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The membrane attack complex (MAC) is an important innate immune effect-

or of the complement terminal pathway that forms cytotoxic pores on the

surface of microbes. Despite many years of research, MAC structure and

mechanism of action have remained elusive, relying heavily on modelling

and inference from biochemical experiments. Recent advances in structural

biology, specifically cryo-electron microscopy, have provided new insights

into the molecular mechanism of MAC assembly. Its unique ‘split-washer’

shape, coupled with an irregular giant b-barrel architecture, enable an atyp-

ical mechanism of hole punching and represent a novel system for which to

study pore formation. This review will introduce the complement terminal

pathway that leads to formation of the MAC. Moreover, it will discuss

how structures of the pore and component proteins underpin a mechanism

for MAC function, modulation and inhibition.

This article is part of the themed issue ‘Membrane pores: from structure

and assembly, to medicine and technology’.
1. Introduction
(a) The role of the membrane attack complex
The complement system, composed of over 35 proteins found in the plasma or

bound to host cells, forms an integral part of the early immune response [1].

Three major complement cascades, the classical, the alternative and the man-

nose-binding lectin pathways, can activate the terminal pathway, including

the formation of the membrane attack complex (MAC).

MAC can form on and directly kill Gram-negative bacteria [2,3]. It is par-

ticularly important in combatting Neisseria meningitidis, with genetic

deficiencies in MAC components leading to recurrent infections [4–6]. MAC

pores can cause cell death by osmotic flux [7], and it has been postulated that

the assembled pore may allow the passage of lysozymes across the outer mem-

brane to degrade the peptidoglycan layer [8,9]. Although the translocation of

lysozyme through the MAC is implied through in vitro experiments, this con-

cept is also supported by the known role of a close homologue, perforin. In

the case of perforin, there is translocation of a range of proteins including gran-

zymes from cytotoxic T cell granules into the cytoplasm of target cells to induce

apoptosis [10,11].

While MAC function has been studied predominantly in the context of

Gram-negative bacteria, it has also been shown to assemble on the surface of

parasites [12], Gram-positive bacteria [13] and unwanted assembly on host

cells. In nucleated host cells, membrane disruption results in cell death by apop-

tosis [14–16] or by lysis if sufficient MAC is present [17]. Unlike erythrocytes,

which are lysed by a single channel [18], nucleated cells can shed deposited
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Figure 1. Illustration of the stepwise MAC assembly pathway from soluble complement factors. The first step requires cleavage of C5 (purple) into the small
anaphylatoxin C5a and the large fragment C5b by the C5 convertase (turquoise). C6 (yellow) binds the labile C5b intermediate, resulting in a stable C5b6 complex.
C7 (green) binds C5b6, anchoring the newly formed C5b7 complex to the membrane surface. C8, a heterotrimeric protein composed of C8a (orange), C8b (red) and
C8g (dark blue), is incorporated into the assembly precursor forming C5b8 and marking the first membrane penetrating event. Finally, multiple copies of C9 (light
blue) join the assembly and span membrane, resulting in the final membrane attack complex (MAC).
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pores in order to overcome the effects of the MAC [19,20]. In

some circumstances, sublytic levels of MAC are found to be

pro-survival, which may influence nearby cells during an

inflammatory response [21]. MAC deposition is implicated

in a number of signal transduction pathways [22], such as

G-protein and PI3 K signalling, and has been associated

with platelet activation in host cells [23–25].

(b) Molecular assembly of the membrane attack
complex

MAC assembly commences with formation of the C5 convert-

ase, a protease that triggers the sequential and irreversible

trajectory along the complement terminal pathway (figure 1).

C5 convertase cleaves C5 into two fragments: C5a and C5b.

C5a is a potent anaphylatoxin that acts as a pro-inflammatory

and chemotactic signal, promoting leucocyte activity and

upregulation of immune responses [26–28]. C5b initiates

MAC assembly on membranes in the immediate vicinity of

activation. Similar to the transition of C3 to C3b, C5 cleavage

results in dramatic conformational rearrangements within

the C5b fragment [29–32]. Specifically, the C5b thioester

domains (TED) and the ‘C1r/C1s, Uegf, Bmp1’ domains are

released like a coiled spring and extend half-way down the

macroglobulin scaffold. This exposes a transient intermediate

that is captured by C6. C-terminal complement control protein

(CCP) and factor I-like module (FIM) domains of C6, together

with a short linker region, wrap around the extended TED sta-

bilizing the interaction [29,33]. C7 binds the nascent C5b6

complex and the resulting C5b7 complex is lipophilic and is

anchored to the bilayer independently of the convertase

[34,35]. C8, a heterotrimeric complex comprising three poly-

peptide chains (C8a, C8b, C8g), is incorporated into the

membrane-bound assembly and undergoes a conformational

rearrangement in which the C8a subunit becomes the first

component to penetrate the lipid bilayer. The nascent C5b8

complex can then recruit a maximum of eighteen C9 molecules

to form the final MAC pore [36].

(c) General structure of membrane attack complex/
perforin/cholesterol-dependent cytolysin proteins

The sequence similarity between perforin and MAC com-

ponents, C6, C7, C8a, C8b and C9, suggests a common
domain responsible for membrane insertion. Structures of

these proteins in their soluble forms defined the fold

[29,33,37–39] (figure 2a–e), termed the membrane attack

complex/perforin (MACPF) domain, and revealed an evo-

lutionary link to the cholesterol-dependent cytolysin (CDC)

family of bacterial toxins despite limited sequence identity

[40,41]. As such, proteins across a wide range of genera and

species that share this fold are often referred to as belonging

to the MACPF/CDC superfamily [42]. The MACPF/CDC

fold is composed of approximately 350 amino acids and

includes a central antiparallel, twisted b-sheet. The central

b-sheet is bent nearly 908 and is flanked by two clusters of

a-helices. During conversion to the pore, both clusters

unfurl to form two antiparallel transmembrane b-hairpins

(TMHs) that comprise the final b-barrel [43–45] (figure 2f ).

MACPF/CDC proteins form giant b-barrel pores that

vary greatly in diameter. Despite the diversity across family

members, all lesions are of a sufficient size to allow the pas-

sive and non-specific diffusion of folded proteins. The

variable size of perforin pores leads to an inner pore of

13–18 nm while the MAC pores have an inner lumen of

11 nm [36,38]. In comparison, pleurotolysin forms smaller

8 nm diameter pores, while the most common suilysin pore

size (37-mer) has a lumen of approximately 20 nm [46]. It is

noteworthy that in model membranes, perforin and CDCs

have also been observed to form incomplete rings [46–50].

These partial rings, referred to as ‘arcs’, can no longer recruit

additional monomers due to their inserted state; however,

they may still be sufficient in size to confer a lytic or transport

activity [46,47]. While it is still unclear if MAC pores recruit

additional C9 molecules after insertion, assembly precursors

can penetrate the bilayer and demonstrate lytic activity [2].
(d) General pore-forming mechanism for membrane
attack complex/perforin/cholesterol-dependent
cytolysin proteins

Based on structural and biophysical research on the CDCs,

perforin, and the fungal toxin, pleurotolysin, the general

mechanism whereby MACPF/CDC superfamily members

form pores can be described in three key stages: membrane

binding, oligomerization and membrane insertion [51,52]

(figure 2f ).
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Figure 2. Domain architecture of complement MACPF/CDC-containing proteins; C6, C7, C8a–g, C8b, C9. (a) Schematic showing domain organization. MACPF
domain is coloured in a combination of blue, red, green and yellow, consistent with the colouring used in the structures shown in (b – e). Regions that form
the final b-barrel pore are indicated as TMH1 and TMH2. The ancillary domains are as follows: thrombospondin (TSP) (magenta), low-density lipoprotein receptor
type A (LDLRA) (light pink), lipocalin (LIP) (dark blue), epidermal growth factor type (EGF) (black), complement control protein (CCP) (teal), and factor I-like module
(FIM) ( purple). (b – e) Crystal structures of soluble MAC components. (b) C6 (PDB ID: 3T5O). (c) C5b6 (PDB ID: 4A5W), where C6 is coloured as in (b) and C5b is
shown in grey. (d ) C8ag component of the C8 heterotrimer (PDB ID: 3OJY). (e) C8b component of the C8 heterotrimer (PDB ID: 3OJY). (f ) The two TMH regions are
shown as clusters of a-helices in the soluble monomer protein. Upon a dramatic conformational change, the TMH regions unfurl into b-sheets that span the target
membrane. Colours are as for sections (a – e).
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Membrane-binding of soluble proteins, through domains

other than the MACPF/CDC domain, allows monomers to

recognize and bind specific cell surfaces. CDCs interact with

cholesterol in target membranes through their ancillary

domain, ‘domain 4’. For a subclass of CDCs, which includes

intermedilysin, species specificity is conferred through an

additional interaction between domain 4 and the cell surface

receptor CD59 [53,54]. Perforin binds the lipid bilayer through

its C2 domain in a calcium-dependent manner [38]. The PlyB

component of pleurotolysin docks onto a homodimer of PlyA,

using an ancillary domain. The PlyA homodimer is respon-

sible for specifically recognizing sphingomyelin and
cholesterol-rich membranes [43]. In the case of CDCs, some

research proposes that the membrane binding of its ancillary

domain (domain 4) causes conformational changes in the

MACPF/CDC and results in a heterotropic allosteric acti-

vation of surface-bound monomers [55]. However, this

membrane-dependent allostery hypothesis remains to be

structurally characterized and, furthermore, the observation

of soluble forms of CDC oligomers contradict this hypothesis

[56]. With respect to other members of the MACPF/CDC

superfamily, there is currently no evidence for allosteric

changes for either perforin or pleurotolysin. Furthermore,

the presence of soluble polyC9 also supports that



Table 1. Available structures of monomeric MAC components, intermediates and the final pore. Structures of an in vitro polymerized C9 (PolyC9), a soluble
regulated MAC (SC5b9) and the MAC inhibitor CD59 are also listed. Cryo-EM refers to single-particle cryo-electron microscopy. Cryo-ET indicates a subtomogram
average from a cryo-electron tomography reconstruction. NMR stands for nuclear magnetic resonance spectroscopy.

protein technique solution phase resolution (Å) year accession no. reference

C5 crystallography soluble 3.1 2008 PDB: 3CU7 [69]

C5b6 crystallography soluble 3.5 2012 PDB: 4A5W [29]

C6 crystallography soluble 2.9 2012 PDB: 3T5O [37]

C8ag crystallography soluble 2.1 2008 PDB: 2RD7 [70]

C8g crystallography soluble 2.0 2007 PDB: 2OVE [71]

C8abg crystallography soluble 2.5 2011 PDB: 3OJY [39]

PolyC9 cryo-EM soluble 6.7 2015 EMDB: 3235 [57]

MAC cryo-EM extracted from liposomes

and detergent solubilized

8.5 2016 EMDB: 3134 [36]

MAC cryo-ET liposome embedded 23 2016 EMDB: 3289 [65]

SC5b9 cryo-EM soluble 24 2012 EMBD: 1991 [29]

CD59 NMR soluble — 1994 PDB: 1CDQ [72]

crystallography soluble 1.8 2007 PDB: 2UX2 [73]
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membrane-dependent allostery is not integral to the common

MACPF/CDC assembly mechanism [57].

In the second stage, membrane-bound monomers later-

ally diffuse into an oligomeric prepore structure [58–60].

The flat shape of the MACPF/CDC domain comprises the

dominant interaction interface, resulting in some of the

largest oligomers characterized to date. Prepores can adopt

both arc and ring geometries, with the stoichiometry of pre-

pore rings ranging from an average of 13 for pleurotolysin

to anywhere from 30 to 50 for CDCs [46,51,58].

In the third stage, dramatic conformational changes in

protein structure enable insertion into the lipid bilayer. Con-

served across all family members is the helix-to-hairpin

transition of the TMH regions. Each monomer in the prepore

unfurls two clusters of a-helices to form two b-hairpins, four

b-strands in total. It is the association of amphipathic regions

of these b-hairpins within the bilayer that give rise to the

characteristic giant b-barrel pore architecture [61] (figure 2f ).

While research on pleurotolysin suggests a simultaneous inser-

tion ofb-hairpins in a zippering down trajectory [43], it remains

to be seen if all MACPF/CDC-containing proteins undergo a

simultaneous prepore-to-pore transition.

(e) Membrane attack complex deviates from the
canonical membrane attack complex/perforin/
cholesterol-dependent cytolysin pore-forming
mechanism

Unlike other MACPF/CDC domain-containing pores, MAC is

a hetero-oligomeric complex and, as such, challenges the gen-

eral three-step mechanism of the superfamily. There is no

identified receptor or specific lipid dependency for the initial

membrane-binding step. Pores can form on a variety of surfaces

ranging from LPS envelopes of Gram-negative bacteria to lipo-

somes. Structures of complement proteins reveal a highly

conserved MACPF/CDC domain; however, ancillary domains
are not homologous to the membrane-binding domains of per-

forin or CDCs. Structures of C6 and C8 show that the common

ancillary domains for C9: thrombospondin (TSP), low-density

lipoprotein receptor A, (LDLRA) and C-terminal epidermal

growth factor (EGF)-like domains, are not in the equivalent

position to the membrane-binding ancillary domains of other

MACPF/CDC-containing proteins (figure 2). In contrast to per-

forin, CDCs and pleurotolysin, which bind membranes as

monomers, MAC membrane-binding begins upon incorpor-

ation of C7 to the C5b6 complex. Furthermore, neither C8 nor

C9 can interact with the membrane unless integrated into an

already associated assembly precursor (i.e. C5b7 or C5b8,

respectively).

Interestingly, MAC ancillary domains play an important

role in the oligomerization of the complex rather than mem-

brane binding. Similar to other well-studied pores [43,46],

the MACPF/CDC domain is the major contributor to the

oligomer interface [36,57]; however, the MAC’s highly con-

served N-terminal TSP1 domains contribute approximately a

quarter of the buried surface area [57]. Indeed, deletion of

C8a’s N terminal TSP1 and LDLRA domains impacts MAC

formation [62,63].

While all MACPF/CDC-containing proteins undergo a

similar dramatic change in secondary structure of TMH

regions upon pore formation, complement proteins do not

undergo a vertical collapse towards the membrane. Similar

to perforin and pleurotolysin, but distinct from CDCs

[38,43], the C8 and C9 components of the MAC are predicted

to have TMH regions that are sufficiently long to transverse

the target membrane [41]. However, not all MAC proteins

transverse the lipid bilayer. Indeed, C6 TMH regions are pre-

dicted to be too short to span the membrane [37]. Incomplete

penetration is further supported by photolabelling experi-

ments [64] and recent MAC structures, which reveal an

irregular b-barrel pore [36,65] (discussed in §2). While the

trigger for membrane insertion remains unknown, the con-

served helix-turn-helix (HTH) motif of the MACPF/CDC



(a)

TM

TM

TM

C5b8

C5b
C6
C7
C8g
C8b
C8a
C9
oligomer

C9 oligomer

membrane
bilayer

100 Åchaperones

(b)

(c)

(d)

(e)

Figure 3. Comparable side and top views of polyC9, MAC and SC5b9 complexes determined using cryoelectron microscopy (cryo-EM). Pseudo-atomic model of a 22-
fold symmetric C9 oligomer (PDB: 5FMW) (a) based on the polyC9 reconstruction (b) (EMBD: 3235). Alternating C9 monomers are coloured red and blue. Putative
transmembrane regions (TM) are indicated by a black bar. (c) Cryo-EM reconstruction of the MAC pore (EMBD: 3134), where density for each protein component is
coloured (see key). (d ) Subtomogram average of the MAC on liposomes. Protein density is grey and lipid bilayer is orange (EMBD: 3289). (e) Soluble, regulated form
of the MAC, SC5b9 (EMBD: 1991), in which non-MAC density is indicated by chaperones. Scale bar, 100 Å, is relevant for all structures.
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domain, also referred to as CH3, is postulated to be involved.

Comparison of the HTH region of monomeric C6 [37] and oli-

gomerized C9 [57] shows a shift in its position and suggests a

role in the release of the TMH2 region during pore formation.
2. Recent structures of membrane attack
complexes

While previous studies using negative stain electron

microscopy [66–68] have provided the overall shape of the

MAC, the molecular architecture of how different comp-

lement components come together has only recently been

discovered [29,36,57,65] (table 1 and figure 3).
(a) Overall shape and function
Structures of the MAC reveal that the complex comprises a

hollow cylindrical density with a single stalk protrusion.

Similar to CDC and pleurotolysin structures [43,61],

MAC’s cylindrical shape [36,65] is consistent with a giant

b-barrel pore in which each complement protein contributes

two b-hairpins. Indeed, single cysteine labelling studies of

C8 and C9 identified that the common MACPF/CDC

domain contributed at least one transmembrane region per

protein in the final pore [74]. This research disproves the

hypothesis that MAC spans the target membrane using

amphipathic a-helices, as postulated prior to structural

information [75,76]. Images of MAC on liposomes [65,68]

reveal a single transmembrane region at the base of the
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barrel, indicating the complex likely spans one bilayer; in the

case of Gram-negative bacteria, only the outer membrane

would be perforated by a single MAC. Finally, MAC struc-

tures show that the C5b8 component forms an asymmetric,

monotopic complex that protrudes from the extracellular

surface of the target membrane [36,65], in line with the pre-

vious structural studies of a soluble regulated form of MAC,

SC5b9 [29] (figure 3c–e).

(b) Split washer shape
One of the most striking features of the MAC pore is that it is

an irregular b-barrel with a ‘split-washer’ configuration

[36,65]. Asymmetric assembly precursors comprise an inte-

gral part of the pore, yet do not span the length of the

bilayer [36,65]. TMH regions of assembly precursors are

shorter than those of C9 and distort the lipid bilayer

[36,65]. Differences between the symmetric and asymmetric

regions of MAC prevent closure through a canonical

MACPF–MACPF domain interface and contribute to its

‘split-washer’ shape. Moreover, the final MAC has a twisted

b-barrel, which likely impacts biophysical properties of the

local lipid environment and may play a role in MAC function.

(c) Heterogeneity of the final membrane attack
complex shape

Both MAC and CDC pores have been observed in a range of

stoichiometries. Atomic force microscopy and electron

microscopy analysis of CDCs and perforin reveal a variety of

oligomeric states (see §1d). Furthermore, the recent cryo-ET

study of the MAC demonstrated heterogeneous single pores

as well as incomplete pores that join to make multimeric com-

plexes [46,65]. By contrast, the single particle reconstruction of

the MAC reported a largely homogeneous stoichiometry [36].

While this may reflect sample purification, both biochemical

and in silico differences in lipid composition between the

two studies may also play a role.
3. In vivo function
MAC can rupture cell membranes with a wide variety of lipid

compositions. It lyses Gram-negative as well as host cells if not

properly controlled. Therefore, another important aspect of

understanding MAC assembly is to understand when the

pore is not formed, i.e. when MAC formation is inhibited.

A fine balance of regulatory factors on host cells quenches

early complement activation and amplification to prevent the

initiation of the MAC, thereby protecting the host cell from

the immune attack [77]. However, once MAC assembly is

initiated, other factors can still block formation of the final pore.

(a) Inhibiting off-target membrane attack complex
assembly

Activated complement components can assemble soluble,

off-pathway products incapable of membrane binding. The

plasma factors, vitronectin and clusterin, scavenge dead-end

assemblies (referred to as SC5b7, SC5b8 and SC5b9) and

prevent further oligomerization. In addition, C8 binding of

non-membrane-associated C5b7 is one of the most potent

inhibitors of MAC, preventing subsequent interaction with

the lipid bilayer [78,79].
Assembly precursors initiated on host membranes can also

be blocked from forming the pore by CD59 [80,81], a glycosyl-

phosphatidylinositol (GPI) anchored protein that can bind to

either C8 or C9. CD59 cannot interact with the soluble,

plasma forms of either of these two components; therefore, it

is postulated that the binding site is only revealed upon MAC

assembly. Epitope mapping and mutational studies have iden-

tified residues on C8 and C9 that are important for binding

[82–84]. Intriguingly, these amino acids also correspond to pre-

dicted transmembrane segments. Although no structural

information exists for CD59-bound complement complexes,

the crystal structure of CD59 in complex with a bacterial toxin

that competes with MAC binding revealed a binding site that

comprised a b-hairpin extending the central b-sheet of CD59

[53]. These data suggest that CD59 may recognize the b-hairpin

structural motif of complement proteins whose a-helices have

unfurled and trap it in a state unable to penetrate the bilayer.

Changes in the effective presentation of CD59 on a cell

surface have profound biomedical consequences. Mutation

in a gene involved in GPI anchor synthesis (PIG-1) prevents

trafficking and presentation of both decay accelerating

factor and CD59 to the host plasma membrane and leads to

paroxysmal nocturnal haemoglobinuria [85,86], a disorder

associated with unregulated MAC activity [87]. Conversely,

increased presentation of CD59 on leukaemic cancer cells

reduces the effectiveness of immunotherapeutic rituximab,

which acts in part by activating the terminal pathway [88,89].

(b) Membrane attack complex inhibition by pathogens
Pathogens have evolved a number of methods to evade killing

by MAC [90,91]. Enveloped viruses, such as the HIV-1, can pro-

tect themselves by incorporating CD59 originating from the

previous infected host’s membrane [92]. Additionally, Yersinia
pestis has been found to recruit vitronectin which in turn can

inhibit MAC using an outer membrane protein called Ail [93].

Some pathogens express CD59 mimetics such as herpes virus

saimiri that encodes HVS-15 [94,95] and SCIP-1 found on the

platyhelminth, Schistosoma mansoni [96]. These adaptations

form the basis for novel therapeutic targets and reflect a

continuing evolutionary battle between hosts and pathogens.
4. Concluding statement
In summary, recent structures of the MAC have provided

important mechanistic insight into MAC assembly and mech-

anism of action. The structure adopts a unique ‘split-washer’

and irregular b-barrel architecture, in which MAC precursors

form an integral component of the pore [36,65]. Assembly is

propagated by a combination of MACPF/CDC and ancillary

domain interfaces, where differences in complement proteins

result in a non-canonical MACPF/CDC closure. Nevertheless,

higher resolution structures of MAC, in which TMHs can be

visualized, will be necessary to define precise structural tran-

sitions that govern initial insertion and pore closure. Partial

insertion of assembly precursors and the MAC’s irregular

twistedb-barrel architecture have raised new questions regard-

ing its mechanism of action [36,65]. The importance of

membrane distortion in both lytic and sublytic roles of MAC

creates an exciting new area for future investigation.
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95. Ventura-Juárez J et al. 2009 Trophozoites of
Entamoeba histolytica express a CD59-like molecule
in human colon. Parasitol. Res. 104, 821 – 826.
(doi:10.1007/s00436-008-1262-3)

96. Parizade M, Arnon R, Lachmann PJ, Fishelson Z.
1994 Functional and antigenic similarities between
a 94-kD protein of Schistosoma mansoni (SCIP-1)
and human CD59. J. Exp. Med. 179, 1625 – 1636.
(doi:10.1084/jem.179.5.1625)

http://dx.doi.org/10.1016/0161-5890(90)90001-G
http://dx.doi.org/10.1016/0161-5890(90)90001-G
http://dx.doi.org/10.1016/0161-5890(93)90430-J
http://dx.doi.org/10.1016/0161-5890(93)90430-J
http://dx.doi.org/doi:10.1038/nri2620
http://dx.doi.org/10.1074/jbc.270.34.19723
http://dx.doi.org/10.1074/jbc.M603690200
http://dx.doi.org/10.1074/jbc.M603690200
http://dx.doi.org/10.1016/0092-8674(93)90250-T
http://dx.doi.org/10.1182/blood-2013-01-481499
http://dx.doi.org/10.2147/btt.s1420
http://dx.doi.org/10.2147/btt.s1420
http://dx.doi.org/10.1016/S0161-5890(03)00112-3
http://dx.doi.org/10.1007/s00005-011-0146-x
http://dx.doi.org/10.1007/s00005-011-0146-x
http://dx.doi.org/10.4049/jimmunol.170.6.3214
http://dx.doi.org/10.4049/jimmunol.170.6.3214
http://dx.doi.org/10.1039/C5MB00027&emsp14;K
http://dx.doi.org/10.1039/C5MB00027&emsp14;K
http://dx.doi.org/10.1039/C5MB00027&emsp14;K
http://dx.doi.org/10.1099/0022-1317-78-8-1907
http://dx.doi.org/10.1099/mic.0.000179
http://dx.doi.org/10.1016/0042-6822(92)91247-R
http://dx.doi.org/10.1007/s00436-008-1262-3
http://dx.doi.org/10.1084/jem.179.5.1625

	The mystery behind membrane insertion: a review of the complement membrane attack complex
	Introduction
	The role of the membrane attack complex
	Molecular assembly of the membrane attack complex
	General structure of membrane attack complex/perforin/cholesterol-dependent cytolysin proteins
	General pore-forming mechanism for membrane attack complex/perforin/cholesterol-dependent cytolysin proteins
	Membrane attack complex deviates from the canonical membrane attack complex/perforin/cholesterol-dependent cytolysin pore-forming mechanism

	Recent structures of membrane attack complexes
	Overall shape and function
	Split washer shape
	Heterogeneity of the final membrane attack complex shape

	In vivo function
	Inhibiting off-target membrane attack complex assembly
	Membrane attack complex inhibition by pathogens

	Concluding statement
	Authors’ contributions
	Competing interests
	Funding
	References


