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Abstract: The three-dimensional geometry of a micromixer with an asymmetrical split-and-recombine
mechanism was optimized to enhance the fluid-mixing capability at a Reynolds number of 20.
Single and multi-objective optimizations were carried out by using particle swarm optimization
and a genetic algorithm on a modeled surrogate surface. Surrogate modeling was performed
using the computational results for the mixing. Mixing and flow analyses were carried out by
solving the convection–diffusion equation in combination with the three-dimensional continuity
and momentum equations. The optimization was carried out with two design variables related to
dimensionless geometric parameters. The mixing effectiveness was chosen as the objective function
for the single-objective optimization, and the pressure drop and mixing index at the outlet were chosen
for the multi-objective optimization. The sampling points in the design space were determined using
a design of experiment technique called Latin hypercube sampling. The surrogates for the objective
functions were developed using a Kriging model. The single-objective optimization resulted in 58.9%
enhancement of the mixing effectiveness compared to the reference design. The multi-objective
optimization provided Pareto-optimal solutions that showed a maximum increase of 48.5% in
the mixing index and a maximum decrease of 55.0% in the pressure drop in comparison to the
reference design.

Keywords: micromixers; unbalanced split-and-recombination; surrogate modeling; Navier–Stokes
equations; single and multi-objective optimizations; mixing index

1. Introduction

Microfluidics is rapidly emerging for precise control and manipulating fluids in microscale
channels, and has found a wide range of applications in bioengineering, the chemical industry,
and environmental monitoring [1–3]. Most applications of microfluidic systems involve the mixing
of two or more species as a fundamental process. Successful completion of the applications requires
rapid and efficient mixing, but microfluidic systems exhibit laminar flow characteristics due to their
operation at low Reynolds numbers. The mixing achieved through molecular diffusion in the absence
of turbulence is very slow and inefficient for microfluidic applications. Hence, it is crucial to attain
efficient mixing to enhance the performance of microfluidic devices.

Computational fluid dynamics (CFD) is extensively employed as a tool to evaluate the performance
and the flow structure in micromixers. Over the past two decades, various passive micromixer
designs [4,5] have been proposed based on mixing strategies such as parallel/sequential lamination [6,7],
hydrodynamic focusing [8], and chaotic advection [9]. Combinations of these strategies can also
be employed [10,11]. The sequential processes of splitting, rejoining, and rearranging the flow in
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a split-and-recombine (SAR) micromixer enlarge the interfacial surface between the mixing species
exponentially and shorten the diffusion path, thereby enhancing the mixing. Chen et al. [12] proposed
a planar cascaded SAR micromixer that achieved a mixing index of over 90% in a Reynolds number
range of 34.6–150. Sharp bends formed by the channel edges and triangular baffles created corner
vortices and Dean vortices that promoted chaotic advection and enhanced mixing.

Chaotic advection produces transversal transport, which causes exponential growth of the
interfacial area between the fluids, and decreases the striation thickness, which significantly improves
the mixing. Chaotic advection can be generated through various channel features such as curvatures [13],
grooves [9], and obstacles [14] on the channel walls and crossing channels [15]. Ansari and Kim [13]
proposed a planar asymmetrical SAR micromixer with curved sub-channels. The unbalanced collision
of the mixing species and Dean vortices in the curved channels generated chaotic advection.

Li et al. [16] proposed a planar asymmetric SAR (P-ASAR) micromixer with staggered major
sub-channels by modifying the micromixer reported by Ansari and Kim [13]. The micromixer attained
a mixing index of 0.86 at Re = 80. Raza and Kim [17] proposed a micromixer based on unbalanced
collision. Three-dimensional (3D) steps were introduced in the sub-channels, and the flow and mixing
characteristics of the micromixer were numerically investigated in a range of Reynolds number,
0.1–120. The proposed micromixer had steps in the major and minor sub-channels with four mixing
units. The micromixer showed a mixing index higher than 0.86 for Reynolds numbers larger than
20. The mixing was aided by chaotic advection produced through Dean vortices in the sub-channels,
the collision of unequal mass flux due to asymmetrical splitting and rejoining, and the 3D flow field
due to the steps. The mixing was enhanced in comparison to previous micromixers at intermediate
Reynolds numbers.

As a result of developments in computational power, design optimization using CFD has
become an efficient tool for the design of micromixers [18–20]. Cortes-Quiroz et al. [20] obtained
an optimized staggered herringbone groove micromixer that satisfies several objectives using CFD,
the design-of-experiment (DOE) method, surrogate modeling, and a multi-objective genetic algorithm
(MOGA). Numerical simulations were performed to evaluate the values of the objective function at
the design points created by a DOE technique called the Taguchi method. A Pareto-optimal curve
representing reciprocity between the pressure drop and mixing index was obtained at Re = 1 and 10 by
applying MOGA to the response functions developed by a surrogate model.

Afzal and Kim [21] optimized the geometric and flow parameters of a convergent-divergent
sinusoidal wall micromixer to maximize the mixing index. Different surrogate models were built using
the input of the mixing index values at the sampling points generated by Latin hypercube sampling
(LHS). The models used were the radial basis neural network (RBNN), response surface approximation
(RSA), and Kriging (KRG) models. Sequential quadratic programming was used on the surrogate
surface to locate the optimum design. Hossain et al. [19] optimized a 3D SAR micromixer with four
design variables and two objective functions at Re = 15. RBNN was selected as a surrogate technique
to replicate the functions representing the objectives of the mixing effectiveness and mixing index.
Afzal and Kim [22] optimized a sinusoidally varying walled micromixer using the pressure drop
coefficient and mixing index as the objective functions. The Pareto-optimal designs were compared in
terms of mixing effectiveness to select an efficient design.

Numerical optimization methods using 3D CFD have been quite successful in enhancing
the performance of various micromixers. Furthermore, the micromixers involving unbalanced
collisions [13,16,17] showed a greater dependency of the mixing on the various geometrical parameters.
Flow features such as the collision of unequal mass fluxes from the sub-channels, Dean vortices in the
sub-channels, and chaotic advection due to 3D steps in the micromixers are affected by the changes in
the geometrical parameters.

However, hardly any numerical optimization has been performed on this type of micromixer
to obtain optimum geometrical parameters for efficient mixing. Hence, in the present study, single-
and multi-objective optimizations were explored to upgrade the capability to homogenize mixing
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species inside the micromixer proposed by Raza and Kim [17] at Re = 20. Mixing effectiveness was
considered to be the target for single-objective optimization, while both the pressure drop across
the microchannel and mixing index at the exit were optimized in the multi-objective optimization.
Surrogate models were generated for different objectives using the KRG method, and Pareto-optimal
solutions for multi-objective objective optimization were obtained using MOGA.

2. Problem Formulation and Analysis Methods

The micromixer configuration used for the optimization is shown in Figure 1. The micromixer
consists of two side inlets connected to the main channel with three asymmetrical circular mixing units
that undergo splitting-and-recombination. There are 3D steps in the sub-channels of the mixing units.
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Figure 1. Diagrams of the micromixer configuration, reproduced with permission from [17]: (a) 3D
view of the micromixer and (b) enlarged view of a mixing unit of the micromixer.

The dimensions of the reference design are the same as in previous work [17]: The axial length of
the initial part of the main channel (L0), exit channel length (Le), total length (Lt), pitch length (Pi), width
of the main channel (W), width of the major sub-channel (w1), width of the minor sub-channel (w2),
width of the dislocation (w3), depth of the major sub-channel (h1), depth of the minor sub-channel (h2),
and total depth of the main channel (H) are 500 µm, 2950 µm, 6750 µm, 1200 µm, 300 µm, 200 µm,100
µm, 100 µm, 100 µm, 100 µm, and 200 µm, respectively. To analyze the mixing performance, the CFD
code ANSYS CFX 15.0® [23] was used for numerical analyses of the mass transport and fluid flow
inside the micromixer model. The CFD code is based on finite-volume approximations and finds the
solutions to the momentum and continuity equations for the Newtonian, incompressible, and steady
3D laminar flow:

∇·
→

V = 0 (1)(
→

V·∇
)
→

V = −
1
ρ
∇P + ν∇2

→

V (2)

where
→

V , ν, and ρ are the fluid velocity, kinematic viscosity, and density, respectively.
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A dye-water solution and water enter inlets 1 and 2, respectively. Mass transport occurs in mixing
due to diffusion and advection. Therefore, an advection-diffusion equation [24] was used to simulate
the mass transport of fluids with constant properties during mixing:(

→

V·∇
)
C = α∇2C (3)

where C and D are the concentration and diffusivity coefficients, respectively. The diffusion coefficient
was 1.2 × 10−9 m2/s. The properties of the two fluids are set to that of water at 25 ◦C (density ρ = 997
kg/m3 and viscosity µ = 0.00089 kg·m−1

·s−1). Reynolds number was defined as Re = ρUW/µ where U
is average velocity in the inlet channels.

The micromixer domain was discretized using a tetrahedral grid system. ANSYS ICEM CFD
15.0® [23] was used to generate the mesh. Due to the unstructured tetrahedral elements, it is not
possible to control the number of grid points in a specific direction. However, the average number
of grid nodes used along H (Figure 1b) was 36. The boundary conditions were specified as follows:
identical uniform velocities at the inlets, zero velocity at the walls, and zero static pressure at the outlet.
For species transport, the molar concentration fractions of the dye-water solution were assigned a
value of 1 at inlet 1 and 0 at inlet 2. Zero mass flux was employed at the channel walls.

The accuracy of the numerical results of mixing in the microchannel is sensitive to the discretization
scheme. The discretization of the advection terms usually produces artificial diffusion due to truncation
errors. The artificial diffusion cannot be fully ruled out but can be curtailed by employing certain
methods [25]. Higher-order schemes such as the third-order QUICK [26] and second-order upwind
schemes are less prone to numerical diffusion, in contrast to the first-order upwind scheme. Therefore,
the second-order high-resolution scheme [23] was chosen for the discretization of the advection terms.
A converged solution was obtained when the root-mean-square residual value of each variable was
less than 1.0 × 10−6. The distribution of species at a plane perpendicular to the streamwise direction
was used to measure the mixing capability. The variance of the mass fraction of species based on the
concept of the intensity of segregation [27] was defined as follows:

σ2 =
1
N

N∑
i=1

(ci − cm )2 (4)

where N, ci, and cm are the number of data points, the mass fraction at data point i, and the optimal
mixing mass fraction, respectively. The mixing index at the plane was derived as follows:

M = 1−

√
σ2

σ2
max

(5)

where σmax is the maximum variance over the entire data range. A higher mixing index means a higher
concentration uniformity. Therefore, for completely unmixed fluids, the mixing index is zero, while
for completely mixed fluids, the value is unity. The mixing index at the exit (Mo) was calculated on a
plane located at 6700 µm from the main channel entry.

3. Design Variables and Objective Functions

The selection of appropriate design variables that largely affect the design objectives is an important
step in the optimization process. The chosen design variables were the ratio of the width of the
dislocation to the width of the major sub-channel (w3/w1) and the ratio of the depth of the major
sub-channel to the depth of the minor sub-channel (h1/h2), as shown in Figure 1. The ranges for these
variables were selected based on a preliminary parametric study. The parameters W, H, w1, and w2
were kept constant throughout the optimization. Figure 2 shows the responses of the mixing and
pressure drop to the changes of these design variables in the reference design of the micromixer at
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Re = 20. Variations of 128.5% and 26% in the mixing index are noticed with changes in w3/w1 and h1/h2,
respectively, within the tested ranges of the design variables. Similarly, there were variations of 110.2%
and 88.5% in the pressure drop with changes in w3/w1 and h1/h2, respectively. Table 1 lists the design
variables and their ranges.
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Table 1. Ranges of design variables.

Design Variable Lower Bound Upper Bound

w3/w1 0.25 1.00
h1/h2 0.25 4.00

The objective functions for the optimization are the mixing index at the exit, mixing effectiveness,
and pressure drop through the micromixer. The pressure drop is related to the pumping power
necessary to drive the flow of mixing species and was determined as the difference between the
area-averaged pressures at the inlet and exit of the main channel. The mixing effectiveness takes into
account both the mixing index at the exit and the pressure drop in a single parameter as follows:

ME =
M0

K
(6)

where the pressure loss coefficient (K) is calculated as follows:

K =
∆P

0.5ρU2 (7)

U, ρ, and ∆P are the average inlet velocity, density, and pressure drop, respectively.
The present work suggests two different approaches to deal with two objectives, i.e., enhancing

mixing index and reducing pressure drop, in the optimization: one is to combine these two objectives
into a single-objective function and to perform a single-objective optimization, and the other is
to perform a multi-objective optimization with two objective functions related to these objectives.
Therefore, two different optimizations were performed in this work: single-objective optimization for
maximum mixing effectiveness and multi-objective optimization to find optimum solutions between
the mixing index and the pressure drop.
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The single-objective optimization uses an objective function FME based on the mixing efficiency
as follows:

FME = −(ME) (8)

The negative sign was introduced to define the optimization problem as a minimization of the
objective function. The multi-objective optimization was done using objective functions FMI and F∆P,
which were defined using the mixing index at the exit (M0) and pressure drop (∆P), respectively:

FMI = −(M0) (9)

F∆P = (∆P) (10)

The values of different objective functions attained for the reference geometry are shown in Table 2.

Table 2. Reference design and its objective function values.

Reference Design

Design Variables Objective Functions

w3/w1 h1/h2 Mixing Effectiveness, ME Mixing Index at Exit, Mo Pressure Drop, ∆P (kPa)

0.50 1.00 1.687 × 10−3 0.571 2.719

4. Single and Multi-objective Optimization Methods

Figure 3 shows the optimization process used for the single and multi-objective optimizations
based on surrogate modeling. The optimization problem was formulated as follows:

Objective functions: F(x) = [F1(x), F2(x), F3(x) . . . , Fn(x)]
Bounds of design variables: LB ≤ x ≤ UB, x ∈ R

where F(x) represents the objective functions, x is the vector of design variables, and LB and UB are
the lower and upper bounds of the design variables, respectively [28].

DOE was used to select arbitrary points in the design space to construct surrogate models.
DOE methods can be generally classified into two categories: orthogonal design and random
design. The orthogonality of a design means that the model parameters are statistically independent.
This indicates that the factors in an experiment are uncorrelated and can be varied independently.

A factorial design, represented by the orthogonality design, has some disadvantages: initially it
is usually unclear which factor is important. Since the underlying function is deterministic, there is
a possibility that some of the initial design points collapse and one or more of the time-consuming
computer experiments become useless. This issue is called the collapse problem [29]. Most classic
DOEs, including the factorial design, are only applicable to rectangular design regions. To overcome
this problem, a random design is used. A random design means that the model parameter values for
the experiments are assigned on the basis of a random process [30]. Thus, the collapse problem does
not occur with the random design. This is because if one or more factors appear not to be important,
every point in the design still provides some information regarding the influence of the other factors
on the response. In this way, none of the time-consuming computer experiments will turn out to be
useless [30].

Therefore, in the present work, LHS [31] as the random design was used to construct surrogate
models which were created to approximate the objective functions. LHS is an effective sampling
technique that uses an m × n simulation matrix where m is the number of levels (sampling points) to
be examined and n is the number of design parameters. Each of the n columns of the matrix containing
the levels, 1, 2, . . . , m, is randomly paired to form a Latin hypercube. This approach produces random
sample points, ensuring that all portions of the design space are represented. A genetic algorithm
(GA) [32] and Particle Swarm Optimization (PSO) [33] were used as searching algorithms to find the
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optimum points on the surrogate models in the design space. The MATLAB function lhsdesign was
used to obtain the design points, and maxmin was used to maximize the minimum distance between
adjacent design points [34]. LHS selected 12 design points for the two design variables, and the
objective functions values at the design points were calculated numerically, as shown in Table 3.
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Table 3. Design variables and objective function values at LHS design points.

Design Point
Design Variables Objective Functions

w3/w1 h1/h2 Mixing Index, Mo
Pressure Drop,

∆P (kPa)
Mixing Effectiveness,

ME (×10−3)

1 1.000 3.318 0.265 1.111 1.92
2 0.386 3.659 0.731 2.423 2.42
3 0.318 2.295 0.837 3.368 1.99
4 0.455 1.273 0.699 2.702 2.08
5 0.727 1.614 0.419 1.756 1.92
6 0.591 0.250 0.690 3.276 1.69
7 0.659 4.000 0.399 1.344 2.39
8 0.523 2.636 0.640 1.892 2.72
9 0.795 2.977 0.328 1.289 2.04

10 0.932 1.955 0.302 1.404 1.73
11 0.864 0.591 0.291 2.652 0.88
12 0.250 0.932 0.590 4.028 1.18

The KRG model [35] was used for surrogate modeling of the objective functions. The KRG model
is expressed by the unknown function y(x) as follows:

y(x) = f(x) + Z(x) (11)



Micromachines 2019, 10, 711 8 of 17

where x is an m-dimensional vector (for m design variables). f(x) is a known function representing the
tendency for the design space and is generally expressed as a polynomial (also called a global model).
Z(x) denotes the local deviations from the global model. In the KRG model, the local deviation at an
unknown point can be expressed using a stochastic process. The sample points are interpolated with
a Gaussian random function as a correlation function to estimate the trend of the stochastic process.
The covariance matrix of Z(x) is given by:

cov
[
Z
(
xi
)
, Z

(
x j

)]
= σ2R

[
R
(
xi, x j

)]
, i, j = 1, 2, . . . , ns (12)

where R is a correlation matrix with a spatial correlation function (SCF) and R
(
xi, x j

)
as its elements.

σ2 is the process variance, which is a scalar of the SCF that quantifies the correlation between any two
ns sampled data points xi and xj to control the smoothness of the KRG model. The Gaussian function
is the most desirable SCF when used with gradient-based optimization algorithms because it provides
a relatively smooth and infinitely differentiable surface [36].

A previous study [37] showed that PSO can find an optimal point with better performance in
a single-objective optimization than GA. On the other hand, GA is suitable for relatively complex
optimization problems such as multi-objective optimizations because it assesses various points in the
design space. Therefore, PSO and GA were used for the single- and multi-objective optimizations,
respectively. In PSO, the velocities and positions of the particles are constantly updated with the particles
that previously had the best performance [33]. GA is a random global searching technique that finds
an optimum for the fitness function by mimicking the evolutions observed in natural phenomena [32].
Based on growth and survival of the fittest, GA repeatedly searches for improved results.

MOGA was used to obtain Pareto-optimal solutions using the customized MATLAB function,
“gamultiobj” [34]. The optimization used the GA to search the Pareto-optimal solutions in a feasible
solution space bounded by the lower and upper bounds on the design variables. The function
approximations for the two objectives, FMI and F∆p, were supplied in vector form. GA uses three
main types of operation to create future generation from the current: selection, crossover and
mutations [34]. In the single-objective optimization, the superiority of a solution over other solutions
was easily determined by comparing their objective function values. However, in the multi-objective
optimization problem, the goodness of a solution was determined by the dominance. Given the
multi-objective optimization results, the non-dominated solution set of the entire feasible space is
called the Pareto-optimal set and the boundary from the Pareto-optimal set is called the Pareto-optimal
front. A solution is called non-dominated if none of the objective functions can be improved in
value without degrading some of the other objective values. The function, gamultiobj, used in the
present multi-objective optimization, was also coded to determine the dominance of solutions [38].
To identify among the Pareto-optimal solutions, these solutions were grouped into clusters using
K-mean clustering [39].

5. Results and Discussion

A mesh test was performed to find the best grid system that ensures that the numerical results do
not change upon further refinement. A mesh with 9.23 × 106 nodes was chosen as an optimum mesh in
a wide range of node numbers from 0.10 × 106 to 1.41 × 107, as shown in Figure 4. The mixing index at
the microchannel exit for the selected mesh and a finer mesh show an insignificant difference of 0.52%.

Considering the methods outlined in the ref. [25], numerical diffusion was evaluated for the
selected mesh. The numerical diffusion coefficient was 1.04 × 10−8 m2/s. Although this value is higher
than the value of the molecular diffusion coefficient, the grid on further refinement shows a negligible
change in the mixing index. This indicates that the mixing index changes negligibly with further
reduction in the numerical diffusion, because the numerical diffusion coefficient is proportional to the
mesh size. This may be caused by the dominance of chaotic advection over diffusion, and mixing is
not attributed solely to diffusion. Furthermore, based on the numerical diffusion vs. mesh density



Micromachines 2019, 10, 711 9 of 17

graph [40], the required number of nodes to achieve the numerical diffusion coefficient equal or less
than the molecular diffusion coefficient is approximately 3.41 × 108 for this problem. Considering the
computational limit, this is not possible at present.
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The accuracy of the numerical simulation was verified by comparing the results with experimental
data from Li et al. [16], as shown in Figure 5. The numerical plot of the dye mass fraction rendering of the
micromixer was compared with the optical image of the dye mass fraction at Re = 80. There is acceptable
agreement between the two concentration distributions, which validates the numerical approach.
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Table 4 shows the results of the single-objective optimization for the mixing effectiveness.
The numerical results at the optimal design indicate an improvement of 58.9% in the mixing effectiveness
compared to the reference design. This indicates an enhancement of 3.7% in the mixing index at the
exit and a reduction of 34.8% in the pressure drop in comparison to the reference design as a result of
the optimization. The optimum design was obtained for w3/w1 = 0.532 and h1/h2 = 3.067, which are
close to the middle range and upper bound, respectively. The surrogate model predicts the mixing
effectiveness with a relative error of 2.5% in comparison to the numerical result with the optimal design.

Table 4. Single-objective optimization for maximum mixing effectiveness (ME).

Design Variables Surrogate Prediction Numerical Analysis % Error

w3/w1 h1/h2 ME Mo ∆P (kPa) ME ME

0.532 3.067 2.750 × 10−3 0.592 1.772 2.681 × 10−3 2.50

Figure 6 shows a comparison of the mixing effectiveness in the axial direction for the reference and
optimum micromixers. The mixing effectiveness was calculated on the y-z planes located after each
mixing unit and at the exit (x/Lt = 0.23, 0.41, 0.62, and 1). The mixing effectiveness is almost constant
along the length of the optimized design, while it increases in the reference geometry. The optimum
design shows much higher mixing effectiveness than the reference design over the entire length of
the micromixer.
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Following the procedure in Figure 3, a multi-objective optimization was performed to find the
Pareto-optimal solutions, as shown in Figure 7. The figure shows optimal compromises between
the pair of conflicting objective functions: FMI and F∆P. The concave feature of the Pareto-optimal
front signifies that a gain in the mixing index occurs at the expense of a higher pressure drop.
Each design corresponding to a solution on the Pareto-optimal front is a universally best design.
Therefore, Pareto-optimal solutions provide a choice for the selection of the preferred combination of
objective functions.



Micromachines 2019, 10, 711 11 of 17

Micromachines 2019, 10, x 10 of 17 

 

Table 4. Single-objective optimization for maximum mixing effectiveness (ME). 

Design Variables Surrogate Prediction Numerical Analysis % Error 

w3/w1 h1/h2 ME Mo ΔP (kPa) ME ME 

0.532 3.067 2.750 × 10−3 0.592 1.772 2.681 × 10−3 2.50 

Figure 6 shows a comparison of the mixing effectiveness in the axial direction for the reference 

and optimum micromixers. The mixing effectiveness was calculated on the y-z planes located after 

each mixing unit and at the exit (x/Lt = 0.23, 0.41, 0.62, and 1). The mixing effectiveness is almost 

constant along the length of the optimized design, while it increases in the reference geometry. The 

optimum design shows much higher mixing effectiveness than the reference design over the entire 

length of the micromixer. 

 

Figure 6. Developments of mixing effectiveness along the length of the reference and optimum 

micromixer designs (single-objective optimization). 

Following the procedure in Figure 3, a multi-objective optimization was performed to find the 

Pareto-optimal solutions, as shown in Figure 7. The figure shows optimal compromises between the 

pair of conflicting objective functions: FMI and FΔP. The concave feature of the Pareto-optimal front 

signifies that a gain in the mixing index occurs at the expense of a higher pressure drop. Each design 

corresponding to a solution on the Pareto-optimal front is a universally best design. Therefore, 

Pareto-optimal solutions provide a choice for the selection of the preferred combination of objective 

functions. 

 

Figure 7. Pareto-optimal solutions (mixing index vs. pressure drop) obtained by multi-objective
optimization.

Five symbolic Pareto-optimal designs (PODs) were selected for analysis in terms of the two
conflicting objective functions. These designs are marked on the Pareto-optimal curve in Figure 7 and
listed in Table 5. POD 1 and POD 5 located at the extremes of the Pareto-optimal curve are mixing
index-oriented and pressure drop-oriented designs, respectively. The fulfillment of one objective
function causes deterioration in the competing objective function. The mixing index-oriented design is
closer to the lower and upper limits of the design ranges for w3/w1 and h1/h2, respectively.

Table 5. Results of multi-objective optimization for selected Pareto-optimal designs (PODs).

Selected POD
Design Variables Surrogate Prediction Numerical Analysis

w3/w1 h1/h2 Mo ∆P (kPa) Mo ∆P (kPa)

1 0.307 2.797 0.854 3.234 0.848 3.425
2 0.373 2.914 0.809 2.709 0.788 2.674
3 0.450 3.046 0.713 2.159 0.694 2.124
4 0.572 3.137 0.548 1.620 0.536 1.640
5 0.778 3.756 0.334 1.169 0.326 1.224

reference design 0.500 1.000 - - 0.571 2.719

The objective function values predicted by the surrogate model are compared with the numerically
calculated values for the representative PODs, as shown in Figure 8 and Table 5. The forecasted values
of PODs show good agreement with the numerically calculated values for these PODs. The maximum
relative errors in the surrogate prediction compared to the numerical results of the representative PODs
were 2.7% and 5.9% for the mixing index at the exit and the pressure drop, respectively. The numerical
result of POD 1 shows that a maximum improvement of 48.5% in the mixing index is achieved with
POD 1 compared to the reference design. Similarly, a maximum reduction of 55.0% in pressure drop is
achieved with POD 5 compared to the reference design.

The literature studied indicates that single-objective and multi-objective optimizations have
been carried on different micromixers but not compared. However, in this study, the comparison of
results between single- and multi-objective optimizations of the micromixer indicates that the mixing
index improvements achieved by the multi-objective optimization are higher than the single-objective
optimization. Also, the pressure drop achieved by the multi-objective optimization is lower than the
single-objective optimization result. Hence, the multi-objective optimization is more suited to the
optimization of the micromixer performance.
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The dye concentration distributions are plotted on transverse planes along the length of the
micromixer (x/Lt = 0, 0.23, 0.41, and 1) for a qualitative comparison of the mixing between POD 1 and
POD 5, as shown in Figure 9. Greater distortion of the fluid interfaces is observed for POD 1 due to
the enhanced stretching and folding process, which extends the interfacial contact area for diffusion
and thereby establishes a more uniform concentration distribution at a much shorter axial length than
POD 5.
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The flow structure responsible for the dissimilar mixing qualities in POD 1 and POD 5 were
investigated using the 3D streamlines of the fluids entering from the two inlets shown in Figure 10.
The fluids from the two inlets come into contact at the T-joint. Distinct disparity in the streamlines is
observed at the splitting of the flow. At the second joint, the flow from a single inlet splits into the
major and minor sub-channels of the second mixing unit in POD 1, but most of the flow from the
first major sub-channel passes through the second major sub-channel only in POD 5. The splitting
of the flow into the two sub-channels in POD 1 causes increased stretching and folding of the fluid
interface in the collision zone, as shown in Figure 10. The flipping of streamlines and flow circulation
are not presented in POD 5, but are observed in the major sub-channels of POD 1, which accelerates
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the mixing. In addition, the smaller flow area at the dislocations of POD 1 than in POD 5 increases the
local flow velocity, which also enhances the flow perturbation and thereby aids in mixing.
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The mixing capability of POD 1 is compared with that of the reference design at different Reynolds
numbers, as shown in Figure 11. Both the reference micromixer and POD 1 achieve a mixing index
over 0.90 at the exit for higher Reynolds numbers (Re = 60, 80, and 100). However, POD 1 achieves
this mixing index at a much shorter length. Therefore, the mixing index at the end of the second
mixing unit (x/Lt = 0.41) was chosen for comparison instead of the exit to clarify the improvement in
the mixing. POD 1 shows better mixing capability than the reference design at all Reynolds numbers.
This design shows improvements of 77.8% and 26.2% in the mixing index at Reynolds numbers of 30
and 40, respectively.
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reference design.

The mixing effectiveness (ME) [41], mixing cost (MC) [42], and mixing energy cost (MEC) [43,44]
have been used as performance parameters in the literature to evaluate micromixers. Higher mixing
effectiveness and MC and a lower value MEC represent better micromixer performance. The expressions
for the MC and MEC can be written as follows:

mixing cost =
η

∆P
(13)
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mec =
Cp

η
(14)

where ∆P, Cp, and η denote pressure drop, mean input power coefficient, and mixing efficiency,
respectively. Mixing efficiency and mean input power coefficient (Cp) are written as follows:

η =
(
1−

σ
σmax

)
× 100 (15)

Cp = 2∆Pq/ρV2 (16)

where σ, σmax, ρ, ∆P, q, and V are the standard deviation of the concentration, maximum standard
deviation, density of fluid, pressure drop, dimensionless flow rate, and average flow velocity,
respectively. The performance parameters of the representative PODs were compared with those
of three previous micromixers involving unbalanced collisions, as shown in Table 6. All the PODs
outperform the previous micromixers in terms of the mixing index at the exit, but POD 1 shows ME
and MC values that are less than or equal to all micromixers except that proposed by Xia et al. [45] due
to higher pressure drop. In the case of MEC, all the PODs except POD 1 and POD 5 show lower values
than those of the previous micromixers. POD 4 shows the best values for ME, MC, and MEC among
all the micromixer designs. This micromixer design shows 315%, 37%, and 38% higher values of the
mixing index, ME, and MC than the lowest values shown by the other micromixer designs, respectively.

Table 6. Comparison of performance parameters among symbolic PODs and previous micromixers
based on unbalanced collisions.

Parameters
PODs Ansari and

Kim * [13]
Xia et al. *

[45]
Li et al. *

[16]1 2 3 4 5

Mixing index 0.848 0.788 0.694 0.536 0.326 0.178 0.129 0.229
∆P (Pa) 3425 2674 2125 1640 1224 658 538 907

ME (×10−3) 1.99 2.37 2.62 2.63 2.14 2.17 1.92 2.03
MC (×10−3) 0.25 0.29 0.32 0.33 0.27 0.27 0.24 0.25

MEC 3.35 2.82 2.54 2.53 3.11 3.07 3.47 3.29

* calculated values for three mixing units.

6. Conclusions

Single and multi-objective optimizations of a 3D-ASAR micromixer were performed at
Reynolds number of 20, using surrogate modeling in conjunction with mixing and flow analyses.
The optimizations were carried out with two dimensionless design variables, w3/w1 and h1/h2.
The mixing effectiveness was selected as a single-objective function, while both the mixing index at the
exit and pressure drop across the micromixer were chosen for the two-objective optimization. The KRG
model was selected to generate the surrogate of the objective functions.

The parametric study demonstrated that the mixing index at the outlet shows non-monotonic
behavior and has maxima, but the pressure drop shows a monotonically decreasing behavior for the
two design variables. An improvement of 58.9% in the mixing effectiveness was obtained in comparison
to the reference design by the single-objective optimization. This enhancement corresponds to a 3.7%
rise in the mixing index at the exit and a 34.8% decrease in the pressure drop in comparison to the
reference design. The surrogate prediction error for the single-objective optimization was estimated to
be 2.5%.

The reciprocity between the two objective functions represented by the Pareto-optimal front
for the multi-objective optimization was obtained by employing surrogate modeling and MOGA.
The numerical analysis of five representative PODs indicated a maximum improvement of 48.5% in
the mixing index for a mixing index-oriented design (POD 1) and a maximum reduction of 55.0% in
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the pressure loss for a pressure drop-oriented design (POD 5) in comparison to the reference design.
On the other hand, POD 4 showed the best values for ME, MC, and MEC among all the micromixer
designs, including three previous micromixers involving unbalanced collisions. The surrogate model
predicted the mixing index and pressure drop with maximum relative errors of 2.7% and 5.9%,
respectively. There were low percentages of improvement in the mixing index and the reduction in the
pressure drop by the single-objective optimization in comparison to the multi-objective optimization,
which indicates that the multi-objective optimization is much more favorable for improvement of the
micromixer performance.
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Nomenclature

c mass fraction
D diffusion coefficient (m2/s)
FBFS forward- and backward-facing steps
h1 depth of major sub-channel (µm)
h2 depth of minor sub-channel (µm)
H total depth of main channel (µm)
KRG Kriging model
LHS Latin hypercube sampling
Li length of initial part of main channel (µm)
Le exit channel length (µm)
Lt total length of the micromixer (µm)
M mixing index
M0 mixing index at the exit
MC mixing cost
ME mixing effectiveness
MEC mixing energy cost
MOGA multi-objective genetic algorithm
N number of sampling points
P pressure drop (Pa)
Pi pitch length (µm)
POD Pareto-optimal design
POF Pareto-optimal front
PSO particle swarm optimization
Re Reynolds number
SAR split and recombine
U average inlet velocity (m/s)
V average velocity in main channel (m/s)
W width of main channel (µm)
w1 width of major sub-channel (µm)
w2 width of minor sub-channel (µm)
w3 width of dislocation (µm)
x, y, z Cartesian coordinates
Greek Symbols
α fluid diffusivity coefficient (m2/s)
µ fluid dynamic viscosity (kg·m−1

·s−1)
ν fluid Kinematic viscosity (m2/s)
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ρ fluid density (kg/m3)
σ standard deviation
Subscripts
i sampling point or fluid component
m optimal mixing
max maximum value
x axial distance
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