical signals. For example, important regulatory pro-
teins like the Arp2/3 complex are activated locally at the cell membrane, from where they
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diffuse into the bulk of the cell until they are bound by actin (Kovacs et al., 2002;
Pollard and Borisy, 2003; Leckband et al., 2011). Adopting a coarse level of description,
this diffusion-degradation dynamics entails a finite range of regulatory proteins, which are
activated at the cell’s membrane. In our model, we use the integer variable FðxnÞ to imple-

ment this propagation of mechanical information, perceived by cell a at its periphery BðaÞ,
across a certain spatial distance R. The local levels of FðxnÞ are continuously updated as the
MCS loop progresses. The actual update procedure is given by the following set of rules;
cf. Appendix 1—figure 2:

. if a protrusion event has been accepted at the source site xs 2 BðaÞ (source cell: a; target cell:
b), then for all sites xn within a range R (i.e. kxn � xsk<R) the integer variable signifying regula-
tory factors is incremented up and down for the protruding and the retracting cell,
respectively:

FðxnÞ!
FðxnÞþ 1; xn 2DðaÞ;

FðxnÞ� 1; xn 2DðbÞ:

(

(S12a)

. Similarly, if a retraction event has been accepted at the source site xs 2 BðaÞ , and the (local)
cell contact between source cell a and target cell b has remained intact, then within a range
R one applies the inverse update rule:

FðxnÞ!
FðxnÞ� 1; xn 2DðaÞ;

FðxnÞþ 1; xn 2DðbÞ:

(

(S12b)

. If a retraction event has been accepted at the source site xs 2 BðaÞ , and in addition the (local)
cell contact between source cell a and target cell b has ruptured, then the regulatory factors
are reduced only within a range R in the retracting cell:

FðxnÞ!
FðxnÞ� 1; xn 2DðaÞ;

no update; else:

(
(S12c)

Finally, if the target grid site xt is not occupied by any cell (substrate is indicated by b<0)

prior to the elementary event, then only the first two lines in the above update scheme apply.

By virtue of the above update scheme, Equation S12, ‘regulatory factors’ are continuously

distributed across each cell’s domain DðaÞ as the current MCS progresses. At the end of each

MCS, the accumulated (local) values of FðxnÞ are used to update the local values of the

polarization field �ðxnÞ inside each cell a � 0 (xn 2 DðaÞ): We assume that for positive values,

FðxnÞ>0, there is assembly of cytoskeletal structures and � is increased by an amount

proportional to the distance of � from its upper bound �0 þ D�=2:

�ðxn; tþDtÞ ¼ �ðxn; tÞþDt� ½�0 þD�=2� �ðxn; tÞ�; (S13a)

where the time step is defined as Dt� 1. Thereby �0 þD�=2 is a fixed point of this map and

limits the build-up of cytoskeletal structures. In contrast, for negative values, FðxnÞ<0,
disassembly prevails, and we assume that � then tends towards its lower bound �0 �D�=2:

�ðxn; tþDtÞ ¼ �ðxn; tÞþDt� ½�0 �D�=2� �ðxn; tÞ�; (S13b)

where the time step is defined as Dt� 1. Neutral values, Fðxn; tÞ ¼ 0, lead to relaxation of �

towards a resting state

�ðxn; tþDtÞ ¼ �ðxn; tÞþDt� ½�0 � �ðxn; tÞ� ; (S13c)

where the time step is defined as Dt� 1. The parameter � signifies the rate at which

cytoskeletal structures respond to the regulatory factors F. For the parameters and cell sizes

used in this work (�0 ¼Oð100Þ and D�¼Oð10Þ, and each cell occupying approximately 1000 grid

sites) we set �¼ 0:1.
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Appendix 1—figure 2. Distribution of regulatory factors on the basis of accepted elementary

events. For ease of reference, grid rows have been numbered from 1 to 10. Left (A): Solid black

lines indicate cells’ membrane positions after acceptance of the respective elementary event;

colors indicate cellular domains before the respective elementary event has been accepted

(gray: substrate; shades of yellow: cells). Blue and red circular arcs (of radius R) delineate areas

of local increase or decrease in the level of regulatory factors, respectively. The following

elementary events are depicted: (i) lower cell retracts (two grid sites in row 2); (ii) lower cell

protrudes (row 5); (iii) upper cell protrudes (row 10). In addition, the following elementary

events occur across the cell-cell boundary: (iv) retraction of upper cell leads to rupture of cell-

cell contacts (row 6, right event); (v) either the lower cell protrudes and pushes the upper cell

or the upper cell retracts and pulls on the lower cell (row 6, left event). Specifically, event

(v) entails mechanical signaling between the upper and lower cell and, therefore, affects the

distribution of regulatory factors in both cells. Right (B): Identical copy of the left image (A).

Colors indicate local levels of regulatory factors F (blue: F is positive; white: F is zero;

red: F is negative; gray: substrate site). Note, in particular, that a substrate grid site has been

inserted where cell rupture occurred (row 6, right grid site). The following cases can be

distinguished: (i) Grid site xk lies in the zone of influence of only positive (blue circles) or

negative (red circles) chemical feedback, in which case the level of regulatory factors

is positive or negative, respectively (e.g. red grid sites in row 2, or blue grid sites in row 5). (ii)

Grid site xk lies outside of any zone of influence, in which case the level regulatory factors is

zero (e.g. white grid sites in row 2). (iii) Grid site xk lies in the zone of influence of equally many

positive and negative feedbacks, in which case the level of regulatory factors remains zero

(e.g. fourth grid site in row 4). (iv) Grid site xk lies in a zone of predominantly positive or

negative feedback, in which case the level of regulatory factors is positive or negative,

respectively (e.g. third grid site in row 4). Recall that only the sign of F is of significance to

update the cells’ polarization field; cf. Equation S13.

After this update procedure for �ðxn; tÞ is completed, all regulatory factors are reset,

FðxnÞ ! 0; 8 n. This prevents ‘spurious memory effects’ which may arise once the cell’s rear

reaches its initial leading edge position as time goes on. In essence, resetting regulatory

factors upon completion of one MCS implies that the diffusion-degradation dynamics,

underlying the distribution of regulatory factors, is fast on the scale of one MCS.

We emphasize that the polarization field �ðxnÞ is defined only for grid sites xn 2 DðaÞ

occupied by an actual cell (a � 0). To allow for spatial variations of substrate properties, we

therefore introduce a second scalar field variable ’ðxnÞ, which is defined on the entire

computational grid. The scalar field ’ðxnÞ is taken to measure the local density of anchoring

points that a cell might use to form focal adhesions. Although one might consider to treat ’ as

a time-dependent field variable, in this work ’ is used to implement static substrate patterns,

only. The field ’ðxnÞ is thus initialized once at the beginning of the simulation and kept fixed

throughout the entire simulation.

Having introduced the fields �ðxnÞ and ’ðxnÞ, we now discuss their impact on the system’s

dynamics by giving their contribution to the goal function pðT Þ. Suppose that the elementary

event T is attempted by a source cell a at source grid site xs 2 BðaÞ. Further, let xt denote the
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target grid site and b denote the index of the target cell (where as ususal b � 0 indicates that

xt is occupied by an actual cell, b<0 means that xt exposes substrate). We then define the

‘polarization energy’ DHcytoðT Þ as follows:

DHcytoðT Þ �

�ðxtÞ� �ðxsÞ; T b¼T pro ^ b� 0;

�ðxsÞ� �ðxtÞ; T b¼T ret ^ b� 0;

�½�ðxsÞþ’ðxtÞ�; T b¼T pro ^ b<0;

�ðxsÞþ’ðxtÞ; T b¼T ret ^ b<0;

8
>>><

>>>:
(S14a)

Here, the definition of DHcyto is such that the likelihood of cell protrusions is enhanced if the

concentration of cytoskeletal structures at the source grid site, �ðxsÞ, is larger than the

concentration at the target grid site, �ðxtÞ (first row of Equation S14a), and vice versa for cell

retractions (second row of Equation S14a). The strength of focal adhesions is taken to be

measured by the sum �þ’. Their associated ‘anchoring effects’ (which increase with growing

strength of focal adhesions) promote the formation of cell protrusions against unoccupied

substrate sites (third row of Equation S14a), and, correspondingly, impede cell retractions

(fourth row of Equation S14a). Note, in particular, that the first two rows of Equation S14a

can be obtained from a combined evaluation of the lower two rows. For example, if source

cell a annexes xt starting from xs, two things need to happen: First, focal adhesions formed by

the target cell b must be broken, implying a contribution DHcyto ¼ �ðxtÞþ’ðxtÞ (fourth row of

Equation S14a). Secondly, new focal adhesions are formed by the source cell a, implying a

contribution DHcyto ¼� �ðxsÞþ’ðxtÞ½ � (third row of Equation S14a). Taking the sum of both

contributions gives the expression in the first row of Equation S14a. An analogous line of

arguments leads to the expression in the second row of Equation S14a.

The contribution to the goal function pðT Þ due to the polarization energy DHcytoðT Þ is then
defined by

pcytoðT Þ :¼ exp½�DHcytoðT Þ=kBT�; (S14b)

where we set the effective thermal energy to kBT � 1. The characteristic ‘energy scale’ for

DHcyto is set by the polarization bounds �0 �D�=2 and �0 þD�=2, which turns out to have

important implications for collective cell dynamics, as discussed in the main text.

Cell adhesion
To implement the ability of cells to establish cell adhesions across cell-cell interfaces, we

use a special form for the respective contribution to the goal function p, which is

designed to distinguish between the formation of new and the breakage of existing cell-

cell adhesion sites.

To this end, we define adhesion matrices Ba;b and B0
a;b quantifying the system’s change in

‘energy’ upon forming a new contact between cells a and b [Ba;b] and upon breaking a pre-

existing contact between those cells by an ‘intruder cell’ g 6¼ a;b [B0
a;b]. In our computational

model, we assume that formation of new cell-cell contacts is energetically favored, and that

breaking of pre-existing contacts by intruder cells is energetically penalized. The matrix entries

of Ba;b and B0
a;b, therefore, have a definite sign, which we take to be positive. The ordering of

the cell index pair of Ba;b and B0
a;b is of no physical significance, i.e. the adhesion matrices are

symmetric. We also assume that a given cell a does not interact with itself, such that the

diagonal elements of the adhesion matrices vanish. Finally, there is no adhesion between cells

and empty substrate sites, such that all matrix elements containing a negative cell index

vanish. In summary, the adhesion matrices Ba;b and B0
a;b exhibit the following properties:

Ba;b ¼ Bb;a � 0; (S15a)

B0
a;b ¼ B0

b;a � 0; (S15b)
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Ba;a ¼ B0
a;a ¼ 0; (S15c)

Ba;b ¼ B0
a;b ¼ 0; if a<0 _ b<0: (S15d)

In addition, we assume that the energy cost associated with the breakage of a given cell-

cell contact exceeds the energetic benefit of its initial formation, i.e.

B0
a;b � Ba;b; (S15e)

where equality of both quantities would reproduce the assumption underlying the standard

cellular Potts model (Graner and Glazier, 1992; Glazier and Graner, 1993). We shall refer to

this property as the ‘dissipative nature of cell-cell adhesion’.

To implement the effects of cell-cell adhesion, we compute the ‘energy difference’

DHadhðT Þ for any given elementary event T according to the scheme illustrated in

Appendix 1—figure 3. One has to distinguish between protrusion and retraction events. First,

say that a cell a attempts a protrusion event T pro, involving the source grid site xs 2 BðaÞ and

the target grid site xt 2 BðbÞ, as illustrated in Appendix 1—figure 3A. In this case, cell a acts

as intruder cell, since the depicted protrusion event affects three pre-existing contacts

between the target cells b and a ‘third party’ cell g. Acceptance of the depicted protrusion

event would have the following energetically relevant effects: (i) All pre-existing contacts

between the target cell b and third party cell g 6¼ a;b at the target grid site xt are torn apart.

(ii) New contacts between the source cell a and third party cell g 6¼ a;b are established. (iii)

The length of the cell contact line between source cell a and target cell b is changed.

Altogether, these three effects lead to the following cell adhesion energy difference,

DHadhðT proÞ � �‘
X

xj2N t

�
Ba;cðxjÞ� da;cðxjÞBb;cðxjÞ

�

þ‘
X

xj2N t

B0
b;cðxjÞð1� da;cðxjÞÞ;

(S16a)

where ‘ is the length of a hexagon edge. The first term in this expression accounts for the

(energetically favored) formation of new cellular contacts, as well as for the remodeling of the

interface between source cell a and target cell b [points (ii) and (iii)]. The second term

measures the (energetically penalized) breaking of pre-existing cell contacts [point (i)] and,

therefore, impedes cell a’s ability to intrude. Conversely, if source cell a attempts a retraction

event T ret, then the same reasoning as the one leading to Equation S16a applies, only this

time the elementary event proceeds in reverse, i.e. from the target site xt to the source site xs;

cf. Appendix 1—figure 3A:

DHadhðT retÞ � �‘
X

xj2N s

�
Bb;cðxjÞ� db;cðxjÞBa;cðxjÞ

�

þ‘
X

xj2N s

B0
a;cðxjÞð1� db;cðxjÞÞ;

(S16b)

where ‘ is the length of a hexagon edge.
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Appendix 1—figure 3. Cell-cell adhesion. (A) Adhesive energy contribution in a cyclic process,

where a protrusion of source cell a against target cell b is followed by the inverse retraction

event. Both events involve a third party cell g, leading to net energy dissipation after the cyclic

process has been completed. Protrusion: (i) Three pre-existing cell-cell contacts between b

and g are torn apart (red dashed contacts); (ii) three new contacts between a and g are

formed; (iii) the contact length between source cell a and target cell b increases by one unit of

length. This implies DHadhðT proÞ ¼ ‘ ð3B0
b;g � 3Ba;g � Ba;bÞ. Retraction: (i) Three pre-existing cell-

cell contacts between a and g are torn apart (red dashed contacts); (ii) three new contacts

between b and g are formed; (iii) the contact length between source cell a and target cell b

decreases by one unit of length. This implies DHadhðT retÞ ¼ ‘ ð3B0
a;g � 3Bb;g þ Ba;bÞ. Altogether,

this leads to DHðcyclÞ
adh ¼ DHadhðT proÞ þ DHadhðT retÞ ¼ ‘ ð3ðDBÞa;g þ 3ðDBÞb;gÞ � 0, i.e. a (non-

negative) dissipative contribution, whose magnitude depends on the dissipation matrix

ðDBÞa;b ¼ B0
a;b � Ba;b � 0. (B) Shear viscosity due to cell-cell adhesion. Consider two rows of

adhesive cells sliding past each other as indicated in the figure (left row of cells moves up by

one grid site; colors indicate different cells). The associated adhesion energy change (per cell)

reads DHadh=nc ¼ 2 ðB0 � BÞ � 0, where nc denotes the number of cells sliding past each other,

and where we assumed cells of like type, i.e. Ba;b � B and B0
a;b � B0 (a 6¼ b). The condition

B0>B, Equation S15e, thus implies positive friction associated with cellular shear flows, whose

magnitude is proportional to the number of cells sliding past each other. Note that this shear

viscosity vanishes for B0 ¼ B, i.e. for zero dissipation matrix.

We may now use Equation S16a and Equation S16b to illustrate the ‘dissipative nature’ of

adhesive interactions by means of two archetypical examples. First, consider the adhesive

energy contribution to any cyclic process. By a cyclic process we mean a sequence of two

mutually inverse elementary events, e.g. a protrusion event T pro, which is immediately

followed by its inverse retraction event T ret, such that the system’s final configuration is

identical to its initial configuration. Using Equation S16 we find for the total adhesive energy

contribution to a cyclic process:

DHðcyclÞ
adh ¼ ‘

X

xj2N tnðDðaÞ[DðbÞÞ

�
ðDBÞa;cðxjÞþðDBÞb;cðxjÞ

�
; (S17)

ðDBÞa;b :¼ B0
a;b�Ba;b � 0; (S18)

and can therefore conclude that

DHðcyclÞ
adh � 0;

where N t denotes the neighborhood of the grid site which temporarily changes its cell

index, and where a and b are the indices of the source and target cells involved in the cyclic

process; cf. Appendix 1—figure 3A. Since ðDBÞa;b � 0, the above adhesive energy

contribution is non-negative, thus leading to an amount of energy equal to DHðcyclÞ
adh being

dissipated as the cyclic process completes. This leads us to refer to the parameter matrix

ðDBÞa;b as dissipation matrix. Second, consider two (infinitely extended) columns of cells in
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adhesive contact, sliding past each other. This situation is depicted in Appendix 1—figure 3B,

where the left column of cells moves (as a whole) upwards by one grid site, while the right

column of cells remains stationary. To assess the adhesive energy contribution along the

contact line connecting both cell columns, note that the depicted transformation can be

implemented by letting each cell in the left column protrude its leading (i.e. upper) edge by

one grid site. For each protruding (source) cell a, this transformation entails to the following

energetic effects (cf. discussion above): (i) Two of the pre-existing cell-cell contacts between

the source cell’s upper neighbor in the left column (target cell b) and the corresponding cell in

the right column (third party cell g) get torn apart, leading to an energetic contribution 2B0
b;g.

(ii) In return, two new contacts between the protruding (source) cell a and cell g are being

established, leading to a contribution �2Ba;g . (iii) Since the length of the contact line between

cells in the left column (i.e. between protruding source cell a and retracting target cell b)

remains unchanged, there’s no further energetic contribution due to adhesive contacts

between cells in the left column. Assuming that all cells in the system are of equal types, we

write Ba;b � B and B0
a;b � B0 (a 6¼ b), and therefore, find

DHðviscÞ
adh ¼ 2‘ðB0�BÞ � 2‘DB� 0; (S19)

i.e. a non-negative dissipative contribution per cell. The size of the dissipation parameter DB

thus introduces a natural means to tune the system’s shear viscosity.

With the above definitions of the adhesive energy changes, Equation S16, we define

the contribution of cell adhesion to the goal function pðT Þ as follows:

padhðT Þ :¼ exp
�
�DHadhðT Þ=kBT

�
; (S20)

where we set the effective thermal energy to kBT � 1.

Rupture of cell contacts
By now, we have introduced all components making up the total acceptance probability pðT Þ,
Equation S9. To conclude our discussions concerning the implementation of cellular traits, we

highlight one additional aspect of elementary events. So far, the notion of an elementary

event can be summarized as follows: Once source and target grid sites, xs and xt, have been

selected, acceptance of a protrusion [retraction] event causes (among other things like the

distribution of regulatory factors) the cell index to be copied from xs to xt [from xt to xs]. In

other words, the domain DðaÞ of source cell a annexes xt [loses xs], while the domain DðbÞ of
target cell b is forced to let go xt [accommodate xs]. However, if both source and target cells

are actual cells, i.e. a;b � 0, and if the source cell attempts a retraction event, there is one

additional possible outcome: If cell cohesion is weak, then the pulling force exerted by the

retracting source cell a on its neighboring cells might also result in rupture of all pre-existing

contacts between the retracting source cell and its neighboring cells at xs, rather than forcing

one of its neighboring cells (the target cell) to fill the void created at xs once a retracts; cf.

rupture event depicted in Appendix 1—figure 2. To test for the occurrence of cell rupture,

the total energetic cost of each attempted retraction event between two actual cells is

evaluated under two different assumptions: First, we assume that the pulling force exerted by

the retracting source cell a on target cell b is strong enough to force b to fill the void created

at xs (i.e. to accommodate xs), and call this a regular retraction event T ret. Secondly, we

assume that the retraction of source cell a causes all pre-existing cell-cell contacts of cell a at

xs to rupture, leaving a free substrate site at xs after the retraction event has been accepted.

This latter event will be referred to as rupture event T rup. We then compute the total energy

differences

DHðT retÞ ¼ DHcontðT retÞþDHcytoðT retÞþDHadhðT retÞ

and
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DHðT rupÞ ¼ DHcontðT rupÞþDHcytoðT rupÞþDHadhðT rupÞ

under both assumptions (the energy difference associated with accepting T rup can be

computed with Equation S16b by using the substrate b¼�1 as new target cell) and compare

the respective outcomes. If the rupture event is energetically favored over the regular

retraction event, i.e. DHðT rupÞ<DHðT retÞ, then cohesion between cells is weak. In this case, the

rupture event T rup, rather than the regular retraction event T ret will be attempted. Otherwise,

cohesion is strong and a regular retraction event T ret will be attempted.

Rupture of substrate contacts
In our discussion so far, a cyclic process that follows up a protrusion event T pro with its inverse

retraction event T ret, involving a cell a and no third party cells (in other words: no cell-cell

contacts are made or broken), will not yield a net energy cost or gain; cf. Equation S14a.

To account for the dissipative nature of cell-substrate contacts, we proceed similarly as when

we have considered the disspative nature of cell-cell contacts. We introduce dissipation in

substrate adhesion by leaving the Hamiltonian unaltered for protrusion events but adding a

penalty for retraction events:

DHðT retÞ! DHðT retÞþD: (S21)

Therefore, a cell that adheres to the substrate at some grid point has to pay a cost D to

retract from it. In other words, we assume that a fixed amount of energy D is dissipated once

the adhesive bonds between a cell and the substrate break.

To keep its overall size across translations, the cell has to gain and lose equal amounts of

hexagons, with D� as the maximal energy gained by a single gain-and-loss in the absence of

dissipation. In the presence of dissipation however, the cell has to pay at least a cost of ð�0 �
D�=2Þ þ D to detach at an arbitrary location, resulting in D�� D as the maximal energy gained

by a single gain-and-loss in the presence of dissipation. Thus, while for D ¼ 0 there is no

impact of substrate dissipation on cell motility, it will at the latest for D ¼ D� completely inhibit

(directed) cell migration. Therefore, we study substrate dissipation in the range D 2 ½0;D��.

Cell domain update routine
Having discussed the implementation concerning the two basic types of elementary events,

namely protrusion events T pro and retraction events T ret, as well as the two subtypes of

regular retraction events and rupture events T rup, we can now summarize the cell domain

update routine, point 3.5 in section ‘Monte-Carlo scheme’. To this end, and in accordance

with our previous notation, we use the cell indices a and b to denote source and target cell,

and xs and xt to denote source and target grid site. Moreover, equal signs "¼" in the

following listing are to be interpreted as assignment operators, where the value of the variable

on the right hand side of the operator is assigned to the variable on the left hand side. With

these preliminary remarks in mind, the cell update routine can be summarized as follows:
. If the accepted elementary event is a protrusion event:

1. Set �ðxtÞ ¼ �ðxsÞ and FðxtÞ ¼ FðxsÞ.
2. DðaÞ ! DðaÞ [ fxtg.
3. DðbÞ ! DðbÞ n fxtg.
4. Distribute regulatory factors according to Equation S12a.

. If the accepted elementary event is a regular retraction event:
1. Set �ðxsÞ ¼ �ðxtÞ and FðxsÞ ¼ FðxtÞ.
2. Set DðaÞ ! DðaÞ n fxsg
3. Set DðbÞ ! DðbÞ [ fxsg
4. Distribute regulatory factors according to Equation S12b.

. If the accepted elementary event is a rupture event:
1. Set �ðxsÞ ¼ 0 and FðxsÞ ¼ 0.

2. Set DðaÞ ! DðaÞ n fxsg
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3. Distribute regulatory factors according to Equation S12c.

Cell proliferation and mitosis
While cell proliferation and mitosis play no role in the experimental setup of rotating cell

clusters, cell growth and division are observed experimentally in a setup where a sheet of cells

expands into free space after removal of a stencil. Therefore, it is essential to include

proliferation of cells in the numerical model. How this is done is described in this section.

We distinguish between two phases in the cell cycle, an interphase during which cells

roughly double in volume and mitosis, the process of cell division. Even though a further

partitioning of the interphase was considered in previous work (Li and Lowengrub, 2014), we

do not expect that such a distinction is relevant for our results. In our computational

framework cell growth may be implemented by progressively changing any cellular parameter

that affects the cell’s equilibrium size. The two possible, largely equivalent choices are a

successive reduction of the area coupling constant k
ðaÞ
A or an increase of the average cell

polarization �
ðaÞ
0

. We here employ the first method. We assume that individual cells grow

exponentially (Barber et al., 2017) over a well-defined period Tg. Additional variability in cell

cycle length can be achieved by introducing an additional refractory phase with exponentially

distributed waiting times and the average waiting time Tr, which we set to Tr ¼ 0 in this work.

Moreover, we assume that the migratory behavior of a cell should not change significantly as it

grows. However, as the cell grows in size by a factor of 2, it also increases its perimeter and

the corresponding energy cost for adding new membrane segments roughly by a factor of
ffiffiffi
2

p
.

Therefore, as we do not scale the polarization field � and the resulting energy gains for

protrusions during cell growth, we mitigate the increased cost for ruffling the membrane by

reducing the perimeter stiffness by a factor of
ffiffiffi
2

p
. The quantitative viability of this approach is

further discussed in section ‘Single cell size’.

To prevent tissue overgrowth, cell proliferation is generally contact inhibited in healthy

cells: When the tissue approaches a state where each cell has formed adhesive contacts with

the substrate and is completely surrounded by neighbours, cells stop proliferating. In addition,

it has been proposed that the pressure or local density in the tissue has a negative impact on

the local growth rate (Shraiman, 2005; Ranft et al., 2010). To account for these phenomena

in the model, we complement the two cell cycle periods interphase and mitosis by a quiescent

cell state during which cell growth is halted. The parameters kA and kP are, therefore, kept

constant for a quiescent cell; we denote the corresponding values as kA=0 and kP=0. There are

many possible ways to implement contact inhibition in our computational model. For example,

it could be implemented by allowing a quiescent cell to enter the cell cycle triggered by low

local cell density, or when a sufficiently large fraction of its membrane length is not in contact

with neighbour cells but exposed to free space. In our model it proves numerically

advantageous to make a quiescent cell enter the interphase when its area succeeds a certain

reference area. We choose this area threshold as AT ¼ r Aref , where the factor r ¼ Oð1Þ relates
the threshold size to the equilibrium cell size Aref reached by a free, solitary cell with constant

polarization field � ¼ �0. Cells living in a densely packed environment will not exceed the area

threshold due to the pressure exerted on them by neighboring cells and can, therefore, not

grow. Conversely, cells exposed to free space are more likely to reach this threshold and

proliferate. Finally, a growing cell in interphase becomes mitotic after the growth time Tg has

passed, at which point cell size has roughly doubled with respect to the size in the quiescent

period. We assume that cell migration and mitosis are processes that exclude each other.

Hence, the positive feedback leading to persistent cell migration is switched off for mitotic

cells and the polarization field relaxes to the neutral state �0 according to Equation S13c.

There appears to be no universal set of rules which determine the orientation of the

cleavage plane along which cells divide (Minc and Piel, 2012). Rather, for epithelial tissues

there are a variety of factors which include local cell geometry and the direction of stress in

the tissue (Gibson and Gibson, 2009). Though it is in principle possible to implement any

given rule in our computational model, in its present version the axis along which a cell divides
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is chosen as a random direction through the geometric center of the cell. In case of irregular

cell shapes, a separation of the cellular domain into more than two connected components

can occur. To prevent violation of topological constraints, in this case the two largest

components are considered as descendant cells and the residual grid sites are filled by

substrate.

We explicitly account for the finite duration of the mitotic phase Td by keeping the cells in a

mitotic state for the aforementioned time period, until the final instantaneous splitting of the

cellular domains. After cell division, persistent cell migration of the daughter cells is enabled

again. The descendent cells will subsequently re-enter the growing phase if their area exceeds

the defined threshold, as mentioned above.

The following list summarizes the steps motivated and explained in the previous

paragraphs. These additional steps are performed in a simulation that includes cell

proliferation:

1. Assign a state variable sðaÞ to each cell which encodes the current phase in the cell cycle:

sðaÞ ¼

0; quiescent phase

1; refractory phase

2; interphase

3; mitotic phase

8
>>><

>>>:
(S22)

2. Compute the equilibrium size Aref ¼ ð�0 � 2p
ffiffiffi
3

p
kPÞ=ð

ffiffiffi
3

p
kAÞ of a free, solitary cell with fixed

polarization field � ¼ �0, which spreads on the substrate used in the simulation.

3. At the beginning of the simulation, t ¼ 0, all cells are in the quiescent state, sðaÞð0Þ ¼ 0, and

have the following area and perimeter coupling constants, respectively: k
ðaÞ
A ð0Þ ¼ kA=0 and

k
ðaÞ
P ð0Þ ¼ kP=0.

4. After the completion of each Monte Carlo time step t, perform one of the following changes
for each cell:

. Switch from quiescent to refractory state:

sðaÞðtÞ ¼ 0 ^ AðaÞðtÞ>AT

) sðaÞðtþ 1Þ ¼ 1: (S23)

. Switch from refractory state to growing state with probability p ¼ 1� expð�1=TrÞ:

sðaÞðtÞ ¼ 1

) sðaÞðtþ 1Þ ¼ 2; (p),

1; (1-p),

�
(S24)

where the terms in the brackets denote the respective probability.

. Exponential growth in interphase over a period of Tg:

sðaÞðtÞ ¼ 2

) k
ðaÞ
A ðtþ 1Þ ¼ k

ðaÞ
A ðtÞ � ð1=2Þ1=Tg

) k
ðaÞ
P ðtþ 1Þ ¼ k

ðaÞ
P ðtÞ � ð1=2Þ1=ð2TgÞ: (S25)

. Switch from interphase to mitosis:

sðaÞðtÞ ¼ 2 for all t2 ½t�Tg; t�
) sðaÞðtþ 1Þ ¼ 3: (S26)
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. During cell division, cell motility is switched off and the polarization field relaxes to the neu-
tral state according to Equation S13c.

. Perform cell division, reset area and perimeter stiffness and exit mitotic phase:

sðaÞðtÞ ¼ 3 for all t2 ½t�Td; t�
) divide cell a into cells ða;bÞ
) k

ða;bÞ
A ðtþ 1Þ ¼ kA=0

) k
ða;bÞ
P ðtþ 1Þ ¼ kP=0

) sða;bÞðtþ 1Þ ¼ 0: (S27)

. Cell motility is restored after cell division.

. If none of the above rules apply, then do not perform any changes.

Numerical computation of stress in a tissue
In the section describing the numerical results on tissue expansion, the stress distribution in

the tissue is shown in the kymographs Figure 5(C,G) and Figure 6(C,G). Hereafter we explain

how the stress tensor for each cell in the tissue can be computed from the forces acting on the

cell’s membrane segments in the Monte Carlo simulation. The mean value of the stress tensor

in a deformed body can be calculated numerically from the formula

�s
ðaÞ
ij ¼ ‘

2AðaÞ

X

xk2BðaÞ

�
f ik ~x

j
k þ f

j
k ~x

i
k

�
; (S28)

which is a discretized version of the surface integral in Landau et al. (1986). Here, fk is the

force acting on the membrane element xk of cell a, ~xk ¼ xk � x
ðaÞ
com is the position of the element

with respect to the center of mass x
ðaÞ
com of the cell, and the superscripts i and j are Cartesian

indices. The forces fk can be computed from the energy differences of all possible protrusion

and retraction events originating from xk,

fk ¼ �
X

xl2N k

DHðT proÞ
kxl � xkk

xl � xk

kxl � xkk

�
X

xl2N k

# DHðT retÞ
kxk � xlk

xk � xl

kxk � xlk
;

(S29)

where the number sign indicates a sum over substrate grid sites only, i.e. grid sites with

cðxlÞ<0, and where DH�HcontþHadhþHcyto.

Numerical computation of the cell shape
We use two complementary measures for the cell shape. The first is a simple measure for the

deviation of an object from a circle (we refer to this as cell extension):

K ¼ 1� 4pA

P2
: (S30)

It becomes zero if the object is a circle and becomes 1 if the object is a line. The second

measure for the cell shape is obtained from a principle components analysis of the cell shape.

Specifically, we compute the covariance matrix of the point cloud representing the cell domain

DðaÞ:

�
CovðDðaÞÞ

�
ij
¼
P

xk2DðaÞ ~xik ~x
j
kP

xk2DðaÞ 1
; (S31)

where ~xk ¼ xk � x
ðaÞ
com denotes the coordinates of element xk of cell a, relative to the cell’s
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center of mass x
ðaÞ
com; the superscipts i and j are Cartesian indices. Then, we compute the two

eigenvalues l2þ (larger eigenvalue) and l2� (smaller eigenvalue) of the covariance matrix, which

determine the variance of the point distributions along the two principal axes of the cell.

Finally, the aspect ratio of the cell is given by lþ=l�.
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Appendix 2

Parameter screening in silico
In this section we provide additional analysis of the model parameters beyond what is already

shown in the main text.

We explore all three rotational phases R1, R2 and R3 within confinements of varying size

and constant cell density. In the R1-phase, the cell clusters rotate slowly and

frequently reorient their direction of rotation. With increasing cell count, the cell clusters cease

to rotate. In the highly coordinated R2 and R3-phases, we find scale-free behavior such that

there is always a macroscopic rotation of the whole cell population regardless of the cell count

and corresponding confinement size.

We also explore the parameter space of the tissue simulations. There, we find that an

increased cell-cell dissipation DB impairs monolayer growth, while at the same time increasing

front roughness. Similarly, an increased cell-substrate dissipation D also impairs monolayer

growth. In contrast, increasing the maximum cell polarity D� improves monolayer growth and

also increases front roughness. We thus find that the speed of monolayer expansion depends

on whether it is dominated by cell migration or cell proliferation, with the former improving

monolayer growth through a better exploration of the cell-free area.

Single cell size
To rationalize our choice of the cell growth algorithm (see section ‘Cell proliferation and

mitosis’), we have explored the shape and motility of differently sized solitary cells. To this

end, we have varied the area stiffness parameter kA for different values of perimeter stiffness

kP, while keeping all other parameters constant. We find that the area occupied by the motile

cell increases linearly with 1=kA (Appendix 2—figure 1A). In particular, the cell area can be

approximated quite well by the area of an immotile and equilibrated cell with uniform � ¼ �0
(fit not shown):

A ¼ �0 � 2p
ffiffiffi
3

p
kPffiffiffi

3
p

kA
/ 1=kA : (S32)
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Appendix 2—figure 1. Role of area stiffness kA for cell size and motility. (A) The cell area

increases linearly with 1=kA. The aspect ratio (B), speed (C) and persistence (D) of the cell

decrease with increasing cell size. In the simulations, the area elasticity was varied in the

interval kA 2 ½0:09; 0:18�, and the membrane elasticity was chosen from

kP 2 f0:054;0:057;0:060;0:063;0:066g. Fixed parameters: average cell polarization field �0 ¼ 225;

maximum cell polarity D�¼ 50; signaling radius R¼ 5; cytoskeletal update rate �¼ 0:1; cell-

substrate dissipation D¼ 0; cell-substrate adhesion penalty ’¼ 0.

Furthermore, we find that with increasing size, and all other parameters constant, cells

become rounder, slower, and less persistent (Appendix 2—figure 1B-D). To intuitively explain

this phenomenology, let us compare a cell of size Aref with a cell of size r Aref , where r 2 ½1; 2�,
with the respective area stiffnesses kA and kA=r. While the smaller cell has a perimeter Pref ,

neglecting geometric effects the larger cell has a larger perimeter of approximately
ffiffi
r

p
Pref .

Hence, the larger cell has to pay a larger energy cost (roughly by a factor
ffiffi
r

p
) to ruffle its
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membrane by adding segments and therefore increasing its perimeter. Meanwhile, both the

energy gain from the polarization field � and the energy cost for increasing the cell area (as

A kA ¼ cst:) are the same for both cells. Due to the increased energy cost for adding

membrane segments, larger cells finds find it more difficult to polarize, and are therefore

rounder, slower and less persistent.

To offset this increased energy cost for adding membrane segments to the cell, one can

scale the perimeter stiffness of the larger cell to kP=
ffiffi
r

p
, such that P kP » cst. We would then

predict that the ratio k2P=kA is constant for differently sized cells of similar shape, speed and

persistence time. The same relation can also be obtained by realizing that different amounts of

grid sites occupied by two otherwise identical cells (in terms of their corresponding

Hamiltonian) simply stem from a different discretization of said cells, which is controlled by the

parameter kA. Interestingly, we observe such a data collapse for the aspect ratio lþ=l� and the

velocity v of the cells onto two respective master curves depending on the ratio k2P=kA
(Appendix 2—figure 1B,C). While the proposed data collapse for the persistence time of

directed migration of a cell (Appendix 2—figure 1D) is somewhat unsatisfactory, this may be

owed to the following effect: by keeping R constant we have actually varied the ratio between

the area that the signaling molecules typically explore due to diffusion and the area of the cell,

R2=A. Finally, we speculate that all observed quantities collapse unto respective master curves

f ðD� ffiffiffiffiffi
kA

p
=kPÞ � gðR

ffiffiffiffiffi
kA

p Þ.

Single cell shape and dynamics depend on substrate
dissipation
We have also studied the effect of cell-substrate dissipation (see section ’Rupture of

substrate contacts’) on cell morphology and motility. We have varied the substrate

dissipation D for different values of maximum cell polarity D� and cell perimeter stiffness

kP; however, we were not able to achieve a data collapse in D (Figure 2—figure

supplement 1). We observe that with increasing cell-substrate dissipation, cells become

round and cease migrating. This can be illustrated as follows: Consider a situation where

the cell conquers a new hexagon at its prospective leading edge. Because the cell on

average tends to constrain its area and perimeter while migrating, it consequently needs

to lose a different hexagon at its prospective trailing edge. However, this retraction at the

trailing edge is energetically penalized and thus cell displacement from its initial position

and the positive feedback leading to cell polarization are effectively inhibited. With

increasing cell-substrate dissipation, retraction events are further penalized and the cell

’sticks’ to the substrate at its trailing edge, preventing persistent motion of the cell.

Additionally, to further illustrate the correlation between cell shape and cell migration, we

have replotted the values of Figure 2—figure supplement 1A-C and E-G (Figure 2—

figure supplement 1D and H, respectively). Here and in the main text, we find that only

cells with an aspect ratio larger than 2 are motile (Figure 2F, Figure 2—figure

supplement 1D, H; white regions).

Cells in circular confinement
In this section we report on additional parameter studies of the dynamics of cells enclosed in a

circular confinement (Figure 4—figure supplement 1, Figure 4—figure supplement 2 and

Figure 4—figure supplement 3). Specifically, we investigate how the radius of circular

confinement affects the synchronized rotation of the cell population. We performed

simulations with a densely populated circular confinement and varied the confinement radius,

while keeping the cell density constant. The parameters are chosen such that a population

consisting of 4 cells (cf. main text, Figure 4) would rotate in the R1, R2 or R3-phase,

respectively. We studied the mean angular velocity

!ðtÞ ¼ êz �
v̂aðtÞ� ~RaðtÞ
k~RaðtÞk2

* +

C
; (S33)
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averaged over the set C ¼ fa j is not substrateg of all cells in confinement, where

~vaðtÞ ¼ vaðtÞ� hvaðtÞiC and ~RaðtÞ ¼RaðtÞ� hRaðtÞiC are the velocity and position of cell

a relative to the cell cluster, respectively.

In the lowly polarizable R1-phase, small cell populations rotate in a highly synchronized

way, and rotation is maximized for populations of 7 cells per confinement (Figure 4—figure

supplement 1A). As can be inferred from the time traces and snapshots (Figure 4—figure

supplement 1B, C), cells in small populations all synchronously move in the same direction at

a given time and randomly switch between clockwise and counter-clockwise rotation; the

switching rate decreases with increasing size of the cell population. Upon increasing the cell

count and concomitantly the confinement size, global rotation of the cell population gradually

vanishes (Figure 4—figure supplement 1A).

Unlike in the R1-phase, we observe that in the highly polarizable R2 and R3-phases

populations of all sizes rotate in a highly synchronized way (Figure 4—figure supplement 2A

and Figure 4—figure supplement 3A). There, the dependence of !j jh i on the population size

N can be fitted by a power law of the form !j jh i / N�1=2 / r�1

0
. This inverse proportionality

between the average angular velocity and the confinement size r0 implies total rotational

order, with every cell moving at a constant velocity vrotj j » 0:008 (vrot ? ~R). Furthermore, in

the R2, and R3-phases we have only scarcely observed switching of the rotational direction of

cell clusters; e.g. for 4-cell clusters in the R3-phase.

Interestingly, fluctuations in the angular velocity (s!) change in a highly non-monotonic

fashion with the cell count and concomitantly the confinement size. Certain cell counts exhibit

especially high fluctuations of the mean angular velocity (e.g. 5 cells in the R1-phase, see

Figure 4—figure supplement 1A; 3 or 10 cells in the R2-phase, see Figure 4—figure

supplement 2A; 3 cells in the R3-phase, see Figure 4—figure supplement 3A). This can likely

be attributed to frustration of the cells in the population center (Segerer et al., 2015); cf.

10 cells in Figure 4—figure supplement 2C.

Velocity and roughness of spreading tissue
We have studied the velocity and roughness of spreading tissue, while varying cell-cell

dissipation DB, cell-substrate dissipation D and maximum cell polarity D�.

First, let us introduce the observables that we are interested in. Let X>=< be the sets of x-

coordinates of the left and right outermost edges of the cell sheet. Our in silico setup is axially

symmetric with respect to the y-axis. This initial symmetry persists, as the cell fronts advance

towards the cell-free area with the same average speed. Hence, it is not needed to consider

the two cell fronts separately, and we can instead consider the set of unsigned front

positions X :¼ absðX>=<Þ. Then, we define the average front position as xF :¼ EðXÞ and the

front roughness as s2

F :¼ VarðXÞ. In particular, we study the total growth of the tissue over the

course of 500 MCS, which is captured by the maximal position of the front, maxðxFÞ, as well as
the maximal roughness of the front maxðsFÞ. We have chosen our parameters such that a cell

takes a total amount of 200 MCS to divide, provided that it exceeds the threshold size of a

solitary reference cell Aref . Because the first daughter cells may only appear after 200 MCS

have passed, we exclude this initial period from the measurements of the maximal front

position and roughness, respectively. Additionally, we provide some exemplary time traces of

the front evolution (Figure 5-figure supplement B,D,F).

First, we investigated how the monolayer expansion and front roughness depend on cell-

substrate dissipation, DB (Figure 5—figure supplement 1A, B). Our simulations show that the

cell sheet expands slower with increasing cell-cell dissipation DB (Figure 5—figure

supplement 1A, B), because the dissipation penalizes cells sliding past each other. At the

same time, the cell sheet also becomes slightly rougher with increasing cell-cell dissipation

DB (inset of Figure 5—figure supplement 1A).

We also investigated how the monolayer expansion and front roughness depend on cell-

substrate dissipation, D (Figure 5—figure supplement 1C, D). Before we turn to the

monolayer, let us recall the observed single-cell behavior in the previous section (see section

’Single cell shape and dynamics depend on substrate dissipation’): for high enough cell-

substrate dissipation D (typically of the same order of magnitude as the maximum cell polarity
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D�) cell migration is switched off (Figure 2—figure supplement 1). Extrapolating the single-

cell results, we expect that the same holds also for collectives of cells and that cell migration

does not play a role for high cell-substrate dissipation. Indeed, with increasing cell-substrate

dissipation, the monolayer expands slower, until this effect appears to saturate at a threshold

value D$
» 5 (Figure 5—figure supplement 1C, D). Following this line of argument, monolayer

growth is slowed down if we suppress cell migration and thus move the cell monolayer

towards a proliferation-dominated mode of expansion.

What about the inverse? Is the monolayer growth increased if we enhance cell migration

and thus move the cell monolayer towards a migration-dominated mode of expansion? To test

this hypothesis, we have analyzed how the monolayer growth and front roughness depend on

the maximum cell polarity D�. As predicted, monolayer growth increases with the maximum

cell polarity D� (Figure 5—figure supplement 1E, F), because an increased amount of cells

exceed the threshold size to switch to mitosis (cf. the stretching of bulk cells in the monolayer

in Figure 5B). Additionally, we also find that the front roughness increases with increasing

maximum cell polarity D�.
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