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Abstract

postoperative period.

varying volumes and material properties.

bone graft material.

strength of the acetabular reinforcement ring.

Background: The stability of acetabulum reconstructions using reinforcement rings and hooks is important for
successful replacement surgery. The objective of this study was to biomechanically determine the effects of the
hook on stress and the related micromotions of the acetabular reinforcement ring during the immediate

Methods: Acetabular reinforcement ring models were developed using a nonlinear, three-dimensional, finite
element method. Using a pre-prepared template, we constructed without-hook and bone graft models of

Results: The stress on the inferior margin of the acetabulum was higher in the with-hook model than in the
without-hook model, especially with increased bone graft volumes, and the stiffness of the bone graft material was
decreased. Relative micromotions in the without-hook model were higher than in the with-hook models. The highest
relative micromotion was observed in the model with increased bone graft volume and lower stiffness of

Conclusions: In biomechanical analyses, the hook effectively dispersed stress and improved the initial fixation

Keywords: Finite element method, Total hip arthroplasty, Acetabular reinforcement ring, Primary implant stability

Background

Total hip arthroplasty (THA) is a widely used re-
placement surgical method that requires primary im-
plant stability. Under conditions of severe bone
deficiency around the acetabulum, acetabular recon-
structions are needed to provide bony support for
acetabulum restoration [1-4]. To this end, acetabular
support rings can address severe bone stock deficien-
cies in patients with acetabular dysplasia or revision
THA. Ganz previously developed an acetabular
reinforcement ring with a hook (ARRH) for bone
grafts and demonstrated improved fixation of the
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grafted bone, initial fixation of the cup, and stability
of the reconstructed acetabulum [5]. In these proce-
dures, the hook of the ring is placed around the in-
ferior margin of the acetabulum to facilitate the
placement of the cup in the correct anatomical pos-
ition. Although the effects of the hook have not been
investigated in mechanical analyses, proper placement
of the hook is believed to improve the primary stabil-
ity of the ring and to prevent migration [6]. As mi-
gration of the ARRH with breakage of the hook
indicates a loosening of the acetabular component
[7-11], biomechanical analyses are increasingly per-
formed using the finite element method, which has
been used by several investigators to analyze load
distributions of acetabular reinforcement rings [12-
14]. We also reported the effects of the ARRH on
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acetabular dysplasia, and compared the efficacy of
varying numbers and insertion sites of screws [15],
but did not conduct detailed analyses of the biomech-
anical roles of the hook. In this study, we used the fi-
nite element method to develop a detailed model of
the hip joint and analyzed the biomechanical effects
of the hook of the ARRH in bone grafts for acetabu-
lar dysplasia. In these analyses, we considered the se-
verity of acetabular dysplasia and the type of bone
graft material used.

Methods

To develop a finite element model, geometric data were
obtained using computed tomography of the sawbone
(Sawbones, Pacific Research Laboratories, Inc., Vashon,
WA) left pelvic model at a slice thickness of 0.6 mm. A
basic model of the left pelvic bone was constructed with
total element and node numbers of 6043039 and
121231, respectively (Fig. 1). To develop these models
and perform analyses, we used the multipurpose finite
element analysis software MARC/Mentat (MSC Soft-
ware Corp., Santa Ana, CA). The mesh of the cortical
bone, the trabecular bone, the bone cement, the Ganz
ring, and the prosthetic head for finite element models
were reconstructed using four nodes of solid linear tetra-
hedral elements. In previous studies, Young’s moduli of
these elements were 17,000, 100, 2100, 110,000, and
230,000 MPa, respectively, and corresponding Poisson’s
ratios were 0.3, 0.2, 0.4, 0.3, and 0.3 [16-21]. In contrast-
ing studies, Young’s moduli of morselized bone grafts
were 42—150 MPa [22-24].

In the present bone graft models, we simulated the
treatment of acetabular defects with morselized bone
grafts, as described previously [25-27]. Young’s moduli
for the bone graft site were set at 42 (low) or 150 MPa
(high). The respective low- and high-stiffness bone graft
values were set according to previous reports, and the
corresponding Poisson ratio was 0.2.
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Crowe et al. [28] classified dysplastic hips into the fol-
lowing four groups according to degrees of subluxation:
group 1, 0-50% subluxation; group 2, 50-75% sublux-
ation; group 3, 75-100% subluxation; and group 4, dis-
location. Herein, the following two acetabular dysplasia
models (corresponding to groups 1 and 2) were devel-
oped based on the Crowe classification system: type 1,
25% subluxation and type 2, 62.5% subluxation (Fig. 2).

The ARRH (50 mm) was subsequently fixed to the
acetabulum by inserting the hook into the obturator
foramen and immobilizing the ring using three
threaded 6.5-mm cancellous screws. The without-hook
model was then created by omitting the hook element
from the original ARRH. The interface between the
ARRH and the pelvic bone was assumed to be a non-
linear contact problem, with friction set to 0.88 as de-
scribed previously [29]. The screw—bone and screw—
ring interfaces were assumed to be bound, and an ac-
etabular cup (outer/inner diameters, 48/26 mm; MX
Hip Joint Prosthesis, Mizuho Medical Inc., Tokyo,
Japan) was mounted on the ring with a lateral open-
ing angle of 45°, an anterior opening angle of 15°,
and the assumption of 1-mm-thick cement fixation.
The femoral head was modeled as a hemisphere and
was bound to the cup.

Loading conditions were as described by Bergmann
et al. [30]. In this model, force magnitudes and direc-
tions were normalized to the regular gait of patients
with THA, and 1948 N was applied to the center of
the head of each model. Regarding boundary condi-
tions, areas corresponding to the sacroiliac joint and
pubic symphysis of the pelvic bone were completely
restrained. Nonlinear parametric analyses were per-
formed with force control in the numerical procedure,
and the Newton—Raphson method was used iteratively
with incremental loads in 20 steps. After loading of
models, von Mises stress distributions and relative
micromotions were compared.

A
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Fig. 1 Three-dimensional total hip arthroplasty (THA) with the acetabular reinforcement ring with a hook (ARRH) model. a Shaded areas are fixed
in all directions and the arrow indicates the loading point. b Magnified oblique view of the Ganz ring, the cement, the acetabular cup, and the
femoral head. ¢ ARRH with screws. d A, B, C, and D: measurement points for von Mises stresses on the pelvic bone around the ARRH; B, D, and E:
measurement points for relative micromotion between the ARRH and the pelvic bone
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Fig. 2 Post-bone grafting models for acetabular dysplasia: a type 1,
25% subluxation; b type 2, 62.5% subluxation

Results

Stress distributions

The ARRH with a hook showed higher von Mises stress
values around the screw holes and the hook. Type 2
models showed higher stresses than type 1 models, and
the low 42-MPa bone graft model showed higher
stresses than the high 150-MPa bone graft model. In dis-
tributions of von Mises stresses in the acetabulum, lower
and higher stress values were observed in and around
the bone graft, respectively. Stresses at the inferior
margin of the acetabulum, which is the contact area be-
tween the hook and the bone, were higher than in the
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without-hook model (Fig. 3), in which stresses at the in-
ferior acetabulum host bone area were higher than in
the with-hook model (Fig. 4). Von Mises stresses in the
acetabulum were measured at multiple points around
the ring and were lower at point A in the bone grafts of
each model. In the with-hook model, higher stress values
were observed at the hook contact area, which was at
point C around the inferior margin of the acetabulum.
The maximum von Mises stress value was observed in
the type 2 model with the low bone graft (14.8 MPa),
followed by that in the type 2 model with the high bone
graft (9.8MPa). In comparisons of with- and
without-hook models, the stress at point C was lower
and the stresses at points B and D were higher in the
without-hook model (Fig. 5).

Relative micromotions

The stability of the ARRH was evaluated according to
relative micromotions, which were defined as dis-
tances between the ring and pelvic bone at the inter-
face and were measured at points B, D, and E around
the ring (Fig. 1d). Relative micromotions tended to be
lower in the hook model than in the without-hook
model. Specifically, in type 2/low models with the
highest values, a 23% decrease from 60.0 pm was ob-
served without the hook and this was only 46.1 um in
the with-hook model (Fig. 6).

Relative micromotions tended to be lower in type 1
than in type 2 models and tended to be lower with the
high bone graft than with the low bone graft. Corres-
pondingly, maximum micromotion values were highest
in the type 2/low without-hook model and were lowest
in the type 1/high with-hook model.

28
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1/low, b type 1/high, c type 2/low, d type 2/high

Fig. 3 Distribution of von Mises stresses in with-hook models: top row, distribution of von Mises stresses in the pelvic bone, the Ganz ring, and
the screws without an acetabular cup; bottom row, distribution of von Mises stresses in the acetabulum of each model without the ring; a type
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type 1/low, b type 1/high, c type 2/low, d type 2/high

Fig. 4 Distribution of von Mises stresses in without-hook models: top row, distribution of von Mises stresses in the pelvic bone, the Ganz ring,
and the screws without an acetabular cup; bottom row, distribution of von Mises stresses in the acetabulum of each model without the ring; a
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von Mises stress (MPa)

Discussion

Herein, the effects of the ARRH hook were determined
for various types of bone grafts. Our comparisons of
with- and without-hook models confirm that the hook
disperses stress and reduces relative micromotions. In
the present models, the hook was inserted into the ob-
turator foramen by immobilizing the ring in the anatom-
ical position using three threaded cancellous screws.
Following bone grafting with hooks, stresses on the bone
graft were low, whereas those around the screw holes,
screw, hook, and the contact area between the hook and
the bone were high. Hence, the load in the morselized
bone graft was dispersed to the normal bone around the

acetabulum. In the inferior acetabulum host bone area,
stress was higher in without-hook models than in
with-hook models, probably reflecting the separate in-
sertion of hooks and screws into the obturator foramen,
and the good bone stock that protects the bone of the
acetabulum. In contrast, rings were compressed into the
acetabulum in without-hook models. Hook models also
tended to have lower relative micromotion values than
without-hook models. These stress and relative micro-
motion data suggest that the stress is dispersed bio-
mechanically by the ARRH and that the hook can
effectively disperse stress and improve the primary sta-
bility of the ARRH. In a previous clinical report by the
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Fig. 5 Maximum von Mises stress values at points A (upper part), B (posterior part), C (inferior margin part), and D (anterior part) of the ARRH
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Fig. 6 Relative micromotions at points B (posterior part), E (lower part), and D (anterior part) of the ARRH

ARRH, Gerber et al. [6] suggested that the primary sta-
bility of the implant is enhanced by adequate screw pur-
chase in the ilium and proper placement of the hook
below the teardrop, which pre-tensions the ring similar
to that in plate osteosynthesis procedures that are per-
formed using a tension device or blade-plate. Hassan et
al. [10] also suggested that the oval geometry and the in-
ferior hook of the ring contribute to the stability by pre-
venting the rotation and migration of the components.
Our results demonstrate the biomechanical role of the
hook as described in the previous study, with enhanced
primary stability of the implant in comparison to
without-hook models.

In comparisons of bone graft sizes and elastic mod-
uli of bone graft materials, relative micromotion
values tended to increase with the severity of acetabu-
lar dysplasia and the stiffness of the bone graft de-
creased concomitantly, suggesting an increased risk of
poor initial fixation in patients with severe bone stock
deficiencies and low bone graft material properties.
Clinically, it is important to achieve sufficient bone
coverage and initial stability of the acetabular compo-
nent, especially during the reconstruction of severe
acetabular bone defects in patients with acetabular
dysplasia and in patients with osteoporosis receiving
revision THA. Several clinical studies report hook
breakage with loosening and/or migration of the ace-
tabular component [7-11]. Breakage of the hook or
screw is recognized as a mechanical failure and re-
portedly occurs when the bone graft is not strong
enough to support the ARRH [11]. Impaction during
bone grafting was shown to increase the stiffness of
the bone graft material and improve fixation and was

applied during surgery [31-33]. In the hook model,
the stress of the hook and screw in the type 2/low
models was higher than in other models, suggesting
an increased risk of poor initial fixation and mechan-
ical failure. In patients with this type of massive bone
defect, impaction bone grafting or bulk structural
bone grafting are necessary to fix and to prevent
mechanical failure [11, 34-36].

In this study, we investigated biomechanical aspects
of the hook of acetabular reinforcement rings using
finite element analyses. But we did not consider time-
dependent mechanical responses, such as bone re-
modeling and ingrowth. As the severity of bone de-
fects, the range of bone grafts, and the stiffness of
bone grafts vary in clinical settings, the qualitative
trends discussed here are to be applied with caution
in clinical practice.

Conclusions

We investigated the effects of the hook of acetabular
reinforcement rings on stress distributions and rela-
tive micromotions between the ring and pelvic bone.
In the present model of increased bone graft volume,
we observed increased stress around the contact area
between the hook and the bone and increased micro-
motion with lower stiffness of the bone graft material.
The hook can effectively disperse the stress of the ac-
etabular reinforcement ring and lead to greater
fixation strengths. Thus, the appropriate spatial place-
ment of the hook and the use of proper bone grafting
techniques will result in better clinical outcomes, es-
pecially following the reconstruction of massive bone
defects in patients with osteoporosis.
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