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Abstract

Sleep staging is the basis of sleep evaluation and a key step in the diagnosis of sleep-

related diseases. Despite being useful, the existing sleep staging methods have several dis-

advantages, such as relying on artificial feature extraction, failing to recognize temporal

sequence patterns in the long-term associated data, and reaching the accuracy upper limit

of sleep staging. Hence, this paper proposes an automatic Electroencephalogram (EEG)

sleep signal staging model, which based on Multi-scale Attention Residual Nets (MAResnet)

and Bidirectional Gated Recurrent Unit (BiGRU). The proposed model is based on the resid-

ual neural network in deep learning. Compared with the traditional residual learning module,

the proposed model additionally uses the improved channel and spatial feature attention

units and convolution kernels of different sizes in parallel at the same position. Thus, multi-

scale feature extraction of the EEG sleep signals and residual learning of the neural net-

works is performed to avoid network degradation. Finally, BiGRU is used to determine the

dependence between the sleep stages and to realize the automatic learning of sleep data

staging features and sleep cycle extraction. According to the experiment, the classification

accuracy and kappa coefficient of the proposed method on sleep-EDF data set are 84.24%

and 0.78, which are respectively 0.24% and 0.21 higher than the traditional residual net. At

the same time, this paper also verified the proposed method on UCD and SHHS data sets,

and the figure of classification accuracy is 79.34% and 81.6%, respectively. Compared to

related existing studies, the recognition accuracy is significantly improved, which validates

the effectiveness and generalization performance of the proposed method.

1 Introduction

More than a third of a person’s day is spent in sleep, sleep plays a vital role in the balance of

physiological function. Sleep staging is the basis of sleep quality assessment, and the accuracy

and convenience of sleep staging are the key factors in the diagnosis of sleep-related diseases

[1]. At present, the medical analysis of sleep state is mainly by reading the information of Poly-

SomnGram (PSG) for sleep stage interpretation. During the whole night sleep, various signals

of the human body will show different characteristics with the change of sleep state. According
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to the change of signal characteristics, the sleep process can be divided into several sleep stages,

corresponding to the change of sleep state. In the General Rechtschaffen & Kales (R&K)

Guidelines [2], all night’s sleep is mainly divided into Wake stage (W), Rapid Eye Movement

stage (REM) and S1, S2, S3 and S4. The American Academy of Sleep Medicine suggests that

both S3 and S4 are in deep sleep, which merged S3 and S4 into Slow wave Sleep stage (SS) [3].

At present, there are two sleep stages in the field of sleep medicine. One is the classification

of manual sleep periods by scholars, which takes hours to observe and analyze. The other is

automatic sleep staging, which is the current mainstream research method. In the initial stage

of sleep staging research, EEG can only be divided into various sleep stages by experts. This

work is not only time-consuming and cumbersome, but also prone to subjective errors [4].

Such studies have employed algorithms such as decision trees [5–9], support vector machines

[10–13], Markov models [14, 15], and neural networks [16, 17], which operate on combina-

tions of the traditional multi-channel PSG biometrics to provide algorithmic and automated

assessment of a patient’s underlying sleep architecture. How to solve the tedious and time-con-

suming problems of manual calibration method and effectively improve the accuracy of sleep

staging has become a research hotspot of experts around the world.

With the development of deep learning, several studies have attempted to develop an auto-

matic sleep staging model based on deep learning. A convolutional neural network framework

based on joint classification and prediction is proposed in literature [18], which can automati-

cally extract sleep features from raw data, but the experimental results are still not as good as

high-level classification models based on feature engineering at the same time. Then the

framework of recurrent neural network is improved, and the end-to-end hierarchical recur-

rent neural network model for automatic sleep staging of sequence pairs is established, and

good staging results are achieved [19, 20], However, there are limitations on the sleep data

with small-scale imbalanced categories, and the classification accuracy has great room for

improvement. In order to improve the effect of sleep staging, Jia Ziyu et al. used parallel convo-

lution network to automatically learn the original EEG features, and then used empty convolu-

tion and residual link to fuse features [21]. Later, some scholars applied Recurrent Neural

Networks (RNNs) in biological signal processing, and achieved good results. Supratak et al.

[22] applied RNNs on sleep staging research, which has good effect but can improve the space

greatly. However, RNNs has defects in processing long sequences, so LSTM came into being.

Luo et al. [23] applied LSTM to sleep stages recognition of EEG signals. Kuo et al. [24] pro-

posed an automatic sleep stage scoring combining the techniques of data augmentation,

ensemble convolutional neural network (CNN), and expert knowledge. In addition, residual-

like fusion structure is used to append the attention map to the input feature map for adaptive

feature refinement [25]. The accuracy of sleep staging has been greatly improved. Feng et al.

[26] proposed an automatic sleep staging algorithm based on the time attention mechanism.

This approach reduces computing resources and time costs. In 2021, Altini Marco et al. [27]

comprehensively analyzed the influence of accelerometer, peripheral signal mediated by auto-

nomic nervous system (ANS) and circadian rhythm characteristics on the detection of sleep

stage of large data set, making the accuracy of sleep stage reached 79%. Its limitations are how-

ever ecological validity is limited by wearing reference PSG, which can be a disruption in the

participant’s typical sleep patterns. In 2021, Huttunen et al. [28] used CNNs to stage EEG sig-

nals. But the model had a weak ability to learn the relationship between sleep fragments, with a

recognition rate of 68.7%. Casciola et al. [29] built a CNN-LSTM network model for sleep stag-

ing, lacking the access to important information and multiscale extraction of features. In 2022,

You Yuyang et al. [30] came up with a novel method for automatic sleep stage classification

based on the time, frequency, and fractional Fourier transform (FRFT) domain features

extracted from a single-channel electroencephalogram (EEG). Although this method achieves
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a certain effect on sleep staging of EEG signals on sleep-EDF data set, the classification accu-

racy (81.6%) is still 2.64% lower than the method proposed in this paper. The drawbacks of

this method are that it only extracts the features of a single channel and does not fully extract

the sleep features of multiple channels.

Considering the above-given factors, this paper provides a detailed review of the residual

network, which is proven to be effective in sleep staging. As a result, we propose an EEG-based

sleep signal staging model using Multi-scale Attention Residual Nets (MAResnet) and a Bidi-

rectional Gated Recurrent Unit (BiGRU) network. This study have proposed three innovations

as follows:

Firstly, in order to highlight the characteristics of EEG sleep sequence, channel feature

attention unit and spatial feature attention unit are added to the residual module, while the

ReLU activation function is replaced by the extended exponential linear unit activation func-

tion to construct the residual spatial channel attention module. This plays a key role in identi-

fying different sleep periods, since it can fully learn the importance of different channel

characteristics and the correlation between characteristics.

Secondly, convolution kernels of different sizes were used in parallel at the same spatial

position. The shortcomings of the single-size filter extraction were mitigated, which allowed us

to obtain the multi-scale EEG sleep feature output and fully excavate the intrinsic sleep infor-

mation of the EEG signal.

Thirdly, given the limited learning capability of the sleep cycle characteristics caused due to

the traditional algorithm’s inability of identifying timing patterns in the long-term correlation

data, a BiGRU network was introduced to analyze the timing information in detail.

The improved model has stronger learning ability for features, which can fully excavate

more intrinsic features, identify the temporal pattern of long-term association data, and effec-

tively improve the accuracy of sleep staging model. Experimental results show that the

improved model has better classification performance.

2 Theoretical analysis

2.1 Residual neural net

The convolutional neural network has a wide range of applications in the field of image classi-

fication and target recognition, from 5 layers of the convolution of original Lenet to 19 layers

of convolution of VGG -19. The recognition effect and depth of this network are closely

related. Networks such as VGGNet and GoogLeNet both indicate that having enough depth is

a prerequisite for the model to perform well, but when the network depth increases to a certain

extent, deeper networks mean higher training errors. The reason for the increase of error is

that the deeper the net, the more prone to gradient dispersion. Generally speaking, the depth

of convolutional network is easy to appear the gradient attenuation problem of shallow hidden

layer, which increases the difficulty of training. In this paper, the residual network is selected

as the basic network to improve. Residual network can effectively alleviate the problem of gra-

dient attenuation.

The principle of Residual Networks (ResNet) is as follows. If the x is input to a neural net, it

is expected to output as function H(x). From the diagram, the desired output of the underlying

mapping is to determine the residual function fitting a given layer, H(x) is the desired underly-

ing mapping description. To ensure that the depth increases while the network does not

degenerate, y = x layers need to be superimposed on the shallow net. The input x is transmitted

and output in the corresponding ’ jump connection ’ mode, and the corresponding result is

H(x) = F(x) + x. Under F(x) = 0, this relation is simplified to H (x) = x. The relation is the
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specific analysis shows that in jump connection mode, computational complexity and addi-

tional parameters do not increase.

This is equivalent to ResNet changing the learning goal, corresponding to the difference

between H (x) and x. In the subsequent training process, the goal to be achieved is to reduce

the residual error as much as possible to make it zero, which shows that the accuracy of the

output results does not decrease after the network depth increases. For an optimized identity

map, the comparison and analysis show that the processing difficulty of setting the residual dif-

ference "0" is obviously lower than that of fitting the identity map through complex nonlinear

layers.

After introducing "jump connection", the gradient returns to the shallow layer through "1",

which can avoid gradient dispersion and effectively deal with the network degradation prob-

lem after depth increase. This does not introduce additional parameters, so learning to find

identity maps significantly reduces the difficulty. The following formula is the expression cor-

responding to the structure of the residual learning block in Eq (1).

F xð Þ ¼W2sðW1xÞ ð1Þ

where σ is a nonlinear function ReLU, connecting to the next ReLU by shortcut and outputting

y after calculation.

Y ¼ Fðx; Wif gÞ þ x ð2Þ

When the dimension of input and output changes, X linear transformation is implemented

based on "jump connection", and Ws is processed to match the dimensions. The expression is

as follows:

Y ¼ Fðx; Wif gÞ þWsx ð3Þ

The number of layers of the residual block should be higher than two, and the residual

block can not meet the lifting requirements when the residual block is one layer. The residual

structure can be simply written as follows.

xlþ1 ¼ xl þ Fðxl;WlÞ ð4Þ

In the formula, xL is the characteristic of any deep element L and xl is the characteristic of

shallow element l. Through recursion, when the depth of element L is any value, its characteris-

tic xL can be obtained by the sum of the characteristic xl of the shallow element l and the resid-

ual function
XL� 1

i¼l
F.

xL ¼ xl þ
XL� 1

i¼l

Fðxi;WiÞ ð5Þ

2.2 Bi-directional gated loop unit network

Sleep data contain a lot of time sequence information, so we can use cyclic neural network to

learn the time information in EEG signal and give the result of sleep cycle judgment. The cyclic

neural network is improved to adapt each cycle unit to the dependence of different time scales,

and the gate recurrent unit network (GRU) is obtained. Fig 1 shows the GRU structure. The
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parameters can be updated by Eq (6).

rt ¼ s Wrxt þ Urht� 1ð Þ

zt ¼ s Wzxt þ Uzht� 1ð Þ

~ht ¼ tanh Wxt þ U rt; ht� 1ð Þð Þ

ht ¼ 1 � ztð Þht� 1 þ zt; ~ht

ð6Þ

In the formula, Wr,Wz, W, Ur, Uz, and U respectively represent the weight matrix of GRU,

σ is a logical sigmoid function, and zt represents the update gate, which can determine the

update degree of the GRU unit’s activation value. The rt represents the reset gate, whose update

process is similar to that of zt. The ~ht represents the candidate hidden layer and ht represents

the hidden layer.

However, GRU is a one-way neural network algorithm, in which all state transmissions are

carried out in one direction. In the process of equipment failure prediction, we introduce

BiGRU, considering that the output of the current time is related to the state of the previous

and subsequent moments. The BiGRU neural network model is determined by the state of two

GRUs, which are unidirectional in the opposite direction. This means that for each time point

in a given sequence, BiGRU has complete sequence information about all the time points

before and after it. The parameters can be updated by Eq (7).

zt ¼ ~ht �

~

ht

~ht ¼ GRU xt; ht� 1

� !
� �

~

ht ¼ GRU xt; htþ1

 �
� �

ð7Þ

It can be seen that the hidden layer state of BiGRU in time is determined by the current

Fig 1. GRU structure.

https://doi.org/10.1371/journal.pone.0269500.g001
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input xt, forward hidden layer state and backward hidden layer state, where� indicates the

operation to connect two vectors. In this paper, BiGRU is introduced into the network when

processing EEG time series data. The model structure of BiGRU is shown in Fig 2.

In Fig 2, X1, X2, Xt are time series data, the output is divided into two states, ~ht , ht are

positive and reverse hidden states. BiGRU can process sleep information from two directions

through two completely independent GRUs, which can better mine information in two-way

time structure.

3 Attention mechanisms

3.1 Model principles

The attention model is essentially a set of weight coefficients independently learned through

the network, which emphasizes the region of interest in a "dynamic weighting" manner while

inhibiting the mechanism of unrelated background regions. The correlation degree between

different features and the important information of each channel is not the same, which needs

to reflect the different characteristics of different channels and the degree of relevance of

important information. Hence, this paper introduces the attention model into sleep recogni-

tion research and thus constructs a channel attention unit (CAU). The CAU is for the direct

processing of the information in a channel, which may ignore the information interaction in

space. To this end, a spatial attention unit (SAU) is constructed. The SAU is for the equal treat-

ing of features in each channel, which may ignore the information interactions between the

channels. Therefore, the CAU and SAU are added to the original residual module in this paper

to construct the residual attention module, which plays a key role in identifying different sleep

states.

3.2 CAU mechanism

Essentially, the internal mechanism of the channel feature attention unit represents a degree of

similarity. The closer the input to the target is, the higher the weight is, and the more relevant

Fig 2. Two-way GRU structure.

https://doi.org/10.1371/journal.pone.0269500.g002
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the state of the input is to the output. In this paper, the maximum and average pooling meth-

ods are used to process the input information. Thus, the feature vectors, Xavg and Xmaxmax,

are obtained after maximum and average pooling. As shown in Fig 3, the CAU first integrates

the input data according to the direction of the time sequence. Then, the Multilayer Percep-

tron (MLP) calculates Xavgavg and Xmaxmax, and obtains two new feature vectors. Here, the

required channel feature weight vectors can be obtained by summing the elements one by one.

Finally, the channel feature weight vector is multiplied by the input feature vector to obtain the

input feature required by the spatial attention unit. The number of neurons in the input and

output layers of the MLP neural network corresponds to the number of input characteristic

channels. That is mainly used to construct the contribution degree of Xavg and Xmax input

channel characteristic information.

CAU formula is shown in Eq (8).

MðXÞ ¼ dðMLPðAvgpoolðXÞÞ þMLPðMaxPoolðXÞÞÞ

¼ dðW1ðW0ðXavgÞÞ þW1ðW0ðXmaxÞÞÞ
ð8Þ

where W0 2 RC/r×C and W1 2 RC/r×C are the weights between the input layer and the output

layer with the hidden layer, and Xavg 2 R1×C and Xmax 2 R1×C are the eigenvectors obtained

after representing the average pooling and the maximum pooling, δ is Sigmoid activation func-

tions, and the output is limited between 0 and 1.

3.3 SAU mechanisms

The spatial feature attention unit takes the feature map output by the channel attention mod-

ule as the input feature map of this module. Firstly, a maximum pooling and average pooling

of the feature graph based on the channel attention module output are performed to obtain the

feature vectors Lmax and Lavg. Then, Lmax and Lavg are merged, after which convolution fea-

ture fusion is performed. Then, the feature weight vector is obtained by Sigmoid function and

Fig 3. CAU mechanisms.

https://doi.org/10.1371/journal.pone.0269500.g003

Fig 4. SAU mechanisms.

https://doi.org/10.1371/journal.pone.0269500.g004
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multiplied by the input feature vector to obtain the final attention feature. The underlying

mechanism of the SAU is shown in Fig 4.

SAU formula is shown in Eq (9).

MðLÞ ¼ s f 7�7ð½AvgPoolðLÞ;MaxPoolðLÞ�Þð Þ

¼ s f 7�7 Lavg ; Lmax

h i� �� � ð9Þ

where, δ is the Sigmoid activation function, the output is between 0 and 1, Xavg 2 R1×C and

Xmax 2 R1×C represents the vector obtained after average pooling and maximum pooling.

3.4 Improved residual attention module

Traditional ResNets do not learn the key features, i.e., they neither learn the relevance and

importance of different features in each input channel nor the relevance and importance of

different channel features. To address this issue, this paper improves the traditional residual

module. The CAU and SAU introduced in Sections 3.2 and 3.3 are added to the traditional

residual module so that they can learn the correlation relationship and the degree characteris-

tics of different channels, which play a key role in identifying different sleep states. To stan-

dardize the data batch and speed up the training, Batch Normalization layers are added after

each convolutional layer in the residual module. The Relu activation function having the

advantage of unilateral inhibition is adopted, and a new module called residual space channel

attention module (RSCAM) is created, as shown in Fig 5.

3.5 Build MAResnet-BiGRU network model

In the original residual net, the convolutional kernels are all 1×3 of size, and they struggle with

analyzing data comprehensively due to the scale constraints. If a single-size filter is selected

when extracting the features of the EEG sleep signal, the results will be quite limited. Hence, it

is difficult to obtain more input features, and the convolutional kernels cannot meet the input

diversity requirements. However, if multiple kernels of different sizes are used in the same

module layer during feature extraction, the robustness to the changes in the EEG sleep signal

can be enhanced. Thus, this paper improves the original residual neural network and estab-

lishes a MAResnet, where the EEG signal can pass through, to obtain the specific characteris-

tics of the timing signal and the information carried. Since the characteristics obtained in this

process are in the form of time series, it is necessary to make a detailed and comprehensive

analysis of them by establishing a model. Fig 6 illustrates the schematic diagram of the pro-

posed MAResnet-BiGRU model.

To improve the expression ability of the EEG signal in the convolution layer, the convolu-

tion kernel should be used to extract the sleep characteristics of the EEG signal at different

scales. In the improved network model, the improved residual attention module proposed in

Section 3.4 is added to the residual net. The first layer uses a standard convolution layer with a

convolution kernel size of 1×7. After the convolution calculation of the first layer, the maxi-

mum pool processing of 1×3 is performed. Next, the convolution kernels of sizes 1×3, 1×5,

and 1×7 are used in parallel in the residual attention module. In the neural network at each

scale, the number of convolution kernels in the residual attention module is set to 64, 128, 256,

and 512. Each convolution kernel corresponds to the scale of output, sharing the same convo-

lution kernel parameters and so the convolution of a scale. They check the EEG signals’ pro-

cessing characteristics, which form the electrical characteristics of the three scale output types.

Hence, by achieving the goal of multi-scale study, they can make convolution layer "observa-

tion" sleep EEG signals from multiple scales, so that the inherent characteristics of sleep can
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more fully tap EEG signals. One of the important factors in determining the classification

effect is the depth and parameter quantity of the neural network model. However, this study

does not use local max and average pooling operations to reduce the calculation of parameters

and avoid overfitting. Instead, the global average, the local maximum, and the average pooling

operations make each feature map get a corresponding value. Thus, the output dimension of

the neural network at each scale is 1×512.

After improving the residual net, we can obtain the specific characteristics of the timing sig-

nal and the information carried. Since the characteristics obtained in this process are in the

form of time series, we need to perform a comprehensive analysis of them by building a

model. The BiGRU introduced in Subsection 2.2 is added to the network model and the tanh

Fig 5. RSCAM overall module.

https://doi.org/10.1371/journal.pone.0269500.g005
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function is selected as its activation function. Finally, the fusion feature is used as the input of

the full connection layer, and the dropout mechanism is added after that. This can effectively

avoid overfitting occurring due to memory training set samples, which negatively affect the

network performance. The regularization method of the dropout is to discard the nodes with a

random selection probability of p p in a certain layer of the network and a certain iteration

during the training process, and then continue discarding process in the next iteration. That

helps to obtain a model with good generalization ability until the end of the training.

4 Experimental design and verification

4.1 Data sources and preprocessing

To evaluate the performance of MAResnet-BiGRU, three datasets are used in the experiments-

Sleep-EDF data set, UCD data set and SHHS data sets.

Sleep-EDF data set [31, 32]. The data set contains polysomnography of 20 healthy subjects

PSG, each recorded approximately 20 h long. All EEG signals have the same sampling fre-

quency of 100 Hz, and the signals are divided into 30 s each segment. According to R&K

guidelines, the experts manually labeled the data as W, S1, S2, S3, S4 and REM stages. This

paper combined the S3 stage and N4 stage of R&K sleep standard into the same stage as the S3

stage according to the standard of sleep. Table 1 lists the classification results of sleep experts

on Sleep-EDF dataset. According to the staging of the Sleep-EDF dataset, the sample category

of the experimental dataset is unbalanced. The proportion of samples in S2 sleep stage and S1

sleep stage is about 6:1. The number of samples in S2 sleep stage accounts for 42.43% of the

total sample, and the remaining four sleep stages account for 57.57% of the total sample.

Fig 6. Overall structure of the model.

https://doi.org/10.1371/journal.pone.0269500.g006
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UCD data set [31]. Provided by St Vincent University Hospital / Dublin University College

sleep apnea database, The data set is composed of 25 patients’ overnight PSGs, and the sam-

pling rate includes 128 Hz. After removing the records containing unmarked data, 20 over-

night PSGs are finally selected.

SHHS data set [33, 34]. The data set is from the National Heart Lung & Blood Institute

which is aiming to study sleep disordered breathing. 5445 records are involved. Each record

has 14 polysomnography (PSG) channels and the signal acquisition frequency is 125.0 Hz. In

this experiment, C3 / A2 and C4 / A1 EEG channels are adopted.

In experiments, there are usually a small number of error labels in the sample, which will

affect the effect of prediction. At this point, we introduce label smoothing to solve this prob-

lem. In the sample, if some labels are wrong, then at the time of training, the sample may have

a negative impact on the training results. But if we have a way to "tell" the model that the label

of the sample is not necessarily correct, then the model will be trained to exclude a small num-

ber of "bad samples" self-identification. In the multi-class training experiment, the positive

sample in the label category of a given data set is set to 1 and the negative sample is set to 0,

and the vector is shown in Eq (10).

Pi ¼
1; if ði ¼ yÞ

0; if ði 6¼ yÞ

(

ð10Þ

The real category of y as the target and the i is one of the multiple categories. This leads the

model to believe too much in the predicted category, and when the data is incorrectly labeled,

the training results are biased. At the same time, when the distribution of data is uneven, too

much dependence on a large number of labels will lead to overfitting. Therefore, the label

smoothing method is used to change the real probability distribution of labels to Eq (11):

Pi ¼
1 � ε; if ði ¼ yÞ

ε
k � 1

; if ði 6¼ yÞ

8
<

:
ð11Þ

The k is the total classification category, the ε is the error rate, and the probability of 1-ε of

the new label after randomization is the same as that of the original label.

In network training, the optimal prediction probability distribution is as follows:

Zi ¼
log
ðk � 1Þð1 � εÞ

ε
þ a; if ði ¼ yÞ

a; if ði 6¼ yÞ

8
<

:
ð12Þ

Where α can be any real number. Therefore, in the training of network model, the addition of

label smoothing can suppress the phenomenon of overfitting to a certain extent, increase the

generalization ability of the network in this paper, and improve the classification effect.

Table 1. Sleep -EDF sleep staging.

index quantity Proportion

W 7927 18.90

S1 2804 6.68

S2 17799 42.43

S3 5703 13.59

REM 7717 18.40

https://doi.org/10.1371/journal.pone.0269500.t001
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4.2 Assessment/ classification experiments

The experimental environment of this paper is: Pytorch open source deep learning framework

in python3 environment under Inter (R) Core (TM) i5-3317U-CPU-GTX1080Ti, 64bit, Win-

dows 10 system. To verify the feasibility of the MAResnet-BiGRU net, the model proposed in

this paper was applied to the Sleep-EDF data set, UCD data set and SHHS data set to study and

analyze five sleep stages.

An optimization algorithm is required for minimizing the loss function and helping the

network model to produce the optimal results. The Adaptive moment estimation(Adam)

method returns the adaptive learning rate by using different network parameters that are more

stable. Hence, the Adam optimizer, with parameters β1 = 0.9, β2 = 0.999 and epsilon = 1e-8, is

selected. Set the initial learning rate to 0.005, the weight decay ratio to 0.1, and the batch-size

to 16. 200 epochs per training. Using the same parameters, the proposed MAResnet-BiGRU

model and the other four network models are applied to the Sleep-EDF dataset for compara-

tive analyses. The other four network models are: i) the single-scale ResNet before improve-

ment, ii) the MAResnet after improvement, ii) the improved single-scale ResNet with BiGRU

(ResNet-BiGRU), and iv) the CNN-BiGRU. The classification results were evaluated based on

the recall rate and the classification recognition rate of the total sleep cycle. The classification

training in the open-source framework PyTorch resulted in the above-given five network

models. Table 2 shows the results.

As can be seen from Table 2, under the label smoothing treatment, the sleep staging recog-

nition rate of the single-scale traditional ResNet model was lowest, only 62.20%, where the S1

stage recognition rate was even lower, only 49.32%. This can be explained by three main rea-

sons. First, all the convolution cores in the traditional ResNet are 1×3 of size in the operation

process, so the convolution layer cannot "observe" data from multiple scales. Second, although

the traditional ResNet can solve the degradation problem in the deep network to a certain

extent, it does not learn the relevance and importance of the features of different channels of

input. Third, the network cannot recognize the timing pattern in a long time associated data,

which results in a low recognition rate. The sleep cycle classification recognition rate of the

ResNet-BiGRU is 16.57% under smoothing label processing, which is higher than that of

ResNet. This implies that BiGRU can better excavate the dependence between the sleep stages

with more comprehensive preservation of the internal sleep characteristics of the EEG signals.

The overall recognition rate of MAResnet is 76.26%, i.e., more EEG sleep information can be

learned compared to the traditional ResNets on a single scale. Also, the residual attention mod-

ule is more accurate in extracting important information. The overall recognition rate of

CNN-BiGRU is 7.78%, which is lower than that of the MAResnet-BiGRU, further illustrating

the importance of the MAResnets in extracting important information. Finally, the overall rec-

ognition rate of MAResnet-BiGRU on Sleep-EDF dataset is 84.24%, and there is an increase in

recall rates for each sleep stage. Among them, the recall for the S3 stage even reaches 92.28%.

Table 2. Recall rate of each sleep stage classification under different algorithms under label smoothing on Sleep-EDF dataset.

Net model W S1 S2 S3 REM Total recognition rate

MAResnet-BiGRU 88.24% 67.2% 83.53% 92.28% 88.95% 84.24%

Resnet-BiGRU 83.37% 59.48% 79.89% 88.34% 82.77% 78.77%

CNN-BiGRU 80.12% 58.27% 77.45% 85.12% 81.34% 76.46%

MAResnet 80.34% 59.34% 76.56% 86.67% 78.39% 76.26%

CNN-GRU 76.20% 53.88% 71.30% 79.04% 77.12% 74.70%

ResNet 69.20% 49.32% 60.26% 67.38% 64.84% 62.20%

https://doi.org/10.1371/journal.pone.0269500.t002
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Compared to the above-mentioned network models, the classification recognition rate of

MAResnet-BiGRU is improved by using multiple convolution kernels of different sizes in par-

allel at the same spatial position. Then, we obtain the output of the multiscale EEG sleep fea-

tures and perform the multi-scale EEG sleep feature extraction by using the improved residual

attention module in the neural network at each scale. Furthermore, the CAU and SAU units

are added to enhance the EEG sleep characteristics associated with sleep classification by weak-

ening the nonessential EEG sleep features. Finally, using BiGRU to model and classify the tem-

poral feature information, more fully preserving the intrinsic sleep characteristics of EEG, to

improve the sleep cycle classification recognition rate. Compared with the original Resnet net-

work, the sleep staging recognition rate of MAResnet-BiGRU is increased by 22.04%. Hence,

the results reveal the effectiveness of the proposed MAResnet-BiGRU network model.

Based on the Sleep-EDF data set. Table 3 compares the state-of-the-art research with the

method proposed in this paper in terms of accuracy. In [35], single-channel EEG signals were

used to perform five classifications by the XGBoost, where the classification accuracy reached

79.7%. [36] improved the K-means clustering algorithm, and the classification accuracy

reached 72%. However, the above methods cannot achieve automatic feature extraction, and

the classification accuracy is low. Phan H et al. [37] proposed a method to discriminatively

learn a frequency-domain filter bank with a deep neural network (DNN) to preprocess the

time-frequency image features. Humayun A I et al. [38] used the automatic deep learning

method for PPG signals to evaluate sleep stages. The model has weak learning ability for the

relationship between sleep debris, and the accuracy is only 79.2%. Seo H et al. [39] applied the

convolution and long-short memory layer model to EEG sleep staging. The model lacks the

acquisition of important information in the sequence, and the accuracy is 3.64% lower than

that of the model in this paper.

Besides the sleep EDF data set, we also apply the model proposed in this paper to UCD data

set and SHHS data set. On the UCD dataset, it is can be seen from Table 4, under the label

smoothing treatment, the sleep staging recognition rate of the single-scale traditional ResNet

model was lowest, only 59.70%, where the S1 stage recognition rate was even lower, only

45.32%. The overall recognition rates for models CNN-GRU, MAResnet, CNN-BiGRU and

Resnet-BiGRU were 67.39%, 73.71%, 73.60% and 75.75%, respectively. The overall recognition

rate of MAResnet-BiGRU on UCD dataset is 79.34%, and are higher than other models. In

addition, the UCD data set is collected from patients with sleep diseases, so the accuracy of

sleep classification is lower than that of sleep-EDF data set, which reflects the difficulty of sleep

staging for patients with sleep diseases.

This model is also used in the SHHS data set. Table 5 compares the state-of-the-art research

with the method put forward in this paper in terms of accuracy. As can be seen from Table 5.

the overall recognition rate with this method on SHHS data set is 81.6%, higher than that of

other models. Among all the comparison models, the classification accuracy of ResNet model

Table 3. The experimental results of Sleep-EDF data set are compared with the existing research results.

Number of output channels Method Author Accuracy

1 XGBoost Guo Yanping 79.7%

1 K mean Yu Ying et al 72%

1 CNNs Phan H et al 82.6%

1 Residual CNNs Humayun et al 79.2%

1 Residual CNNs+BiLSTM Seo H et al 80.6%

1 MAResnet-BiGRU Methods of this paper 84.24%

https://doi.org/10.1371/journal.pone.0269500.t003
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is the lowest, only 60.24%. which is 21.26% lower than that of this paper. What’s more, the clas-

sification accuracy of CNN-GRU, MAResnet, CNN-BiGRU and Resnet-BiGRU are 68.75%,

74.20%, 74.27% and 77.49%, respectively. Consequently it is not hard to draw a conclusion

that the classification accuracy of other models are not as good as the one proposed in this

paper.

In classification problems, the most common evaluation index is accuracy, which can

directly reflect the correct proportion of points. But the actual classification problem, the num-

ber of samples of each category is often not very balanced. If the model is not adjusted on this

imbalanced dataset, it is easy to give up small classes instead of large classes. The overall accu-

racy is high at this point, but some categories cannot be recalled at all. Kappa coefficient is

used to evaluate the consistency between the classification model and the expert score [40].

Landis et al. think that the classification model with Kappa value greater than 0.80 is almost

perfect, and the classification model with Kappa value between 0.61 and 0.80 has practical

value [41]. To valuate the performance of the MAResnet-BiGRU model in this paper, we mea-

sure the classification model by calculating the kappa coefficient of the model, and the kappa

coefficient is generally used as the evaluation of the multi-classification model. Specific calcula-

tions such as Eq (13):

k ¼
p0 � pe
1 � pe

ð13Þ

Among them, p0 is the sum of the number of samples correctly classified in each category

divided by the total number of samples, that is, the overall classification accuracy, pee is the

probability that the expected results are consistent with the real results, and the results are

shown in Table 6. Table 6 provides cross validation results of Sleep-EDF dataset.

It can be seen from the table that the performance of the ResNet model is the weakest, and

the kappa coefficient of the network model built in this paper is the highest, which indicates

that the performance is optimal, and also reflects the high consistency between the automatic

and manual stages of the model. It has good practical value.

Table 4. Recall rate of each sleep stage classification under different algorithms under label smoothing on UCD dataset.

Net model W S1 S2 S3 REM Total recognition rate

MAResnet-BiGRU 84.50% 63.10% 79.50% 86.30% 83.30% 79.34%

Resnet-BiGRU 80.28% 57.31% 75.84% 83.74% 81.60% 75.75%

CNN-BiGRU 78.20% 55.76% 74.34% 80.47% 79.26% 73.60%

MAResnet 77.83% 56.34% 74.56% 81.28% 78.54% 73.71%

CNN-GRU 72.24% 48.69% 69.30% 73.26% 71.38% 67.39%

ResNet 64.37% 43.10% 61.20% 66.31% 63.52% 59.70%

https://doi.org/10.1371/journal.pone.0269500.t004

Table 5. Recall rate of each sleep stage classification under different algorithms under label smoothing on SHHS dataset.

Net model W S1 S2 S3 REM Total recognition rate

MAResnet-BiGRU 85.24% 64.37% 82.90% 89.29% 86.2% 81.60%

Resnet-BiGRU 83.36% 56.48% 78.41% 87.49% 81.73% 77.49%

CNN-BiGRU 79.12% 55.21% 74.62% 83.12% 79.32% 74.27%

MAResnet 78.64% 56.14% 75.16% 84.76% 76.30% 74.20%

CNN-GRU 74.22% 50.26% 69.83% 79.04% 70.42% 68.75%

ResNet 65.10% 45.32% 63.74% 65.28% 61.8% 60.24%

https://doi.org/10.1371/journal.pone.0269500.t005
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As shown in Fig 7, the experimental results of Sleep-EDF data set are represented in a con-

fusion matrix. The rows and columns of the confusion matrix represent the number of epochs

for each sleep stage divided by sleep experts and our method, respectively, as shown in Fig 7.

This is the statistical result of a random sample of 4182 samples for prediction. The diagonal is

the number of correctly classified samples, and the other locations are the number of misclassi-

fied samples. It can be seen from Fig 7 that the classification effect of S1 stage is the worst.

Among them, S1 stage is often confused with W, S3 and REM stages, which is consistent with

the similarity of characteristic waves in each stage. The poor classification of the S1 phase may

be due to the fact that the S1 phase, as the shortest transition phase, is most vulnerable to the

combined effects of multiple, adjacent and similar classes. By observing the confusion matrix,

it can be seen that the prediction results do not tend to occupy the S2 stage of most data, which

shows that the method proposed in this paper alleviates the problem caused by category imbal-

ance to a certain extent.

Table 6. Kappa coefficient under different algorithms.

Method kappa coefficient

MAResnet-BiGRU 0.79±0.03

ResNet-BiGRU 0.68±0.05

CNN-BiGRU 0.68±0.04

MAResnet 0.68±0.06

ResNet 0.57±0.08

XGBoost 0.70±0.06

K mean 0.63±0.06

https://doi.org/10.1371/journal.pone.0269500.t006

Fig 7. Confusion matrix of Sleep-EDF data set.

https://doi.org/10.1371/journal.pone.0269500.g007
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In order to verify the classification effect of the improved network model and apply the

model to sleep-EDF dataset, this model has been added several indicators such as loss function,

recall rate and classification recognition rate of overall sleep cycle to evaluate the classification

results. Under the same parameters, the MAResnet-BiGRU model is compared with the other

five network models. The other five network models are Resnet-BiGRU, Resnet, CNN-BiGRU,

MARNet and CNN-GRU. These six network models are classified and trained in the open

source framework Pytorch. A total of 100 epochs are trained. The changes of accuracy and loss

value in the training process are shown in Fig 8.

The green curve represents the change of accuracy with epoch, while the red curve repre-

sents the change of loss value with epoch. It can be seen from the figure that the accuracy

increases and tends to be stable during training, and the loss value decreases and also tends to

be stable, which shows that the six models in this paper have good staging performance for

sleep EEG signals. In order to further compare the performance of the six models, the loss

value curve is shown in one figure, as shown in Fig 9.

It can be seen from the figure that when the epoch is about 80, the curve of loss value tends

to be flat, and it can be seen that the loss value of MAResnet-BiGRU model is the smallest,

which proves that the prediction effect of the improved model offered by this paper is the best.

Fig 8. On the Sleep-EDF dataset, training accuracy and loss value under different algorithms.

https://doi.org/10.1371/journal.pone.0269500.g008
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In order to fully show the generalization performance of the model, the six models are 10-fold

cross-validation with under label smoothing to obtain the overall recognition rate and recall

rate in each period, as shown in Fig 10.

With the smooth label processing, the recognition rate of sleep stages of single-scale tradi-

tional Resnet network model is only 62.20%, and the recognition rate of S1 stage is only

49.32%. Compared with Resnet network model, the classification and recognition rate of sleep

cycle of Resnet-BiGRU network model with the smooth label processing is 16.57% higher. The

classification and recognition rate of CNN-BiGRU is 1.8% higher than that of CNN-GRU net-

work model, which shows that BiGRU can better reflect the dependence of each sleep stage,

and keep the intrinsic sleep characteristics of EEG signals more comprehensively. The overall

recognition rate of MARNet model is 76.26%, which is 14.06% higher than that of the original

Resnet network, which reflects that the improved algorithm architecture can learn more

Fig 9. On the Sleep-EDF dataset, training loss values of six models.

https://doi.org/10.1371/journal.pone.0269500.g009

Fig 10. On the Sleep-EDF dataset, classification recall rates of each sleep period under different algorithms.

https://doi.org/10.1371/journal.pone.0269500.g010
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information about EEG sleep, and the residual attention module constructed can extract

important information more accurately. Compared with MARNet-BiGRU network model, the

overall recognition rate of CNN-BiGRU network model is 7.78% lower, which further illus-

trates the important role of MARNet network in extracting key information. This paper con-

structed the MARNet-BiGRU network model’ overall recognition rate is 84.24%, and its recall

rate of each sleep stage is improved, among which the recall rate of S3 period is even 92.28%.

Compared with the above five models, the classification recognition rate of the improved

model is promoted to a certain extent. The recognition rate of sleep stages of the improved

model is increased by 22.04% compared with that of the basic Resnet network before improve-

ment. Experimental results prove the effectiveness of MARNet-BiGRU network model pro-

posed in this paper.

5 Conclusions

Despite being useful, the existing sleep staging methods have several disadvantages, such as

relying on artificial feature extraction, failing to recognize temporal sequence patterns in the

long-term associated data, and reaching the accuracy upper limit of sleep staging. Hence, this

paper proposes an automatic EEG sleep signal staging model, which integrates multi-scale

ResNet and BIGRU through an attention mechanism. The proposed model is based on the

residual neural network in deep learning. It uses convolution kernels of different sizes by add-

ing the improved channel and spatial feature attention units to the traditional residual learning

module in parallel at the same spatial position. Thus, multiscale feature extraction of the EEG

sleep signals and residual learning of the neural networks is performed to avoid network deg-

radation. Finally, BiGRU is used to determine the dependence between the sleep stages and to

realize the automatic learning of sleep data staging features and sleep cycle extraction. The

experimental results show that the classification accuracy and kappa coefficient of the MARes-

net-BiGRU model are 84.24% and 0.7855, respectively on the Sleep-EDF data set. Compared

with the traditional ResNet, the classification accuracy and kappa coefficient are improved by

22.04% and 0.2135, respectively. The classification accuracy of the proposed method on UCD

data set and SHHS data set is 79.34% and 81.6% which is undoubtedly higher than other mod-

els. Thus effectiveness of the proposed method is proved.

Supporting information

S1 Data.

(ZIP)

Author Contributions

Formal analysis: Changyuan Liu, Okan K. Ersoy.

Methodology: Changyuan Liu, Okan K. Ersoy.

Resources: Changyuan Liu.

Software: Yunfu Yin, Yuhan Sun.

Supervision: Okan K. Ersoy.

Writing – original draft: Yunfu Yin.

Writing – review & editing: Yuhan Sun.

PLOS ONE Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0269500 June 16, 2022 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269500.s001
https://doi.org/10.1371/journal.pone.0269500


References
1. Wulff K. et al., “Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease,”

Nat. Rev. Neurosci., vol. 11, no.8, pp.589–599, 2010. https://doi.org/10.1038/nrn2868 PMID: 20631712

2. Brodeck V., Kuhn A., and Wegner F., “EEG microstates of wakefulness and NREM sleep,” Neuroimage,

vol. 62, no.2, pp.2129–2139, 2012.

3. Xiao M., Yan H., and Song J.Z., “Sleep stages classification based on heart rate variability and random

forest,” Biomed. Signal Process Control, vol. 8, no.6, pp.624–633, 2013.

4. Jingwei Hao, Senlin Luo, Limin Pan. "A Novel Sleep Staging Algorithm Based on Hybrid Neural Net-

work", 2019 IEEE 9th International Conference on Electronics Information and Emergency Communica-

tion (ICEIEC), 2019.

5. Agarwal R., et al., “Computer-Assisted Sleep Staging,” IEEE T Biomed. Eng. vol. 48, no. 12, pp. 1421–

1423, 2001. https://doi.org/10.1109/10.966600 PMID: 11759922

6. Virkkala J. et al., “Automatic sleep stage classification using two-channel electro-oculography,” J. Neu-

rosci. Methods, vol. 166, no. 1, pp. 109–155, 2007. https://doi.org/10.1016/j.jneumeth.2007.06.016

PMID: 17681382

7. Liang S.F., et al., “A rule-based automatic sleep staging method,” J. Neurosci. Methods, vol. 205, no.

1, pp. 169–176, 2012. https://doi.org/10.1016/j.jneumeth.2011.12.022 PMID: 22245090

8. Stepnowsky C. et al., “Scoring accuracy of automated sleep staging from a bipolar electroocular record-

ing compared to manual scoring by multiple raters,” Sleep Med., vol. 14, no. 11, pp. 1199–1207, 2013.

https://doi.org/10.1016/j.sleep.2013.04.022 PMID: 24047533

9. Malhotra A. et al., “Performance of an Automated Polysomnography Scoring System Versus Com-

puter-Assisted Manual Scoring,” Sleep, vol. 36, no. 4, pp. 573–582, 2013. https://doi.org/10.5665/

sleep.2548 PMID: 23565003

10. Koley B. et al., “An ensemble system for automatic sleep stage classification using single channel EEG

signal,” Comput. Biol. Med., vol. 42, no. 12, pp. 1186–1195, 2012. https://doi.org/10.1016/j.

compbiomed.2012.09.012 PMID: 23102750

11. Zhu G. et al., “Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a

Single-Channel EEG Signal,” IEEE T Biomed. Eng., vol. 18, no. 6, pp. 1813–1821, 2014. https://doi.

org/10.1109/JBHI.2014.2303991 PMID: 25375678

12. M. Radha et al., “Comparison of Feature and Classifier Algorithms for Online Automatic Sleep Staging

Based on a Single EEG Signal.” in Presented at The 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC 2014), 2014, pp. 1876–1880.

13. Bajaj V. et al., “Automatic classification of sleep stages based on the time-frequency image of EEG sig-

nals,” Comput. Method Program Biomed., vol. 112, no. 3, pp. 320–328, 2013. https://doi.org/10.1016/j.

cmpb.2013.07.006 PMID: 24008250

14. Yaghouby F. et al., “Quasi-supervised scoring of human sleep in polysomnograms using augmented

input variables,” Compu. Biol. Med., vol. 59, no. 1, pp. 54–63, 2015. https://doi.org/10.1016/j.

compbiomed.2015.01.012 PMID: 25679475

15. Onton J. et al., “Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device

Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity,” Front. Hum. Neurosci.,

vol. 10, no. 605, pp. 1–12, 2016. https://doi.org/10.3389/fnhum.2016.00605 PMID: 27965558

16. Shambroom A. et al., “Validation of an automated wireless system to monitor sleep in healthy adults,” J.

Sleep Res., vol. 21, no. 2, pp. 221–230, 2012. https://doi.org/10.1111/j.1365-2869.2011.00944.x

PMID: 21859438

17. X. Cai, Z. Jia, M. Tang and G. Zheng, “BrainSleepNet: Learning Multivariate EEG Representation for

Automatic Sleep Staging,” in 2020 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM), Seoul, Korea (South), 2020, pp. 976–979.

18. Phan H., Andreotti F., and Cooray N., “Joint classification and prediction CNN framework for automatic

sleep stage classification,” IEEE T Biomed. Eng., vol. 66, no.5, pp.1285–1296, 2018. https://doi.org/10.

1109/TBME.2018.2872652 PMID: 30346277

19. Phan H. et al., “SeqSleepNet:end-to-end hierarchical recurrent neural network for sequence-to-

sequence automatic sleep staging,” IEEE T Neur. Syst. Rehab. Eng., vol. 27, no.3, pp.:400–410, 2019.

https://doi.org/10.1109/TNSRE.2019.2896659 PMID: 30716040

20. Mousavi S., Afghah F., and Acharya U.R., “SleepEEGNet:automated sleep stage scoring with

sequence to sequence deep learning approach,” PloS One, vol. 14, no.5, pp.e0216456, 2019. https://

doi.org/10.1371/journal.pone.0216456 PMID: 31063501

21. Jia Z. et al., “Sleep staging model based on deep convolution neural network,” Journal of Zhejiang Uni-

versity (Engineering Edition), vol. 54, no.10, pp.:1899–1905, 2010.

PLOS ONE Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0269500 June 16, 2022 19 / 20

https://doi.org/10.1038/nrn2868
http://www.ncbi.nlm.nih.gov/pubmed/20631712
https://doi.org/10.1109/10.966600
http://www.ncbi.nlm.nih.gov/pubmed/11759922
https://doi.org/10.1016/j.jneumeth.2007.06.016
http://www.ncbi.nlm.nih.gov/pubmed/17681382
https://doi.org/10.1016/j.jneumeth.2011.12.022
http://www.ncbi.nlm.nih.gov/pubmed/22245090
https://doi.org/10.1016/j.sleep.2013.04.022
http://www.ncbi.nlm.nih.gov/pubmed/24047533
https://doi.org/10.5665/sleep.2548
https://doi.org/10.5665/sleep.2548
http://www.ncbi.nlm.nih.gov/pubmed/23565003
https://doi.org/10.1016/j.compbiomed.2012.09.012
https://doi.org/10.1016/j.compbiomed.2012.09.012
http://www.ncbi.nlm.nih.gov/pubmed/23102750
https://doi.org/10.1109/JBHI.2014.2303991
https://doi.org/10.1109/JBHI.2014.2303991
http://www.ncbi.nlm.nih.gov/pubmed/25375678
https://doi.org/10.1016/j.cmpb.2013.07.006
https://doi.org/10.1016/j.cmpb.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/24008250
https://doi.org/10.1016/j.compbiomed.2015.01.012
https://doi.org/10.1016/j.compbiomed.2015.01.012
http://www.ncbi.nlm.nih.gov/pubmed/25679475
https://doi.org/10.3389/fnhum.2016.00605
http://www.ncbi.nlm.nih.gov/pubmed/27965558
https://doi.org/10.1111/j.1365-2869.2011.00944.x
http://www.ncbi.nlm.nih.gov/pubmed/21859438
https://doi.org/10.1109/TBME.2018.2872652
https://doi.org/10.1109/TBME.2018.2872652
http://www.ncbi.nlm.nih.gov/pubmed/30346277
https://doi.org/10.1109/TNSRE.2019.2896659
http://www.ncbi.nlm.nih.gov/pubmed/30716040
https://doi.org/10.1371/journal.pone.0216456
https://doi.org/10.1371/journal.pone.0216456
http://www.ncbi.nlm.nih.gov/pubmed/31063501
https://doi.org/10.1371/journal.pone.0269500


22. Supratak A. et al., “DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-

Channel EEG,” in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no.

11, pp. 1998–2008, Nov. 2017. https://doi.org/10.1109/TNSRE.2017.2721116 PMID: 28678710

23. Luo S L. Automatic sleep staging method based on CNN-BiLSTM. Journal of Beijing University of Tech-

nology,2020, 40(07):746–752.

24. Kuo Chih-En, Chen Guan-Ting, Liao Po-Yu. An EEG spectrogram-based automatic sleep stage scoring

method via data augmentation, ensemble convolution neural network, and expert knowledge. Biomedi-

cal Signal Processing and Control,2021, 70.

25. Shasha Sun,Chuanpeng Li,Ning Lv,Xiaoman Zhang,Zhaoyan Yu,Haibo Wang. Attention based convo-

lutional network for automatic sleep stage classification. Biomedizinische Technik. Biomedical engi-

neering,2021, 66(4).

26. Feng Li Xiao,Li Xin,Wang Hong Yu,Zheng Wen Yin,Zhang Yong Qing,Gao Dong Rui,et al., Automatic

Sleep Staging Algorithm Based on Time Attention Mechanism. Frontiers in Human Neuroscience,2021.

https://doi.org/10.3389/fnhum.2021.692054 PMID: 34483864

27. Altini M, Kinnunen H. The Promise of Sleep: A Multi-Sensor Approach for Accurate Sleep Stage Detec-

tion Using the Oura Ring[J]. Sensors (Basel, Switzerland), 2021, 21(13): 758–770. https://doi.org/10.

3390/s21134302 PMID: 34201861

28. Huttunen R, Leppänen T, Duce B, et al. Assessment of Obstructive Sleep Apnea-Related Sleep Frag-

mentation Utilizing Deep Learning-Based Sleep Staging from Photoplethysmography[J]. Sleep, 2021,

44(19): 142. https://doi.org/10.1093/sleep/zsab142 PMID: 34089616

29. Casciola A A, Carlucci S K, Kent B A, et al. A Deep Learning Strategy for Automatic Sleep Staging

Based on Two-Channel EEG Headband Data[J]. Sensors, 2021, 21(10): 3316. https://doi.org/10.3390/

s21103316 PMID: 34064694

30. Yuyang You, Xuyang Zhong, Guozheng Liu, Zhihong Yang. Automatic sleep stage classification: A light

and efficient deep neural network model based on time, frequency and fractional Fourier transform

domain features[J]. Artificial Intelligence in Medicine,2022 (prepublish).

31. Goldberger A L, Amaral L A, Glass L, et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components

of a New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, no.23, 2000,

E215–E220. https://doi.org/10.1161/01.cir.101.23.e215 PMID: 10851218

32. Kemp B., and Zwinderman A.H., “Analysis of a sleep-dependent neuronal feedback loop: the slow-

wave microcontinuity of the EEG,” IEEE Trans. Biomed. Eng., vol. 47, no.9, pp.1185–1194, 2000.

https://doi.org/10.1109/10.867928 PMID: 11008419

33. Zhang G.-Q. et al. The National Sleep Research Resource: towards a sleep data commons. Journal of

the American Medical Informatics Association 25, 2018: 1351–1358. https://doi.org/10.1093/jamia/

ocy064 PMID: 29860441

34. Quan S. F. et al. The sleep heart health study: design, rationale, and methods. Sleep 20, 1997:1077–

1085. PMID: 9493915

35. Guo Y P. et al., “Automatic sleep staging based on single channel EEG signal,” Journal of Shanxi Nor-

mal University, vol. 48, no.6, pp.18–25, 2020.

36. Yu Y. et al., “Sleep staging method based on improved k-means clustering and distance correction,” J.

Comput. Appl., vol. 40, pp.269–273, 2020.

37. PHAN H, ANDREOTTI F, COORAY N, et al. DNN filter bank improves 1-max pooling CNN for single-

channel EEG automatic sleep stage classification. Proceedings of the 40th International Conference of

the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE Press, 2018: 453–456.

38. HUMAYUN A I, SUSHMIT A S, HASAN T, et al. End-to-end sleep staging with raw single channel EEG

using deep residual ConvNet. Proceedings of the IEEE EMBS International Conference on Biomedical

and Health Informatics. Piscataway: IEEE Press, 2019: 1–5.

39. SEO H, BACK S, LEE S, et al. Intra- and inter-epoch temporal context network (IITNet) using sub-

epoch features for automatic sleep scoring on raw single-channel EEG. Biomedical signal processing

and control, 2020, 61: 102037.

40. SMEEETON N C. Early history of the kappa statistic, Biometrics, 1985, 41(3):795–795.

41. LANDIS J R, KOCH G G. The measurement of observer agreement for categorical data. Bio-

metrics,1977, 33(1):159–174. PMID: 843571

PLOS ONE Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0269500 June 16, 2022 20 / 20

https://doi.org/10.1109/TNSRE.2017.2721116
http://www.ncbi.nlm.nih.gov/pubmed/28678710
https://doi.org/10.3389/fnhum.2021.692054
http://www.ncbi.nlm.nih.gov/pubmed/34483864
https://doi.org/10.3390/s21134302
https://doi.org/10.3390/s21134302
http://www.ncbi.nlm.nih.gov/pubmed/34201861
https://doi.org/10.1093/sleep/zsab142
http://www.ncbi.nlm.nih.gov/pubmed/34089616
https://doi.org/10.3390/s21103316
https://doi.org/10.3390/s21103316
http://www.ncbi.nlm.nih.gov/pubmed/34064694
https://doi.org/10.1161/01.cir.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.1109/10.867928
http://www.ncbi.nlm.nih.gov/pubmed/11008419
https://doi.org/10.1093/jamia/ocy064
https://doi.org/10.1093/jamia/ocy064
http://www.ncbi.nlm.nih.gov/pubmed/29860441
http://www.ncbi.nlm.nih.gov/pubmed/9493915
http://www.ncbi.nlm.nih.gov/pubmed/843571
https://doi.org/10.1371/journal.pone.0269500

