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Using the theory of machine learning to assist the virtual screening (VS) has been an effective plan. However, the quality of the
training set may reduce because of mixing with the wrong docking poses and it will affect the screening efficiencies. To solve this
problem, we present amethod using the ensemble learning to improve the support vectormachine to process the generated protein-
ligand interaction fingerprint (IFP). By combiningmultiple classifiers, ensemble learning is able to avoid the limitations of the single
classifier’s performance and obtain better generalization. According to the research of virtual screening experiment with SRC and
Cathepsin K as the target, the results show that the ensemble learning method can effectively reduce the error because the sample
quality is not high and improve the effect of the whole virtual screening process.

1. Introduction

Since the 21st century, the focus of life science has been
developed from the experimental analysis and data accumu-
lation to experiments under the guidance of data analysis. Life
science is undergoing a transition from analysis of reduction
of method to the system integration method [1]. With the
completion of human genome project (HGP), more and
more three-dimensional structures of important function of
biological macromolecules (proteins, nucleic acids, enzymes,
etc.) have been parsed [2]. As the amount of data has
increased exponentially in recent years, the combination of
traditional pharmaceutical field and modern computer tech-
nology has become the inevitable result of the development of
life science, and virtual screening is the product of this com-
bination. At present, millions of molecules can be screened
out by the virtual screening method every day. For each
specific target structure, we can get the active compounds
in short time. The research object is focused on hundreds
of compounds from millions compounds, which can greatly
improve the speed and efficiency of the compounds screening
and shorten the cycle of new drug research. However,

the increasing amount of data makes ordinary computer
algorithm unable to maintain a high level, so the machine
learning method has gradually entered the view of the
scientists due to its reliable and fast performance.

The combination of machine learning and virtual screen-
ing has become a hotspot in the field of chemical information
and embodies its value in the process of drug discovery, such
as searching inhibitors [3], finding novel search chemotypes
[4], and predicting protein structures [5]. The number of
crystal structures of complex for training is crucial in the
method of the combination of virtual screening and machine
learning. Relative to the small number of training sets, a
larger andmore diverse training set can train amore powerful
learning mode. However, the crystal structures which can be
used for virtual screening always come from X-ray crystal
diffraction or the means of NMR [6]. Although the structure
is accurate, the high funding and the period limit the speed of
resolution, which cannotmeet the needs of the virtual screen-
ing experiment. So in order to expand the size of the training
set, some docking poses of the known active compounds will
be added to the training set. Because the docking poses are
supposed to include incorrect binding modes, large amounts
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of negative samples are introduced. The accumulation of the
negative samples is possible for producing the imbalanced
data set, which is a common phenomenon and of great value
in the studies on bioinformatics.

On the prediction of DNA-binding proteins, Song et al.
propose an ensemble learning algorithm imDC according to
the analysis on unbalancedDNA-binding protein data, which
has outperformed classic classification models like SVM
under the same situation [7]. Based on the ensemble learning
framework, Zou et al. give a newpredictor to improve the per-
formance of tRNAscan-SE Annotation, and the experimen-
tal results show their algorithm can distinguish functional
tRNAs from pseudo-tRNAs [8]. Lin et al. propose merging
𝐾-means, static selective strategy, and ensemble forward
sequential selection on the ensemble learning architecture for
hierarchical classification of protein folds with the accuracy
reaching 74.21%, which is the state-of-the-art strategy at
present [9]. Zou et al. combine the synthetic minority over-
sampling and 𝐾-means clustering undersampling to tackle
the negative influence brought by imbalanced data sets [10].

Obviously, it is common for bioinformatics studies to face
the imbalance data sets.The widely utilized strategies include
preprocessing training samples and improving classifiers
at present. In this paper, we start from the perspective
of improving machine learning algorithm, introducing the
ensemble learning method on the basis of simple SVM
classifier, using layered combination and iterative weight to
enhance the performance of the classifier, so as to reduce the
impact of the quality of the sample set. Meanwhile, this paper
introduces Random Forest as the experimental baseline to
examine the effect of ensemble learning on virtual screening.

2. The Quantitative Method

With the rapid development of combinatorial chemistry,
bioinformatics, molecular biology, and computer science, the
computer aided drug design (CADD) is widely used. Virtual
screening as one of the most widely used methods in the
CADD, because of its quick and low cost, has been gradually
replaced by the high-throughput screening as the main mean
of drug screening [11]. In this paper, we will use the virtual
screening method to screen the drug protein.

2.1. General Process of Virtual Screening. Virtual screening is
also known as a computer screen, which is a prescreening of
compoundmolecules on the computer to reduce the number
of actual screening compounds and to improve the efficiency
of the discovery of lead compounds. The workflow of virtual
screening process is shown in Figure 1.

Virtual screening includes four steps: the establishment
of the receptor model; the generation of small molecule
libraries; the computer screening; the postprocessing of hit
compounds.

Step 1 (the establishment of the receptor model). (1) Obtain-
ing macromolecular structure: preparation of protein struc-
ture is an important step in the virtual screening. The crystal
structures which will be used in the virtual screening can be
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Figure 1: Virtual screening process.

directly obtained from the PDB or modeling the sequence
and structure information of the homologous protein.

(2) Binding site description: the choice of the appropri-
ate ligand binding pocket is very important in molecular
docking. There are two ways to choose: (1) we take from the
ligand-receptor complex structure directly. (2) If there is no
complex structure, we need to manually choose the binding
sites according to the experiment information of biological
functions such as mutation and combination.

Step 2 (the generation of small molecule libraries). We can
use conversion program to translate the two-dimensional
structure to three-dimensional structure. The obtained 3D
structures can be used for docking process after adding the
hydrogen atoms and charges.

Step 3 (docking and scoring). Docking operation is putting
every small molecule on ligand binding sites of receptor pro-
tein, optimizing the conformation and location of ligand, and
making sure of the best combination. To score the best con-
formation and to rank all compounds according to the scor-
ing, then pick out the small molecules with the highest score
from compound library. Docking algorithm aims to predict
complex conformation generated by the receptor and the
ligand. The purpose of the scoring function is choosing the
conformation from candidate set of conformations according
to the score. The scoring function will get a lower score
if the docking result is more close to the natural compound.
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Figure 2: The calculation process of Pharm-IF [14].

However, there is no completely correct scoring function. So
far, all kinds of scoring functions used in the existing various
docking algorithms are only an approximation to the correct
scoring function.

Step 4 (postprocessing of hit compounds). If only use of the
sample-scoring model will lead to a huge difference in the
final results and sometimes lead to wrong judgment, final
resultsmust be analyzed frommultiple perspectives and post-
processing. The purpose of this analysis and postprocessing
is as accurate as possible to assess protein-ligand binding free
energies. The generated complex candidate set is classified,
and the error results are distinguished.

As the accuracy of the scoring function in virtual screen-
ing has not been properly resolved, in this paper, we use
the protein-ligand interaction fingerprint (IFP) to deal with
the interactions between target proteins and ligands. The IFP
encode the observed interactions between ligand and protein
into a binary string of fixed length [12]. The IFP method
was originally designed for analyzing ligand docking poses
to protein kinases. Based on this method, the atom-based
IFP concept was put forward and extended. Each kind of IFP
has its own characteristics, whether it is residue-based IFP or
atom-based IFP. One-dimensional interaction fingerprint is
more likely to be generated and compared with the 3D struc-
ture of protein ligand, and it is more suitable for computer
aided drug design [13].

2.2.The Concept and Calculation Process of Pharm-IF. In this
paper, we use a kind of atomic-based fingerprint—Pharm-IF
as an aid to verify the theory in this paper. The concept of
Pharm-IF is put forward by Sato et al. [14]. The Pharm-IF
is calculated from the distances of pairs of ligand pharma-
cophore features that interact with protein atoms and it can
detect important geometrical patterns of ligand pharma-
cophore.

The calculation of Pharm-IF can be divided into the
following three steps as Figure 2 shows.

Step 1. To detect the protein-ligand interactions from com-
plex structures, interactions can be classified into six types:
(1) hydrogen bond with ligand acceptor; (2) hydrogen bond
with ligand donor; (3) hydrogen bond in which the roles
of ligand and protein atoms could not be determined; (4)
ionic interaction with ligand cation; (5) ionic interaction with
ligand anion; (6) hydrophobic interaction.

Step 2. To create all possible interaction pairs, each interac-
tion pair is characterized by the pharmacophore features of
the ligand atoms and their distance. To calculate the resulting
matrix, each interaction pair is assigned to the corresponding
bin. In an interaction pair of two hydrogen bonds, ligand
atoms will be assigned to the vector corresponding to this
hydrogen bond pair if ligand atoms are a donor and an
acceptor that are 4.3 Å apart from each other. For example, in
order to describe the distance of 4.3 Å in the interaction, 0.7 is
assigned to the bin of 4 Å and 0.3 is assigned to the bin of 5 Å.

Step 3. The result matrix is calculated by the summation
of the values of all of the interaction pairs. The formula of
Pharm-IF calculation is as follows:

𝐻
𝑡,𝑘

= ∑

𝑖∈𝐼
𝑡

𝐴
𝑘
(𝑖) , (1)
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{

0, if 𝑘 − 𝑑
𝑖

 ≥ 1,

1 −
𝑘 − 𝑑

𝑖

 , otherwise.
(2)

In formula (1), 𝐻 stands for the interaction fingerprint
of a protein-ligand complex by Pharm-IF. 𝑡 is the pair of six
types of pharmacophore features. 𝑘 = 1, 2, 3, . . . stands for
the corresponding bins of the distances (Å) between ligand
atoms. 𝐼

𝑡
represents the fact that the whole set of the inter-

actions are classified as type 𝑡, and 𝑖 represents an element
in 𝐼
𝑡
. In formula (2), 𝑑

𝑖
represents the distances between

ligand atoms of 𝑖 (Å).
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2.3. CathepsinK and SRC. Thispaper selects CathepsinK and
SRC as the target for screening. These two kinds of proteins
are the hotspot in the field of pharmaceutical drug targets and
both of them do not have enough experimentally determined
protein-ligand complex structures for virtual screening.
Therefore, it is necessary to add some docking poses in the
training set and these docking poses will influence the virtual
screening efficiency.

Protooncogene tyrosine-protein kinase SRC, also known
as protooncogene c-Src or simply c-Src, is a nonreceptor
tyrosine kinase protein that in humans is encoded by the SRC
gene. The SRC family kinase is made up of 9 members: LYN,
FYN, LCK, HCK, FGR, BLK, YRK, YES, and c-SRC.The SRC
widely exists in tissue cells and it plays an important role
in the process of cell metabolism, regulation of cell growth,
development, and differentiation process by interacting with
the importantmolecules in the signal transduction pathways.
The c-Src is made up of 6 functional regions: SRC homology
4 (SH4) domain (SH4 domain), unique region, SH3 domain,
SH2 domain, catalytic domain, and short regulatory tail.
When SRC is inactive, that will cause intermolecular interac-
tions between the phosphorylation TYR527 (tyrosine group
527) and SH2 domain. At the same time, the SH3 domain
will combine with the proline-rich SH2 kinase link domain.
When Tyr527 is dephosphorylated and Tyr416 is phosphor-
ated, links between these molecules will break, and the SRC
protein is activated. The SRC causes a series of biological
effects by participating inmany signal transduction pathways
through a variety of receptors and this kind of protein is
closely associated with a variety of cancers. The activation
of the c-Src pathway has been observed in about 50% of
tumors from colon, liver, lung, breast, and the pancreas. As
a drug target, a number of tyrosine kinase inhibitors treating
c-Src tyrosine kinase (as well as related tyrosine kinases)
as target have been developed and put into use [15].

Cathepsin K is a lysosomal cysteine protease belonging
to the papain superfamily and it has been cloned in 1999.
The gene location is lq21.2, the length of the transcript is
1.7 kb, and it consisted of 8 extrons and 7 introns.The protein
expression is in the osteoclasts and included in the bone
resorption. In the process of bone resorption, the acid will
dissolve the hydroxyapatite and the organic ingredients in the
bone matrix will be separated and degraded by Cathepsin K.
Cathepsin K has strong activity of collagenase in acid envi-
ronment and it has been found that it plays a role in a variety
of pathological phenomena at present such as rheumatoid
arthritis, tumor invasion and metastasis, inflammation, and
osteoporosis. The function of Cathepsin K in osteoclast has
been recognized; therefore, many labs treat their inhibitors as
a drug target for the treatment of osteoporosis. At present, the
first choice of antiabsorption treatment is bisphosphonates,
which can reduce the risk of nonvertebral and vertebral frac-
tures. However, the long-term using of bisphosphonates may
produce adverse reactions: esophageal stimulus symptoms,
hypocalcaemia, kidney irritation, and so on. In addition, bis-
phosphonates not only prevent bone loss but also inhibit bone
formation at the same time, so the new replacement therapy
drugs are more meaningful [16].

3. Classification Algorithm Based on
the Adaboost-SVM

Currently, SVM can deal with many problems, such as small
size of samples, nonlinearity, or high dimensions. Based on
the statistical learning theory, it has a simple mathematical
form, fast training method, and good generalization perfor-
mance. It has been widely used in data mining problems such
as pattern recognition, function estimation, and time series
prediction. Under the condition that the quality of sample set
is not very low, even if we do not make any improvements,
we can get a good result. The learning mechanism of SVM
provides a lot of space to improve the classification model.
In addition, one major advantage of SVM is using of convex
quadratic programming, which provides only global minima
and hence avoids being trapped in local minima, so in this
paper we use SVM as the base classifier. There have been
a large number of literatures about the SVM; this paper
only gives a simple introduction. The basic process of SVM
classification problems is as follows.

For a given sample set 𝐿 = {(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
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∈ 𝑅
𝑑

𝑦
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𝑖
stands for the

categories of sample 𝑥
𝑖
, 𝑑 is the sample number, and 𝑛 is the

training sample number. If the input vector set is linearly
separable, then the input vector set can be separated by a
hyperplane. The hyperplane can be expressed as

𝑤 ⋅ 𝑥 − 𝑏 = 0. (3)

𝑤 is the normal vector of the hyperplane and 𝑏 is offset.
The SVM learning problem is minimizing the objective
function:

min𝜙 (𝑤) =
1

2
‖𝑤‖
2
+ 𝐶(

𝑛

∑
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This meets the condition

𝑦
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𝑖
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Here, (1/2)‖𝑤‖
2 is structure complexity,𝐶(∑

𝑛

𝑖=1
𝜉
𝑖
) stands

for empirical risk, and 𝜉
𝑖
presents the slack variable. 𝐻 is

a constant which is punishment factor of samples wrongly
classified. For the situation of linear inseparable the main
idea of SVM is used to map the feature vector to the high
dimensional feature space and constructs an optimal hyper-
plane in the feature space.

To get the change of 𝜙, 𝑥 in space of 𝑅𝑛 mapped into 𝐻:
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1
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Eventually we can decide optimization classification
function:

𝑓 (𝑥) = sgn (𝑤 ⋅ 𝜙 (𝑥) + 𝑏)
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(7)
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In our work, Radial Basis Function (RBF) is taken as the
kernel function of SVM, and the mathematical description of
this kernel is given below:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝑒
−‖𝑥
𝑖
−𝑥
𝑗
‖
2
/2𝜎
2

. (8)

Relative to other classifiers, the SVM is more stable and
less affected by the quality of sample set. However, the sample
categories imbalance of data set and the high complexity of
the data set will destabilize the classifier and the instability
of the classifier will directly affect the final classification
result. In this paper, we introduce the Adaboost mechanism
in ensemble learning to divide one classification process into
several layers of weak classifier based on SVM.

The key of the combination of Adaboost and SVM is to
find a suitable Gauss width 𝜎 value for each component. If the
𝜎 value is relatively large, the component classifier is tooweak,
and the final classification performance is decreased. On the
other hand, if the 𝜎 value is relatively small, which makes
the component classifier robust, and the error of component
classifier is highly correlated, the difference is small, so that
the ensemble learning is invalid. Even more importantly, 𝜎
value is too small which will lead to overfitting and resulting
in a greatly reduced generalization. Therefore, in this paper,
the standard deviation of the sample set of each component
classifier is used as the 𝜎 value of the component classifier
to control the classification accuracy of the component clas-
sifier; thus SVM based Adaboost classifier is obtained. The
program used in this paper is not an open source, so we need
to explain some key parameters. We list the values of 𝜎, 𝐶
and other parameters in Table 1.

The specific process of the algorithm is as follows.

(1) RBFSVM presents the SVM with the RBF kernel;
𝑇 presents the number of iterations required in the
Adaboost process.

(2) Initialization: initialize the weights of each sample:
𝑤
1
(𝑖) = 1/𝑛, 𝑖 = 1, 2, . . . , 𝑛.

(3) For 𝑡 = 1, 2, . . . , 𝑇:
for each ℎ(𝑥

𝑖
), calculate the weighted error:

𝜀
𝑡

(𝑖)
=

𝑛

∑
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𝐷
𝑖


ℎ (𝑋
𝑗
) − 𝑦 (𝑗)


. (9)

Choose a feature with the lowest weighted error rate
𝜀
𝑗
and save its corresponding SVM model. Calculate

the selected weak classifier’s weight:
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(11)

Table 1: SVM parameter setting.

Parameter name Parameter values
SVM type C-SVM
Class number 2
Kernel function RBF
The degree in kernel function 3
𝜎 in kernel function 0.001
Coast factor 5
Cache size 500MB
Tolerance in the termination criteria 0.001
The weight value of penalty factor for all kinds
of samples 1

Cross validation 5

Table 2: Adaboost-SVM parameter setting.

Parameter name Parameter values
Ensemble learning type Adaboost
Class number 2
The basic classifier type C-SVM
Number of classifiers per layer 100
The max false alarm rate 0.5
The min hit rate 0.9
Number of iterations 5
Weight trim rate 0.9
Cache size 500MB

And the normalized parameters are

𝑛

∑

𝑖=1

𝐷
𝑡
(𝑖) = 1. (12)

(4) Use strong classifier 𝐻 integrated by SVM weak
classifier to training set:

𝐻(𝑥) = sign[

𝑛

∑

𝑖=1

𝑎
𝑡
ℎ
𝑡
(𝑥)] . (13)

For the Adaboost-SVM, we set the parameters in Table 2,
and the basic SVM parameters are the same as Table 1.

Thus compared to the single machine learning algorithm,
ensemble learning method requires that each base classifier
should be independent from the others. The probability
of sample misclassification should be less than 0.5. In the
ensemble learning method, all classifiers will work together
to solve one problem and this can also reduce the impact of
the quality of sample set to the virtual screening effect.

4. Experiment and Analysis

In order to verify the validity of the proposed method in this
paper, besides the crystal structure of PDB, we also combine
the data from the PubChem database and the StARLITe
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database and the enrichment factor (EF) and the ROC curve
are used to evaluate the effect of virtual screening and the
machine learning to ensure the effectiveness of the method.
PubChem is a database of chemical molecules and their
activities against biological assays. StARLITe is a database
containing biological activity and/or binding affinity data
between various compounds and proteins and it is one of the
databases that can be directly used in data mining.

All the crystal structures used in this experiment are from
PDB database; the material is available free of charge via the
Internet at http://www.rcsb.org/. All the training set decoys
are from PubChem data set; the material is available free of
charge via the Internet at http://pubchem.ncbi.nlm.nih.gov/.
We thank laboratory colleagues for providing the StARLITe
data.

4.1. Data Set. In order to cooperate with machine learning,
in this paper, we construct a set of training sets and test
sets of these two target proteins for machine learning,
which include the decoys and known active compounds. In
the training set, we selected the experimentally determined
complex structures of these two kinds of proteins from the
PDB as the positive samples. The Protein Data Bank (PDB)
is a crystallographic database for the three-dimensional
structural data of large biological molecules. The data in
the PDB is submitted by biologists and biochemists around
the world by the experimental means such as X-ray crystal-
lography, NMR spectroscopy, or, increasingly, cryoelectron
microscopy. To expand the training set, we randomly and
respectively selected 1, 3, 5, 10, 20, 40, 60, and 80 active
compounds from the known active compounds for which
crystal structures with their targets were not determined and
this process is repeated 10 times. For each of the selected com-
pounds, we used the GLIDE to generate five docking poses
and mixed them into the training set. Among them, the
crystal structures of these two proteins used in docking
experiments are selected from thePDBwith protein-inhibitor
compounds with high inhibitor activity and high resolution
crystal structure.The entry 2h8h, SRC kinase in complexwith
a quinazoline inhibitor, the resolution 2.30 Å, was selected
for SRC. The entry 1u9w, crystal structure of the cysteine
protease human Cathepsin K in complex with the covalent
inhibitor NVP-ABI491, the resolution 2.20 Å, was selected for
Cathepsin K. We used the SP mode of GLIDE to generate the
docking poses of the decoys and the active compounds for
which crystal structureswere not experimentally determined.
For the preparation of the docking, we use the Protein
Preparation Wizard to add the hydrogen atoms of the
protein and optimize their positions. Using Pipeline Pilot
of SciTegic to enumerate the tautomer, stereoisomers and
protonation/deprotonation form at pH 7.4 of the active and
decoy compounds. Then, the additional ring conformations
of the compounds were generated by LigPrep. Then the
GLIDE score was used to select five poses for each compound
in the docking results. In this paper, five docking poses of each
active compound as the positive examples were chosen by the
GLIDE score because this procedure would generate higher
enrichment factors in a preliminary test than using one pose
of each active compound. Other settings of GLIDE were set

Table 3: Experimental data structure.

Date set Positive sample Negative sample Total
Training set 100 2000 2100
Test set 100 ∗ 5 = 500 2000 ∗ 5 = 10000 10500

to the default values. In this paper, we use the averages of
the 10% EF and the ROC score of the 10 trials to evaluate
the screening efficiencies of the learning models using each
number of docking poses. Then, select the docking poses of
2000 decoy compounds from them as the negative samples,
randomly. Each decoy compound was docked to the target
proteins by the same way as mentioned above.

After the completion of the training set, we set out to build
the test set. First, choose the active compounds of the target
proteins (IC

50
≤ 10 𝜇m) from StARLITe and divide them into

100 clusters. Dividing strategy is that hierarchical clustering
with Ward method based on the Euclidean distance between
their 2D structure fingerprints.The compoundwith the high-
est inhibitory activity was selected from each cluster. Dock
the 100 active compounds obtained for each target to their tar-
get protein and five docking poses for each active compound
were used as positive samples of the test set.The docking way
and target protein crystal structures are same as those men-
tioned above. Then, use selection strategy of negative sample
of the training set to choose the decoys for the test set.

After the completion of the date preparation, we will use
the Pharm-IF to quantify the training set. Then, treat the
data as the input of machine learning algorithms to get the
corresponding learning model. The learning model obtained
will be used to test set, respectively.

From Table 3, it can be seen that the proportion of nega-
tive samples and positive samples is up to 20 : 1, which leads
to significant imbalanced-data problem, and the motivation
of our work is to address this issue.

4.2. The Evaluation Index of the Machine Learning Combined
with Virtual Screening. At present, the virtual screening and
machine learning have their own evaluation index [17]. The
enrichment factor (EF) is one of the most famous measures
for evaluating the screening efficiency. EF is usually used to
evaluate the early recognition properties of screeningmethod
and it can indicate the ratio of the number of obtained active
compounds by in silico screening against that generated by
random selection at the predefined sampling percentage.The
calculation method of EF is as follows:

EF =
Hits
𝑠
/𝑁
𝑠

Hit
𝑡
/𝑁
𝑡

. (14)

Here,Hits
𝑠
represents the number of active compounds in

the sample, Hit
𝑡
is the number of active compounds tested,𝑁

𝑠

is the number of compounds sampled, and 𝑁
𝑡
is the number

of all compounds. In the actual drug discovery, only a small
part of the compound is filtered by computer. In general, 0.01–
1% of the compounds will be selected from a huge compound
database (10000–1000000 compounds) in the actual virtual
screening process. Since the number of test sets in this exper-
iment is far from reaching this order of magnitude, we use
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Figure 3: Two ROC curves 𝑋 and 𝑌.

10%EF to carry out this test in order to reduce the deviation of
the early evaluation. EF has only specific sampling proportion
screening efficiency; therefore this paper also introduced the
ROC curve and AUC value to assess the entire range of
sampling (0–100%).TheROC curve (receiver operating char-
acteristic curve) is a graphical method to show the tradeoff
between false positive rate and true positive rate of classifier.
As shown in Figure 3, in ROC curve, the true positive rate
(TPR) is plotted along the 𝑦-axis, while the false positive rate
(FPR) is displayed on the 𝑥-axis. Although the ROC curve
can directly reflect the effect of the machine learning model,
we also need a kind of numerical method, the AUC (area
under ROC curve) value, to evaluate the effect of the model
in the practical application.The AUC value indicates the area
under the ROC curve and it is more intuitive and accurate.
The calculation method of AUC value is as follows:

AUC = ∫

1

0

TP
𝑃

𝑑
FP
𝑁

=
1

𝑃 ⋅ 𝑁
∫

𝑁

0

TP 𝑑 FP. (15)

Among all the variables of formula (15), 𝑃 stands for
the positive samples, 𝑁 represents the negative samples, TP
(true positive) stands for the active compounds that are
classified correctly, and FP (false positive) stands for the
misclassification of active compounds.

AUC values are between 0.5 and 1.0; if the model is per-
fect, the AUC value is 1; if the model is only a random guess,
the AUC value is 0.5. If a model is better than another, AUC
value of the better one is higher. ROC curves andAUC are not
affected by imbalance distribution of data class and normal
distribution of the data. In addition, the AUC value allows
a middle state and experimental results can be divided into
multiple ordered classification.

4.3. The Analysis of Experimental Results. According to the
experiment, we used three different classification methods
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Figure 4: Comparative experiment of SRC.
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Figure 5: Comparative experiment of Cathepsin K.

(SVM, Adaboost-SVM, and RF) to compare the two kinds of
target proteins for virtual screening experiment. As the base-
line algorithm, RF is also developed based on the machine
learning libs of the authors’ lab, and the parameters of RF are
set in Table 4.

The ROC curves from the comparative experiments
on these two kinds of data sets using ensemble learning
(compared with SVM) are as those in Figures 4 and 5.

Table 5 shows the 10% EF of the two methods and
calculates the AUC value.

Aiming at the problemof sample set quality, theAdaboost
method gives the same weight value to each training data; the
sample weight represents the probability of the data treated
as the training set by a weak classifier. At each iteration,
the Adaboost algorithm will modify the weight value of the
sample; if the training sample is correctly classified in this
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Table 4: Random Forest parameter setting.

Parameter name Parameter values
Tree number 1000
Node size 5
The number of different descriptors tried at
each split 50

Table 5: Experimental comparison of SVM, Adaboost-SVM, and
Random Forest.

Algorithm Target protein 10% EF AUC

SVM SRC 4.7 0.734
Cathepsin K 3.9 0.683

Adaboost-SVM SRC 5.5 0.821
Cathepsin K 4.8 0.802

Random Forest SRC 5.3 0.805
Cathepsin K 4.5 0.783

iteration, the weight value of the sample will be reduced;
that is, the probability of being treated as the training sample
is reduced in the next iteration. On the contrary, if the
training sample is misclassified in the current base classifier,
theweight value of the samplewill be increased, and the prob-
ability of being treated as the training samplewill be increased
in the next iteration. In this way, the weak classifier will pay
more attention to the serious misclassification of training set.
The experimental results above show that Adaboost-SVM
has notably outperformed RF.This observation indicates that
on both 10% EF and AUC ensemble learning based virtual
screening has shown its ability of noise resistance, under the
situation that the amount of structure samples is limited; thus
the better screening results are obtained.

5. Conclusion

In this paper, we use ensemble learning method to solve the
problem caused by the quality of the training set.Thismethod
mainly uses Pharm-IF to encode protein-ligand interactions
as a binary form and then uses the improved SVM algorithm,
Adaboost-SVM, and Random Forest to classify the data. The
idea of ensemble learning in dealing with data classification
problem is to get a number of weak classifiers which are
independent of each other and then use an effective method
to combine these independent weak classifiers. By comparing
the experimental results, after the Adaboost-SVM is used as
the classifier, 10% EF for the SRCmodel increased from 4.7 to
5.5, and the AUC value increased from 0.734 to 0.821, 10% EF
of Cathepsin Kmodel increased from 3.9 to 4.8, and the AUC
value increased from 0.683 to 0.802. It can be observed from
the results that, comparing with the näıve SVM, Random
Forest has obtained better performance on both 10% EF
and AUC: 10% EF is improved to 5.3 and 4.5 on SRC and
Cathepsin K, respectively, and AUC is improved to 0.805 and
0.783, respectively. As a classic ensemble learning algorithm,
Random Forest has shown that ensemble learning is able
to get better results on the imbalanced data set with satisfying

robustness. Nevertheless, the performance of Random Forest
is lower than Adaboost-SVM, and we will continue investi-
gating the reasons in our future work. Compared with the
traditional method, the proposed method is more significant
for the improvement of the accuracy of the virtual screening
model. In the future work, the problem of improving the
accuracy of virtual screening should be further studied
from two aspects: virtual screening theory and computer
theory. Although the status of virtual screening is gradually
increasing, the problem of virtual screening false positive rate
is still to be solved. The speed of laboratory determination of
protein structure has been unable to catch up with the needs
of drug development, therefore, in the virtual screening it
will often encounter problems similar to this paper, so there
are still many improvements in the algorithm. For example,
the selection of kernel function will directly affect the perfor-
mance of the classifier. In view of the problem of this kind of
data set, we should set up a special kernel function to adapt to
the characteristics of the data set.
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