
SOFTWARE Open Access

RiboMiner: a toolset for mining multi-
dimensional features of the translatome
with ribosome profiling data
Fajin Li1,2,3, Xudong Xing1,2,3, Zhengtao Xiao1,2, Gang Xu1 and Xuerui Yang1,2*

* Correspondence: yangxuerui@
tsinghua.edu.cn
1MOE Key Laboratory of
Bioinformatics, School of Life
Sciences, Tsinghua University,
Medical Science Building D231,
Beijing 100084, China
2Center for Synthetic & Systems
Biology, Tsinghua University, Beijing
100084, China
Full list of author information is
available at the end of the article

Abstract

Background: Ribosome profiling has been widely used for studies of translation
under a large variety of cellular and physiological contexts. Many of these studies
have greatly benefitted from a series of data-mining tools designed for dissection of
the translatome from different aspects. However, as the studies of translation
advance quickly, the current toolbox still falls in short, and more specialized tools are
in urgent need for deeper and more efficient mining of the important and new
features of the translation landscapes.

Results: Here, we present RiboMiner, a bioinformatics toolset for mining of multi-
dimensional features of the translatome with ribosome profiling data. RiboMiner
performs extensive quality assessment of the data and integrates a spectrum of tools
for various metagene analyses of the ribosome footprints and for detailed analyses
of multiple features related to translation regulation. Visualizations of all the results
are available. Many of these analyses have not been provided by previous methods.
RiboMiner is highly flexible, as the pipeline could be easily adapted and customized
for different scopes and targets of the studies.

Conclusions: Applications of RiboMiner on two published datasets did not only
reproduced the main results reported before, but also generated novel insights into
the translation regulation processes. Therefore, being complementary to the current
tools, RiboMiner could be a valuable resource for dissections of the translation
landscapes and the translation regulations by mining the ribosome profiling data
more comprehensively and with higher resolution. RiboMiner is freely available at
https://github.com/xryanglab/RiboMiner and https://pypi.org/project/RiboMiner.
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Background
Based on deep sequencing of the ribosome-protected mRNA fragments, ribosome

profiling enables genome-wide investigations of translation with sub-codon resolution

[1]. In the past decade, ribosome profiling has been widely used for studies of transla-

tion under various contexts in human and almost all the major model organisms such

as bacteria, C. elegans, yeast, and mouse, et al. [2, 3]. In these studies, the most popular

applications of ribosome profiling data include quantifications of translation efficiency

(TE) [4, 5], annotations of open reading frames (ORFs) [4, 6], meta-gene analysis of the

ribosome distribution patterns [7, 8], and identification of translation initiation sites

and pausing regions [3, 7].

A large variety of algorithms, software, and online resources have been developed to

accommodate the ever-growing needs for data processing and analysis of ribosome pro-

filing as well as presentation and interpretation of the results [9–11]. For example,

RiboCode [12], ORF-RATER [13], Ribowave [14], ORFscore [15], RiboTaper [16], and

Ribo-TISH [17] were designed for annotation of active ORFs. Xtail [18], anota [19],

Riborex [20], Babel [21], and RiboDiff [22] were developed for quantification of TE

changes. In addition to these highly focused analyses, more customized down-stream

analyses of ribosome profiling data are of great value as well for better understanding

of the translatome and the translation regulation. As summarized in Fig. 1, these pipe-

lines implemented a broad range of data analyses, from pre-processing to down-stream

information mining [17, 23–36]. For example, RiboPip is focused on the pre-processing

of ribosome profiling and RNA-seq data; mQC [35] and Ribo-seQC [36] were mainly

designed for quality control of the data; RiboPlot [28] and Shoelaces [34] can be used

for quality control and visualization of the data; PausePred [33] was specifically

designed to identify pausing motifs; RiboTools [24] is a Galaxy toolbox with functions

including detection of translational ambiguities and identification of readthrough

events; PROTEOFORMER [23] is a python package for automatic processing of ribo-

some profiling data, which includes SNP calling, ORF assembly and TIS identification;

Fig. 1 Major functions of the data analysis tools for ribosome profiling. Partly adapted from a review article
by Wang, et al. [9]. RiboMiner is highlighted at the bottom, and the red ticks represent the unique functions
of RiboMiner
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Plastid [27] is used for differential translation analysis and metagene analysis; RiboPro-

filing [30], riboSeqR [25], and systemPipeR [29] are R packages for tasks such as data

pre-processing, quality control, TE calculation and ORF annotation, et al. These tools

together cover many key procedures for ribosome profiling data analysis and presenta-

tion. However, as shown in Fig. 1, new types of analyses, many of which are related to

the complicated machinery of translation regulation and only emerged in recent stud-

ies, have not been implemented by the current methods.

Here, we present RiboMiner, a python toolset for ribosome profiling data analysis, in

response to the emerging needs for deeper mining of the hidden information about

translation and its regulation, such as co-translation events, metagene analyses of the

ribosome footprint density, and the potential regulatory factors of ribosome distribu-

tion, e.g., codon usage, tRNA gene copy numbers, and properties of nascent amino

acids (Fig. 1). Characterization of these multi-dimensional features, under specific

experimental or physiological conditions, provides closer views on the shift of transla-

tion landscapes with more details, which could be informative for pursuing the under-

lying machinery of translation regulation.

Implementation
Overview of RiboMiner

The pipeline of RiboMiner is composed of 4 major function modules (Fig. 2): 1) Quality

Control (QC), designed for assessment of ribosome profiling data quality with a multi-

tude of benchmarks including 3-nt periodicity, distribution of read lengths, reads

distribution in non-coding genome/transcriptome, etc. 2) Metagene Analysis (MA) for

global distribution patterns of ribosome footprints on pooled transcripts of the full or

Fig. 2 Overview of RiboMiner. There are four function modules in RiboMiner. QC: quality control of ribosome
profiling data. MA: metagene analysis for different samples with the full genome or pre-defined gene sets. FA:
feature analysis for given sets of genes, which covers a series of translation-related indices. EA: enrichment
analysis for the data of selective ribosome profiling to identify the potential co-translation regulation events
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any given subset of the transcriptome. This analysis helps identifying potential ribo-

some stalling events that take place at the global scale or just for subsets of the tran-

scripts. Via direct comparisons between different conditions, metagene analysis of the

footprints shed lights on how and at which stage these conditions perturb translation.

3) Feature Analysis (FA) for mining of various features that are enriched in predefined

gene sets, e.g., the subset of genes with ribosome stalling events detected by MA as

introduced above. The features being tested here include ribosome footprint

densities on different amino acid (AA) and tri-amino acid (tri-AA) motifs, local and

global codon adaptation index, local and global tRNA adaptation index, AA hydro-

phobicity and charge, etc. By identifying such features that are enriched in selected

genes, this module of functions could provide insights into the machinery of transla-

tion landscape shift, from a multitude of different perspectives. 4) Enrichment Ana-

lysis (EA), designed for direct comparison of the ribosome footprint distributions

across two experiments. For instance, this function can be used for data analysis of

selective ribosome profiling to help the identification of co-translation regulation.

The python package of RiboMiner is freely available at https://github.com/xryanglab/

RiboMiner and https://pypi.org/project/RiboMiner. We also offer a Docker image for

RiboMiner at https://hub.docker.com/r/yanglab/ribocode_ribominer. The RiboMiner

pipeline, including the testing data used in the present study, is also available as a Gene

Container Service (GCS) on the Huawei Cloud.

Inputs of RiboMiner

As previously described, the common practice of raw data pre-processing before down-

stream analysis of ribosome profiling data includes quality control of sequencing,

adapter trimming, read mapping and read counting (Fig. 2). The counts files could be

used for differential expression analysis or quantification of differential translation

efficiency with specialized tools such as DESeq2 [37] or Xtail [18]. The BAM files

generated by read mapping can be used for TIS identification [23, 26] or ORF annota-

tion [12, 13, 15] with specialized tools such as RiboCode [12] and PROTEOFORMER

[23]. There are three categories of input files for RiboMiner (Fig. 2): 1) genome

sequences in FASTA format and an annotation file in GTF format, which would be

used for annotations of the RNA transcripts and the protein coding sequences; 2) RPF

sequences in FASTA format, after pre-processing such as adapter trimming and quality

filtering; 3) Two BAM files generated by mapping of the RPF reads to the genome and

the transcriptome. These BAM files can be supplied by the users or generated by the

script we have offered, which can be found on the GitHub page of RiboMiner. See

supplementary file for a detailed tutorial of RiboMiner, including preparation of input

files and all the down-stream analyses.

Data preparation

Alternative splicing of the eukaryotic genes generates multiple transcript isoforms for each

gene [38]. To avoid ambiguous alignments of the sequencing reads, the longest transcript of

each protein coding gene would be used for the following analyses. The function Output-

TranscriptInfo performs this task and generates annotation files containing all the selected

transcripts of the protein coding genes. GetProteinCodingSequence returns the sequences of

Li et al. BMC Bioinformatics          (2020) 21:340 Page 4 of 14

https://github.com/xryanglab/RiboMiner
https://github.com/xryanglab/RiboMiner
https://pypi.org/project/RiboMiner
https://hub.docker.com/r/yanglab/ribocode_ribominer


these transcripts, the protein coding sequences, and the amino acid sequences, whereas

GetUTRSequences extracts the UTR sequences of these transcripts specifically. It should be

noted that all the functions above are dependent on the transcript annotation file generated

by prepare_transcripts of RiboCode [12] that our group developed before.

Quality control

Four functions were designed for quality control of the ribosome footprints. Peri-

odicity, which is adapted from metaplots of RiboCode [12], is used for assessment

of the 3-nt periodicity and identification of P-sites of the ribosome footprints. It

reports the distributions of RPFs aligned by their 5′ end in relative to the start

and stop codons, which is done for the reads of each specific length or for all the

reads combined. RiboDensityOfDiffFrames returns the read densities of each reading

frame. LengthDistribution or ReadsLengthOfSpecificRegions provides the length dis-

tributions of all the ribosome footprints or the ones from specific regions such as

CDS, 5’UTR, and 3’UTR. StatisticReadsOnDNAsContam counts the RPF reads

mapped to introns and intergenic regions of the genome, which are potentially

DNA contaminations or other non-ribosome-footprint fragments and could be in-

dicative to the data quality in general.

Metagene analysis

Metagene analysis aligns the transcripts of all the genes or a pre-defined gene set by

their start codons and quantifies the relative read densities at each nucleotide or codon.

Such analysis is particularly useful for identifying the potential global ribosome stalling

sites under certain experimental or physiological conditions. MetageneAnalysisForThe-

WholeRegions can be used for calculating the read densities along the transcripts for an

overall view, which would be helpful for testing whether the ribosome distributions are

biasedly enriched. The function PolarityCalculation then evaluates the ribosome distri-

bution bias for each gene and returns an overall distribution of such bias for all the

genes. Finally, MetageneAnalysis was developed to zoom in and study the footprint

densities in any particular region of the transcripts, including the UTR regions. This is

particularly useful for allocating the ribosome stalling regions. All the results from the

functions above can be readily presented as figures (see Supplementary file).

Feature analysis

A number of factors have been shown to be involved in the regulation of translation initi-

ation and elongation, such as poly-proline motifs [8, 39, 40], codon usage [41], tRNA gene

copy numbers [42], amino acids with positive charges and high isoelectric points (pI) [43],

etc. RiboMiner provides a series of functions for mining of such hidden features that are

related to ribosome occupancy, with a goal of providing valuable insights into the molecu-

lar machinery of translation regulation. RiboDensityAtEachKindAAOrCodon calculates

the ribosome footprint density at each amino acid (AA) or codon to show the differences

under the experimental or physiological conditions. Furthermore, PausingScore was devel-

oped to quantify the ribosome density at each tri-AA motif and identify the motifs with

enriched ribosome occupancy. Next, RiboDensityAroundTripleteAAMotifs can be used for
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computing the ribosome occupancy around the P/E site of the tri-AA motifs identified by

the functions above.

tRNA adaptation index (tAI) and codon adaptation index (cAI) have been found to

be potentially influential to translation, especially during elongation [41–43]. RiboMiner

thereby provides two functions tAI and cAI to calculate the global tAI and cAI values

as well as the local tAI and cAI values at each position along the transcripts for a speci-

fied organism. Note that although the weights of tAI are not exactly the same in all

species, most of them are highly correlated to the weights fitted in yeast [44]. Finally,

hydropathyCharge calculates the hydrophobicity and charge indexes of amino acids

encoded by each codon along the transcripts.

Previously, the ratio of RPF read counts in 5’UTR to CDS was reported to be nega-

tively correlated with the translation efficiency (TE) [45]. RiboMiner includes a func-

tion, RPFdist, to calculate these ratios, which would be potentially informative for

evaluating the translation efficiencies in cases when the RNA-seq data in parallel with

the ribosome profiling data is not available. See Supplementary file for more details

about usages of these functions above.

Enrichment analysis

Direct comparison between different ribosome profiling data could reveal the transla-

tion landscape shifts in details. For example, selective ribosome profiling (SeRP) is a

powerful tool for studying the interaction of molecular chaperones and their potential

targeting factors in the process of translation elongation [46]. It also reveals the co-

translation events among different subunits of protein complexes [47]. Detailed analysis

of the data from SeRP has been carefully done [46, 48], but these pipelines are not

available in any of the current data analysis programs. Thus, RiboMiner incorporated a

specially designed pipeline for mining of ribosome footprint enrichments with selective

ribosome profiling data, which is quite different from the normal ribosome profiling

data. This pipeline is composed of at least three steps: First, RiboDensityAtEachPosition

calculates the ribosome density at each position for each transcript; Second, Enrich-

mentAnalysis performs an enrichment analysis by calculating the ribosome density ratio

at each position in one ribosome profiling data over another one, e.g., ribosome profil-

ing with IP of a specific protein and the normal ribosome profiling data. Finally, PlotEn-

richmentRatio or EnrichmentAnalysisForSingleTrans generates plots of the results. In

cases of multiple replicates for each condition, enrichmentMeanDensity can be used to

calculate the mean ribosome density at each position ahead of the function Enrichmen-

tAnalysis. It is worth noting that although this module was designed for SeRP data ana-

lysis, it could also be used for read density comparison between two normal ribosome

profiling data under different conditions.

Results
To showcase the application of RiboMiner for mining of insights into the translation

regulation machineries, we used two published datasets, one from the study of eIF5A in

translation regulation in yeast (GSE89704) [8] and the other from the study of co-

translation of the aminoacyl-tRNA-synthetase complex (GSE116570) [47], which is

specifically used for the Enrichment Analysis.
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Quality control

Benchmarks for the quality of a ribosome profiling dataset include 3-nt periodicity, appro-

priate distribution of the footprint lengths (usually ~ 28–30 nt), and enrichment in coding

regions. As for GSE89704 (SRR5008135 for example), RiboMiner exhibited strong 3-nt peri-

odicity for the reads with a specific length or for all the reads combined and aligned by their

P-site positions (Fig. 3a). The lengths of ribosome footprints are usually 28 ~ 30 nt [1]. How-

ever, the footprint length distribution of SRR5008135, generated by RiboMiner, showed that

although the main peak was indeed around 28–30 nt, there is a small peak at 19 nt (Fig. 3b),

which seems quite abnormal. This was further addressed by genome mapping of the RPF

reads by RiboMiner, which showed that a small proportion of the reads were mapped to the

intergenic regions and introns, suggesting some level of potential DNA contamination (Fig.

3b, c). After removal of these reads, the footprints strongly unified around 28–30 nt. Finally,

frame analysis of the footprints showed that most reads were enriched in the first

reading frame (Fig. 3d). Taken together, the results above indicate generally good

quality of the data and identified the source of potential contamination, which

could be easily eliminated by size selection of the raw reads.

Metagene analysis

RiboMiner was used for metagene analysis of the ribosome footprint distributions with

a similar procedure as previously described [8]. As shown in Fig. 4a, RiboMiner repro-

duced the dramatically changed pattern of ribosome occupancy upon knock-down of

Fig. 3 Results of the Quality Control (QC) module of RiboMiner. a 3-nt periodicity plots generated by
RiboCode and RiboMiner, using the reads of 28 nt as an example. b Length distributions of all the RPF
reads and the reads mapped to different genomic regions including exons, intergenic regions, and introns.
c Numbers of reads mapped to different regions of the genome. d Reads mapped to different reading
frames. The sample SRR5008135 in the dataset GSE89704 was used as an example here
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eIF5A, suggesting strong stalling at the early stage of elongation in the first 100 ~

150 codons (Fig. 4a, c). Distributions of the polarity scores, generated by RiboMi-

ner, confirmed the significant shift of the ribosome footprints towards the 5′ ends

(Fig. 4b). In addition to the metagene analysis along the whole transcript or the

CDS region, RiboMiner could also be used for metagene analysis for the UTR re-

gions (Fig. 4d). Finally, it is worth noting that the metagene analysis with RiboMi-

ner can be done at the global scale or just for a subset of the genes.

Mining of features related to translation regulation

Although the global metagene analysis as shown above indicates strong ribosome stal-

ling upon eIF5A knock-down (Fig. 4a, c), it is possible that such pattern was mainly

contributed by a subset of the genes. To specifically identify the genes with ribosome

footprints enriched in the first 100 codons upon eIF5A knock-down, we compared the

read densities on the first 100 codons for each transcript between the control and si-

eIF5A samples. Two thousand nine hundred fifty-four genes showed up-regulated ribo-

some densities (“up-regulated genes”) with the ratio of si-eIF5A/si-Ctrl > = 1.5. This list

of genes could then be used for mining of common features that are potentially related

to the ribosome stalling during early elongation.

Fig. 4 Results of Metagene Analysis (MA) by RiboMiner. a Overall read density distributions along all the
transcripts merged. b Distributions of polarity scores. c Ribosome densities along the CDS regions. Left: read
density after the start codon. Right: read density before the stop codon. d Ribosome densities along the
UTR regions. Left: read density around the start codon. Right: read density around the stop codon. Shading
area represents 95% confidence interval
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For example, RiboMiner can calculate ribosome density at each codon or amino acid

(AA) for a set of genes (Fig. 5a, b) and further evaluate the change of ribosome density

under different conditions (Fig. 5c, d). The results showed that read densities on proline

(P) and aspartic acid (D) were largely increased after eIF5A-KD (si-eIF5A), suggesting that

these amino acids may have contributed to the ribosome stalling observed above.

Next, RiboMiner was also used for calculating the ribosome densities on tri-AA

motifs. Results showed that the motifs of poly-proline (PPP) and poly-aspartic acid

(DDD) were significantly enriched by ribosome upon eIF5A knock-down (Fig. 6a),

whereas the ribosome density on poly-lysine was decreased, but with no statistical

significance (Fig. 6b). These results are consistent to the original reports in [8] (Fig. 6c).

Besides, although the charges of amino acids have been reported to be negatively corre-

lated to the speed of translation elongation [43], we found no difference in the charge

of amino acids among the different gene sets (Fig. 6d).

Interestingly, analysis with RiboMiner revealed some more novel features that have

not been reported in the original study. For example, we found that both the local and

global cAI and tAI values of the genes with ribosome enrichment during early elong-

ation (“up-regulated gene”) tend to be much smaller than those of the other transcripts

used as control (“unblocked genes” and “down-regulated genes”) and so did the local

cAI and tAI values (Fig. 7a, b, d). This suggests that the “up-regulated genes” have

more sub-optimal codons, which then potentially led to slower moving of the ribo-

somes along the transcripts. In addition, the hydrophobicity of the amino acids encoded

by these “up-regulated genes” are also much smaller, which we suspect may be related

to ribosome stalling as well (Fig. 7c).

In summary, based on the results of RiboMiner, we reproduced the ribosome stalling

event upon eIF5A knock-down as reported by the original study. Such stalling was

mainly contributed by a subset of genes, and further mining of multiple features of

Fig. 5 Comparison of the ribosome densities among different amino acids and codons. a Relative ribosome
density on each amino acid for the sample of si-eIF5A. b Relative ribosome densities on different codons
for the si-eIF5A sample. c The ratio (log2) of ribosome densities for each amino acid in the sample of si-
eIF5A over si-Ctrl. d The ratio (log2) of ribosome densities for each codon in the sample of si-eIF5A over si-
Ctrl. All the analyses above were based on the 2954 up-regulated transcripts. Ribosome densities were
calculated with reads aligned by their P-sites
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Fig. 6 Ribosome densities among tri-AA motifs. a Relative ribosome densities on poly-proline and poly-
Aspartic acid. b Relative ribosome densities on poly-Lysine. c The tri-AA motifs with enriched ribosome,
reported by RiboMiner. 0,1,2 represents E, P, A site of a tri-AA motif, respectively. d Average charge of the
amino acids encoded by each codon along the transcripts. All the analyses above were based on the 2954
up-regulated transcripts

Fig. 7 Results of Feature Analysis (FA) by RiboMiner. a Distributions of local cAI along different gene sets. b
Distributions of local tAI along different gene sets. c Average hydrophobicity of each amino acid encoded
along the transcripts of different gene sets. d Distributions of global cAI and global tAI for different gene
sets. The P-values with T-tests are provided on the plots
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these genes indicated that tri-AA motifs, codon usage, tRNA copy numbers, and amino

acid hydrophobicity may be related to the translation dysregulations due to eIF5A

knock-down. Many of these new insights have not been reported by the original study

and therefore could worth further investigations.

Enrichment analysis with selective ribosome profiling data

We used RiboMiner to revisit the selective ribosome profiling data in the study of the

assembly of a hetero-trimeric complex, the multi-aminoacyl-tRNA synthetase [47]. This

complex is composed of three major subunits, i.e., the essential methionyl- and

glutamyl-tRNA synthetases MetRS and GluRS (encoded by MES1 and GUS1, respect-

ively) and the Arc1p cofactor (encoded by ARC1) regulating the catalytic activities and

subcellular distributions of the complex [47]. RiboMiner regenerated the distributions

of ribosome footprints that are enriched in the selective ribosome profiling (Fig. 8).

This confirms the main conclusion of the original study, i.e., proteins MetRS and

GluRS could co-translate with each other, and both participate in the translation of

Arc1p starting at a specific position [47].

Running time of different modules of RiboMiner

Last, the running time of each module of RiboMiner with the data of 4 different model

organisms are provided in Table 1. We did not consider the pre-filtering and data prep-

aration steps. In general, the time mainly depends on the total reads, i.e., the sequen-

cing depth. All jobs were run on a Linux server with Intel R Xeon R CPUs at 2.40GHz,

64 G memory. Note that the table reports the total running time of all the functions in

each module. The scripts and results for evaluation of the running time are available at

https://github.com/xryanglab/RiboMiner/tree/master/RuningTimeTest.

Fig. 8 Results of Enrichment Analysis by RiboMiner. a Engagement of nascent ARC1 (top), GUS1 (bottom)
by C-terminally tagged MetRS. b Engagement of nascent ARC1 (top), MES1 (bottom) by C-terminally tagged
GluRS. The red dotted lines represent the two-fold threshold
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Conclusions
RiboMiner is a python toolset for deep mining of multi-dimensional features of the trans-

latomes with ribosome profiling data. A multitude of functions incorporated in RiboMiner

are useful for quality control of ribosome profiling data, metagene analysis for detection

of translation dysregulations such as ribosome stalling, mining of various features related

to the translation dysregulations, and exploration of selective ribosome profiling for fine

maps of translation regulation such as co-translation. Applications of RiboMiner on two

published datasets did not only reproduce the main results reported before, but also gen-

erated novel insights into the translation regulation processes. RiboMiner provides quanti-

tative data for visualization as well as statistical analyses. In summary, here we present

RiboMiner as a complementary toolset to the current methods, to facilitate the compre-

hensive and thorough dissections of the translation landscapes as well as the translation

regulations with the technique of ribosome profiling.

Availability and requirements
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Any restrictions to use by non-academics: Licence needed
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